


1. Introduction

Text categorization, also known as text classification or TC, is the task of using prede-
fined thematic categories to assign labels to natural language texts. In recent years, there
has been a tremendous growth in the volume of text documents on the Internet and com-
pany-wide intranets, and in digital libraries and news sources. A number of statistically-
based text classification algorithms as well as some machine learning techniques have been
developed and applied to automatic TC. For example, a sequential algorithm [1] was
developed for training text classifiers; a learning algorithm [2] was applied to symbolic
knowledge classification in the WWW; a machine learning approach [3] was implemented
to find out the interests of users; a technique for sorting electronic mail was developed in
[4]; and Yang [5] conducted an evaluation of various statistical approaches to text
categorization.
This research, unlike previous work, applies case-based reasoning (CBR) [6], a kind of

instance-based learning mechanism, to the task of TC. CBR means reasoning from prior
examples. The methodology involves retaining a memory of previous problems and their
solutions, and solving new problems by referencing this knowledge [7]. Generally, a CBR
reasoner will be presented with a problem and the reasoner then searches its memory of
past cases (the case base) and attempts to retrieve a case or cases that most closely match
the case under analysis. Retrieved cases are used to provide the solution to the current
case. In this research, each stored text document is regarded as a case in the case-based
reasoner. An unseen text document which needs to be classified is a problem (also called
a query case). Compared with rule-based systems, CBR systems usually require signifi-
cantly less knowledge acquisition, since they collect a set of past experiences (i.e., cases)
without the necessity of extracting a formal domain model from these cases.
In the context of TC, because of the high dimensionality in feature terms and the large

number of documents, in this case-based reasoner we incorporate two important pro-
cesses: feature term reduction and document selection. We also include some TC prepro-
cessing subtasks such as parsing the documents to a set of key words, and the filtering of
the common words (also known as stop words). The novel rough set-based case-based rea-
soner developed in this paper thus consists of four main components: a feature term
extractor, a document representor, a case selector, and a case retriever.
To build the feature term extractor, a parser is first used to isolate the words in each

document removing the repeated words and retaining distinct ones. Since the stop words
which appear in almost every document are considered to contribute little contribution to
TC, they are filtered and dropped. The retained set of words is considered to be the ori-
ginal feature terms. A text document often contains often hundreds or even thousands
of such feature terms. As leads to low efficiency and low classification accuracy, a feature
term reducer is designed for feature term extraction in the proposed rough set-based case-
based reasoner.
In this paper, we propose a fast rough set-based feature reduction approach to building

the feature term reducer. There is some research work [8,9] that uses rough set theory to
discover hidden patterns and dependency relationships among features in information sys-
tems. The most important features and patterns can be detected by generating reducts.
Unlike other often-used statistical feature reduction methods in TC [10], no additional
information about the data such as domain knowledge is required in the process of gen-
erating reducts. Some researchers have applied rough set theory to extracting feature terms
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in text domains. For example, Chouchoulas and Shen [11] proposed a rough set-based ap-
proach (RSAR) for TC and tested it using E-mail messages. Based on their work, Bao
et al. [12] developed a rough set-based hybrid method using latent semantic indexing
(LSI) and rough set theory for TC. Satisfactory text classification accuracies can still be
achieved even using very few feature terms. However, due to the large number of feature
terms, these methods require a great computational effort during the reduct generation. To
make the process of feature reduction less computationally expensive calls for efficient
algorithms for generating reducts. In this paper, fast algorithms are developed to generate
reducts for building the feature term reducer, computing as the most significant set of fea-
tures the approximate reduct rather than the exact reduct. The computational complexity
of the algorithm is linear with the number of features and cases.
After the reduction of the feature terms, the number of documents (i.e., cases) may still

be large, and this will slow down the TC process. Furthermore, text documents may con-
tain redundancy (e.g., duplication of documents) and/or inconsistency (e.g., same feature
terms, but different categories), and this will impact classification. Clearly, then, it becomes
necessary to build into the case-based reasoner a case selector for case (document)
selection.
Various methods on instance selection1 in the context of machine learning are described

and summarized in [13,14]. However, there has not much research work on the issue of
document selection for TC. Since most current techniques for instance selection are devel-
oped independent of those for feature selection, all the original features are involved in
these techniques, and this leads to a high computational load (particularly in TC). Addi-
tionally, without feature selection (or feature weight learning), the original large set of fea-
tures may cause a misleading similarity computation between instances, resulting in an
inappropriate instance selection. To tackle these problems, Fragoudis et al. [15] proposed
an instance selection strategy for TC (called the FIS algorithm in this paper) which is inte-
grated with the feature selection process. First, an essentially statistics-based feature selec-
tion is implemented using a DF-based measure. Those documents which do not contain
any selected terms are then removed from the document collection. Experimental results
in [15] have shown this document selection strategy to be effective and efficient, however,
it can be only preformed on binary classification problems and the document selection is
not directly related to the classification quality.
This paper proposes a novel case selection method to be used in the development of a

case selector for reducing the size of case base. This method is directly related to the clas-
sification performance of a CBR system for TC. The concepts of case coverage and case
reachability, which describe the completeness of a CBR system, are used to identify which
cases should be removed and which preserved, with the main goal being to reduce the
number of cases while maintaining the classification accuracy. Our research group has ear-
lier [16,17] proposed a similar case selection policy for case base maintenance. After the
two reduction processes, the most formative feature terms and documents are preserved
for the task of categorization. It is guaranteed that in removing features and cases from
the case base, minimal useful case base information is lost. This process allows the con-
struction of a reduced case base having many fewer terms and cases. When a query case

1 In [13], there are two types of instance selections: selection from labeled data or from unlabeled data. In this

paper, since the latter type (i.e., instance selection from unlabeled data) is not involved, we assume that ‘‘instance

selection’’ is equivalent to ‘‘instance selection from labeled data’’.
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is presented to the case-based reasoner, a case retriever computes the similarity between
the query case and the cases in the reduced case base, allowing the most similar case(s)
to be retrieved to provide the candidate labels for the query case. In this paper, to obtain
the final solution, i.e., the predicted label for the unseen document, we use the 1-Nearest
Neighbor rule.
The rest of the paper is organized as follows. Section 2 describes the architecture of the

case-based reasoner. Section 3 gives the algorithms for building a rough set-based feature
term reducer. Section 4 presents the policy for reducing and selecting cases (documents)
that are used in building the case selector. This policy is based on the concepts of case cov-
erage and case reachability. In Section 5, reports and analyses experimental results ob-
tained in using the case-based reasoner on the Reuters21578 dataset. Section 6 offers
our Conclusion and some directions for possible future work.

2. Architecture of case-based reasoner

This section describes the architecture of the proposed case-based reasoner (Fig. 1). The
main components are a feature term extractor, document representor, case selector, and
case retriever. Each of these components implements different tasks, including feature term
extraction, document representation, case selection, case retrieval, and document label
prediction. Since the main differences between the case-based reasoner presented in this
paper and a traditional case-based reasoner are to be found in term reduction for the facili-
tation of feature term extraction and the case selection, these aspects will be dealt with
separately, with Section 3 addressing feature term extraction and Section 4 addressing case
selection.

Fig. 1. Architecture of case-based reasoner for TC.
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2.1. Feature term extraction

Feature term extraction involves carrying out the following three subtasks.

Step 1: The stop words list is used to isolate and pre-filter words in all of the documents.
Stop words are extremely common words which appear in almost every document,
such as ‘‘a’’, ‘‘the’’, and ‘‘with’’. In the context of the TC task, these words are
often considered to contribute little useful information.

Step 2: Low-frequency words—words which occur just once or twice—are filtered. The
words which remain are considered to be the original feature terms.

Step 3: To facilitate the rough set-based feature term reduction, each document is repre-
sented using a term vector with respect to the original feature terms acquired in
Step 2. Assume there areM terms in the set of original feature terms. A given doc-
ument D can be described by an M-dimensional term vector [t1, t2, . . . , tM], where
tk is a Boolean variable which is given by

tk ¼
1 if D contains term k;

0 if D does not contain term k;

�

k ¼ 1; 2; . . . ;M . ð1Þ

Step 4: Reduce the feature dimension using the rough set-based method (to be described in
Section 3).

2.2. Document representation

Using the extracted terms in Section 2.1, each document is represented by a term vector.
Assume there are m (m 6M) feature terms after exaction. Each document is then denoted
by an m-dimension vector. An example of a document vector is

D ¼ ½t1; t2; . . . ; tm�; tk 2 ½0; 1�; k ¼ 1; 2; . . . ;m; ð2Þ

where tk is the normalized weight of feature term k in document D. tk is computed by two
steps: weight computation and weight normalization.

Step 1: Weight computation.
Compute the weigh of each feature term in each document using term frequency–
inverted document frequency (tf–idf).

wk ¼ � logðN k=NÞfk; k ¼ 1; 2; . . . ;m;

where wk is the weight of term k; Nk is the number of documents containing term
k; N is the total number of documents; fk is the frequency of term k.
Note that wk is the weight of the kth term in the whole set of text documents. Here,
in order to reduce the computational load, the term weight for each term in each
document is not computed.

Step 2: Weight normalization. Let wmax denote the maximal weight. wk is normalized to be

wk ¼ wk=wmax.

That is, for each k in Eq. (2), tk = wk.
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2.3. Case selection

This paper proposes a CBR-based case selection approach which can reduce the num-
ber of cases as well as preserve the completeness (i.e., the range of problems the system can
solve) of the case-based reasoner. To describe the property of completeness, we make use
of two CBR concepts, case coverage and case reachability.
In the domain of CBR, it is assumed that the problem space can be well described by

the case space. Hence, a case without a corresponding solution can be considered as a
problem. Coverage of a case is the range of problems (cases) which can be solved using
this case; the reachability of a problem (case) is the set of cases which can solve the case.
In various applications, case coverage and reachability have different meanings, depending
on the definition of that a case can be ‘‘solved’’ by another case. In this paper, a case q is
said to be solved by another case p when (1) p and q fall within the same class; and when
(2) the similarity of the two cases is larger than a, where a is the similarity between p and its
nearest boundary case. Here a boundary case of p is defined as a case whose class label is
different from that of p. The coverage and reachability of a case is then computed-based on
the definition of ‘‘solve’’ or ‘‘be solved’’. According to these concepts, the cases with larger
coverage sets and smaller reachability sets should make a larger contribution to the com-
pleteness to the case-based reasoner. Those case(s) whose coverage set is the largest and
whose reachability set is smallest are selected first, and this process of case selection con-
tinuous until all the cases in the case base are solved using the selected cases. A threshold
can also be given here to determine the size the case base, which would determine when the
selection process stops. The case selection algorithm will be given in Section 4.

2.4. Case retrieval and text label prediction

Feature term reduction and case selection generates a smaller case base containing
many fewer feature terms and cases. The next step is to build a case retriever which can
retrieve the most similar case(s) for the query case in question. Here the query case is also
represented by a term vector as mentioned in Section 2.2. By computing the distance be-
tween the query and other documents in the vector space, documents with similar semantic
content to the query will be retrieved.
To this end, the similarity between cases should be defined and computed. 1-Nearest

Neighbour rule is used to determine the retrieved case which will provide the final text
label for the query case.

Step 1: Similarity computation.
The similarity of two cases (documents) is defined as the weighted distance

simðDi;DjÞ ¼ 1�
X

wkjtik � tjkj; ð3Þ

where Di is document vector i, Dj is document vector j; wk is the weight of term k

as mentioned before; tik is the kth value of document vector i; tjk is the kth value of
document vector j.

Step 2: 1-Nearest Neighbor label prediction.
For simplicity, the 1-Nearest Neighbor rule is used to determine the final solution,
i.e., the predicted text label for the query case. When a query case (unseen docu-
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ment) occurs, it is first represented using a term vector. After the similarity compu-
tation, the most similar case is retrieved to provide a candidate solution. The label
of the retrieved case is considered to be the predicted class label of the query case.

3. Rough set-based feature term reduction

To tackle the task of feature term extraction in the case-based reasoner, this paper devel-
ops a rough set-based approach. Rough set theory has been successfully applied in a great
many domains, such as controlling industrial processes [18,19], diagnosis analysis [20,21],
image processing [22], market decision-making [23], environmental problem detection [24],
data mining [25], and web and text categorization [26,27]. Rough set theory is used to find
reducts in order to extract dependency rules, to discover associate relationship among
features, to reduce redundant features, and to select important features [28–32]. Traditional
discernibility function-based reduct generation, however, requires a considerable computa-
tional effort. For example, if there areN cases andM features, the computational complexity
of the regular procedure for computing reducts is O(M2

· N2). Based on the work of Skow-
ron and Rauszer [28], the required computations for reduct generation is O(M · N2).
Because of the large number of feature terms and documents, the high computational

complexity of the discernibility function-based methods greatly limits the use of rough sets
in TC. In this paper, we develop fast algorithms which incorporate the characteristics of
TC and reduce the required computation effort to the extent that it is linear with the num-
ber of features and the number of cases. Before we describe the feature term reduction
algorithms, however, Sections 3.1 and 3.2 describe some related rough set theory concepts.

3.1. Information system and decision table

An information system (IS) consists of a triplet IS = (U,AT, f), where U is a finite non-
empty set of N objects {x1,x2, . . . ,xN}; AT is finite nonempty set ofM attributes (features)
{a1,a2, . . . ,aM}; fa : U! Va for any a 2 AT, where Va is called domain of an attribute a. A
decision table is an information system DT = (U,AT [ {d}, f), where d is the decision attri-
bute, d 62 AT.
In the context of TC, U is the set of documents in the case base; each document is an

object x 2 U. AT is the set of feature terms which describe these documents. Initially, each
term that occurs in at least one document is considered as one attribute in AT. d is the class
label of the documents, e.g., the topic of each document. Every document can be repre-
sented by fa(x) 2 {0,1}, a 2 AT, x 2 U. When keyword a appears in document x,
fa(x) = 1; otherwise, fa(x) = 0.
Each subset of attributes A � AT determines an indiscernibility relation IND(A) on U

INDðAÞ ¼ fðx; yÞ 2 U � U j8a 2 A; f aðxÞ ¼ faðyÞg. ð4Þ

The relation IND(A) is an equivalent relation and the corresponding equivalent classes
construct a partition of the universe U.
A reduct is a key concept in rough set theory and is very useful in knowledge reduction.

Reducts are considered to be the essential part in an information system to discern all the ob-
jects. A reduct is a subset of attributes. These attributes are indispensable in the IS and have
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the same discriminating power as the original set of attributes. A feature a is dispensable in IS
if IND(AT � a) = IND(AT); otherwise, a is indispensable in IS. In other words, a feature is
dispensable in an IS if the discernibility of the IS does not degrade after removing this feature.

3.2. Discernibility matrix and discernibility function

Proposed by Skowron and Rauszer [28], the discernibility matrix and the discernibility
function enable the simple computation of reducts. This section presents definitions of
these concepts and describes how they are used to generate reducts.
For an IS which has N objects, its discernibility matrix (DM) is a N · N symmetric

matrix represented by (dmij), where

dmij ¼ fa 2 AT : faðxiÞ 6¼ faðxjÞg for i; j ¼ 1; 2; . . . ;N . ð5Þ

It is obvious that dmij is the subset of attributes which can discern object i and object j. The
discernibility matrix of an IS completely depicts the ability of the information system to
identify the objects in U, and therefore, all reducts of the system are hidden in some dis-
cernibility function induced by the discernibility matrix.
It can be easily induced that B � A is the reduct of A if B is the minimal (with respect to

inclusion) subset of A such that

B \ dmij 6¼ ; for any nonempty entry dmijðdmij 6¼ ;Þ in DM . ð6Þ

In other words, a reduct is the minimal subset of attributes that distinguish all objects
discernible by the whole set of attributes. The concept of the discernibility function is
introduced to describe the reduct computation process.
For any xi 2 U, the discernibility function of xi is defined as

fDT ðxiÞ ¼ ^
j
ð_dmij : j 6¼ iÞ; j 2 f1; 2; . . . ;Ng; ð7Þ

where _dmij is the disjunction of all variables s, such that s 2 dmij if dmij 5 ;.
The discernibility function of a given object xi 2 U is the minimal set(s) of attributes

which can discern xi from other objects in U. The reduct can therefore be computed as
the conjunction form of the discernibility functions for all the objects.
The discernibility function-based methods for generating reducts are computationally

expensive. This is because, first, to calculate the discernibility matrix DM, it is necessary
to compare each pair of objects in U and their feature values. If there are N objects and
M features, the computational complexity is O(M · N2). Next, obtaining the discernibility
function for each object xi 2 U requires computing the conjunction of all the elements in
the ith row of DM should be computed. This will require O(M2

· N) computations. Since
there are N objects, the computational load for calculating the discernibility function for
all the objects in U is O(M2

· N2). Therefore, the computational complexity of the discern-
ibility function-based methods is O(M2

· N2).

3.3. Reducing dimensions using rough set theory

This section presents three rough set-based feature selection methods, which are built on
different reduct computations. In Section 3.3.1, we develop a discernibility matrix-based
method incorporating the characteristics of TC. In Section 3.3.2, we describe a relative
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dependency-based reduct computation method proposed by Han et al. [33]. In Section
3.3.3, based on the work in [33], we develop an approximate reduct-based feature selection
method. To demonstrate the reduct computation processes and comparisons of these
methods, we will give an illustrative example in Section 3.3.4.

3.3.1. The discernibility matrix-based reduct computation

Here we develop an algorithm for generating reducts that is based on the concept of the
discernibility matrix. Unlike the reduct computation in [28], this algorithm incorporates
the characteristics of the text domain. The importance of each feature term is taken into
account by computing its frequency in the given text dataset. The most significant feature
term is the first to be selected in the reduct in the algorithm.
This discernibility matrix-based reduct computation algorithm is described as follows.

Step 1 generates the discernibility matrix DM. Step 2 computes the reduct, which is divided
into the following substeps. First, the concept of CORE is defined as such a set of dmij such
that each dmij contains a single feature term which can identify at least two documents,
that is, CORE = {dmij 2 DMj card (dmij) = 1}. The variable REDU is used to store the re-
duct and is initialized to CORE. Then the most frequent feature term is added iteratively
to REDU until the intersection of REDU and each dmij (1 6 i, j 6 N) is not empty. When
the iterations of adding feature terms to REDU stop, the discernibility capability of the set
of elements in REDU is the same as that of the original feature terms. From formula 6, it is
easy to see that REDU is approximately the minimal set of attributes that preserves the
identification capability of the original information system.

Algorithm. Generate reduct

Step 1: Create the discernibility matrix DM = [dmij], i, j = 1,2, . . . ,N.
Step 2: Generate the approximate reduct.

Let C denote the set of original feature terms;
CORE = {dmij 2 DM j card (dmij) = 1};
k denotes the number of elements which are not empty in DM,
i.e., k = j{dmij 5 ;}j, where j*j is the cardinality of set (*).

Initialize REDU and C:
REDU = CORE;
C = C � REDU;

While (C5 ; and k5 0) do

For (1 6 i, j 6 N)
{If (REDU \ dmij 5 ;), dmij = ;;
Else, break;
}

{Sort the term frequency in C;
Select the keyword t having the maximum frequency;
REDU = REDU [ {t};
C = C � {t};
}
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This algorithm is faster than the discernibility function-based method mentioned in
Section 3.2. The complexity of this algorithm is O(MN2), which means its computational
complexity has been reduced to be linear with the number of feature terms.

3.3.2. Relative dependency-based reduct computation

The discernibility matrix-based method is still computationally expensive when there
are a large number of documents. To further reduce the computational load, Han et al.
[33] have developed a reduct computation approach based on the concept of relative attri-
bute dependency. Given a subset of condition attributes B, the relative attribute depen-
dency is a ratio between the number of distinct rows in the sub-decision table
corresponding to B only and the number of distinct rows in the sub-decision table corre-
sponding to B together with the decision attributes, i.e., B [ {d}. The larger the relative
attribute dependency value (i.e., the closer it is to 1), the more useful is the subset of con-
dition attributes B in discriminating the decision attribute values. Some relevant concepts
are hereafter defined as:

Definition 1 (Projection [33]). Let P � A [ D, where D = {d}. The projection of U on P,
denoted by PP(U), is a sub-table of U and is constructed as follows:

(1) remove attributes A [ D � P; and
(2) merge all indiscernible rows.

Definition 2 (relative dependency degree). Let B � A, A be the set of conditional attri-
butes. D is the set of decision attributes. The relative dependency degree of B w.r.t. D is

defined as dD
B , d

D
B ¼ jPBðUÞj

jPB[DðUÞj
where jPX(U)j is the number of equivalence classes in U/

IND(X).

dD
B can be computed by counting the number of equivalence classes induced by B and

B [ D, i.e., the distinct rows in the projections of U on B and B [ D.

Definition 3 (consistent decision table). A decision table DT or U is consistent when
"x,y 2 U, if fD(x)5 fD(y) then $a 2 A such that fa(x)5 fa(y).

Based on these definitions, it can be easily induced that dD
A ¼ 1 when U is consistent. A

subset of attributes B � A is found to be a reduct if the sub-decision table is still consistent
after removing the attributes in B from A. This is the most important theoretical result and
is given as Theorem 1.

Theorem 1. If U is consistent, B � A is a reduct of A w.r.t. D, if and only if dD
B ¼ dD

A ¼ 1 and
for "Q � B, dD

Q 6¼ dD

A (see [33] for the proof).

Theorem 1 gives the necessary and sufficient conditions for reduct computation and im-
plies that the reduct can be generated by simply counting the distinct rows in some projec-
tions. The computational load is linear to the number of cases N, and the number of
attributes M.
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3.3.3. Feature selection based on approximate reduct

As noted in Section 3.3.2, although the relative dependency-based reduct computation
is fast, in Theorem 1, U is always assumed to be consistent. This assumption is not neces-
sarily true in real life applications. In this section, we relax this condition by finding an
approximate reduct rather then an exact reduct. The use of a relative dependency degree
in reduct computation is extended to inconsistent information systems. Modifying
traditional concepts in rough set theory, we introduce some new concepts, such as the
b-dispensable attribute, b-indispensable attribute, b-reduct (i.e., approximate reduct),
and b-core. The parameter b is used as the consistency measurement to evaluate the good-
ness of the subset of attributes currently under consideration. These attributes are
explained as follows.

Definition 4 (b-dispensable attribute and b-indispensable attribute). If a 2 A is an attribute
that satisfies dD

A�fag P b � dD
A , a is called a b-dispensable attribute in A. Otherwise, a is

called a b-indispensable attribute.

The parameter b, b 2 [0, 1], is called the consistency measurement.

Definition 5 (b-reduct/approximate reduct and b-core). B is called a b-reduct or approxi-
mate reduct of a conditional attribute set A if B is the minimal subset of A such that
dD

B P b � dD
A . The b-core of A is the set of b-indispensable attributes.

The consistency measurement b reflects the relationship of the approximate reduct and
the exact reduct. The larger the value of b, the more similar is the approximate reduct to
the exact reduct computed using the traditional discernibility function-based methods. If
b = 1 (i.e., attains its maximum), the two reducts are equal (according to Theorem 1). The
reduct computation is implemented by counting the distinct rows in the sub-decision tables
of some sub-attribute sets. b controls the end condition of the algorithm and therefore
controls the size of the reduced feature set. It can be determined beforehand by experts
or can be learned during the feature selection process. Based on Definitions 4 and 5, the
rough set-based feature selection algorithm in our developed approach is given as follows.

Feature selection algorithm

Input: U—the entire case base;

A—the entire condition attribute set;
D—the decision attribute set.

Output: R—the approximate reduct of A.

Step 1: Initialize R = ;;
Step 2: Compute the approximate reduct.

While (A is not empty)
1. For each attribute a 2 A

Compute the significance of a;
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2. Add the most significant one, q, to R: R = R [ {q};
A = A � {q};

3. Compute the relative dependency degree dD

R for current R;
4. If dD

R > b, return R and stop.

Since the computation of the approximate reduct does not increase the computational
load of Han et al.�s method, the computation complexities of the feature selection algo-
rithms is also O(N ·M).

3.3.4. An illustrative example

In this section, we use an example to illustrate the three rough set-based feature reduc-
tion methods and make some comparisons of them in terms of the generated reducts and
the computational complexity.
Let there be an inconsistent decision table DT1 (see Table 1), which consists of N = 9

cases; M = 5 attributes including 4 conditional attributes—a, b, c, d, and 1 decision attri-
bute—e. Since c1 and c9 have the same condition attribute values but different decision
values, DT1 is an inconsistent decision table.

(1) Discernibility function-based method

To generate the reduct, firstly, the discernibility matrix (see Definition 1) of DT1 needs
to be computed as an N · N matrix. After calculating the discernibility function of each
condition attribute, two reducts are found: {a,b,c} and {a,b,d}. In order to compute
the discernibility matrix, each pair of cases and their feature values are examined. The
required computational load is O(92 · 5).
(2) Relative dependency-based feature selection method

This method assumes that the decision table is consistent. If this assumption is not sati-
sfied, the reduct is always found to be the original attribute set. This is demonstrated in the
following computation process. Here C is used to denote the set of condition attributes
{a,b,c,d}.
Since dC�fag ¼

jPfb;c;dgðUÞj

jPfb;c;d;egðUÞj
¼ 5

7
< 1, dC�fbg ¼

8
9
< 1, dC�fcg ¼

6
7
< 1, and dC�fbg ¼

3
5
< 1, all

the condition attributes are considered to be indispensable and should not be removed
from C. The reduct that is found is the original set of attributes {a,b,c,d}.
The relative dependency-based method is implemented by simply counting different

rows of the projections on different subset of attributes. Only one pass of the decision table

Table 1

An inconsistent decision table DT1

Id a b c d e

c1 1 1 2 1 2

c2 1 2 1 2 1

c3 2 2 2 1 2

c4 3 1 2 2 1

c5 3 2 2 1 1

c6 1 2 2 1 2

c7 3 2 1 2 1

c8 1 1 1 2 1

c9 1 1 2 1 1
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is required to compute the relative dependency degree for each attribute. Therefore, the
computational complexity is O(9 · 5).
(3) Approximate reduct-based feature selection method

To generalize the relative dependency-based method to inconsistent decision tables, we
use the procedure given in Section 3.3.3 to generate approximate reducts rather than exact
reducts. We set the threshold b = 0.8 in this example. Here, to evaluate the significance of
each attribute, we used the minimum entropy principle. The entropy of each attribute is
calculated using the equation

EðxÞ ¼ �
1

jU j

X

X2U=feg

X

Y2U=fxg

jX \ Y jlog2
jX \ Y j

jY j
; x 2 C.

From the entropy computation, we find that E(a) < E(c) < E(d) < E(b). According to
the minimum entropy principle, a is first selected in the feature selection algorithm. The
current relative dependency degree is dfag ¼

5
7
< 0:8. Attribute c is then added and

d{a,c} = 4/5 = 0.8. As this satisfies the end condition, the procedure is complete, ultimately
generating the approximate reduct {a,c}.
Since the computation process is similar to the relative dependency-based method, the

computation load is linear with the number of cases and attributes, i.e., the computational
complexity is O(9 · 5).
To evaluate the quality of computed reducts using these methods, we generate a deci-

sion table that is similar to DT1 (see Table 1) by removing only case 9 to form DT2 (see
Table 2), a consistent decision table. Using this consistent decision table and the tradi-
tional discernibility function-based method, we can find two exact reducts, {a,c} and
{a,d}. Since DT1 is very similar to DT2, the generated reduct that is most similar to
{a,c} and {a,d} is considered to be the most reasonable reduct of DT1. It is obvious that
the most reasonable reduct is that generated using the approximate reduct-based method
(i.e., {a,c}).
Even after the number of feature terms is reduced, we are faced with the problem that

the document collection which will be used as training data in classifying new documents
may be still large. This may result in high retrieval costs and low classification accuracy.
Therefore, document selection is also an important issue which should be considered in
building the case-based reasoner for TC.

Table 2

A consistent decision table DT2

Id a b c d e

c1 1 1 2 1 2

c2 1 2 1 2 1

c3 2 2 2 1 2

c4 3 1 2 2 1

c5 3 2 2 1 1

c6 1 2 2 1 2

c7 3 2 1 2 1

c8 1 1 1 2 1
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4. Document selection

In this section, the size of case base is reduced using two CBR concepts: case coverage
and case reachability. These concepts describe the problem-solving properties of CBR sys-
tems, which are both closely related to the completeness of given CBR systems and affect
their performance. The section is organized as follows. Section 4.1 gives the definition of
the concepts of case coverage and reachability. Section 4.2 presents our document selec-
tion algorithm which is applied in developing the case selector in the case-based reasoner.
To compare this document selection algorithm with other methods, Section 4.3 describes
another case selection strategy, FIS algorithm.

4.1. Case coverage and case reachability

The CBR methodology assumes that the distribution of cases in the case base provides
a good illustration of the distribution of the target problems (i.e., unseen documents). In
this view, then, a case in the case base can be considered as a target problem and vice
versa.
Coverage of a certain case (see Definition 6, below) is the set of target problems (cases)

that the case can be used to solve. The reachability of a target problem (case) (see Defini-
tion 7, below) is the set of cases that can solve it. Note that cases with a larger coverage
make a greater contribution to the competence of a case base. On the other hand, cases
with a larger reachability make a lesser contribution to the competence of a case base. This
is because cases with a larger reachability can be solved (reached) by many other existing
cases. Clearly, they are significant in selecting/reducing cases for case base construction [2].

Definition 6. Coverage of a case p in a case base CB is defined as

CoverageðpÞ ¼ fqjp can be used to solve q; q 2 CBg.

Definition 7. Reachability of a problem (case) p in a case base CB is defined as

ReachabilityðpÞ ¼ fqjp can be solved by q; q 2 CBg.

In various applications, the meanings of the terms case coverage and reachability vary
depending on the definition that a case can be ‘‘solved’’ by another case. This paper offers
the following more explicit redefinition of the two terms.

Definition 8. CoverageSet of a case p is defined as

CoverageSetðpÞ ¼ fqjq 2 CB; simðp; qÞ > a; dðpÞ ¼ dðqÞg; ð8Þ

where a is the similarity between case p and its nearest boundary case (the cases which
have a different class label of p); d is the decision attribute in D.
Here the coverage set of a case e is the set of cases which fall in the disc centred at p with

a radius a. We assume there is only one decision attribute d. It is straightforward to extend
this definition to a situation with multiple decision attributes. The definition is illustrated
in Fig. 2, where e* is the nearest boundary case of case e. e1, e2, and e3 are the cases which
satisfy
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sim(e,ei) > a, where a = sim(e,e*),
all of them are positive cases (with the same class label of case e),
d(ei) = d(e) = positive. i = 1,2,3.
Therefore, the coverage set of case e is {e1,e2,e3}.

Definition 9. ReachabilitySet of a case can be derived from Definition 8:

ReachabilitySetðpÞ ¼ fqjq 2 CB; p can be covered by qg.

For example, in Fig. 2, cases e1, e2, and e3 can be covered by e, e is therefore in their reach-
ability set.

4.2. Document selection algorithm in case-based reasoner

To improve system performance in TC, there is an increasing need to reduce the size of
the case base. This suggests that in CBR systems there is always a trade-off between the
efficiency and the quality of problem-solving. In making this trade-off, in removing some
documents from the case base, it is essential that important information not be lost. In
sum, the final constructed case base should be as complete as possible, yet contain the
smallest possible number of cases.
In this paper, we propose a reduction policy based on the concepts of case coverage and

reachability. The main idea is to preserve such cases that have a larger coverage set but a
smaller reachability set. The case selection process is as follows. In Steps 1 and 2, docu-
ments are stored and their coverage and reachability are computed, then, in Step 3, the
process selects the case with largest coverage. If there are two or more equally large cases,
we choose the one with the smallest reachability. If the cases are also identical on this cri-
terion, we opt to select one of the choices at random. The selecting process ends when the
selected cases cover all the cases in the case base.

Case selection algorithm (Algorithm 1)

Step 1: Initialize document set, DS = ; (empty set). DS will store the set of selected
documents.

Step 2: Compute the coverage and reachability of every document in CB.
Step 3: Select the case which has the maximum coverage.

If jMaxCovj = j{p}: Coverage(p) = max{Coverage{q}, q 2 CB}j = 1,
set D = D [ {p};

CoverageSet (e)

e

Positive case 

Negative case 
e*

e2

e3
e1

Fig. 2. The CoverageSet of a case e.
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Else, select the case that has the smallest reachability.
If jMinReaj = j{p0}: Reachability(p0) = min{Reachability{q}, q 2MaxCov}j = 1,
set DS = DS [ {p 0};

Else, randomly select p 2MaxCov, DS = DS [ {p}.
If (all the cases in CB have been covered by selected cases in DS), stop;.

Step 4: Output DS.

Where jÆj is the cardinality of set (Æ).

Here we should point out that to compute the case coverage of each case, it is necessary to
determine a threshold thr. In order to avoid excessive information loss, the coverage set of
a case p should satisfy not only Eq. (8), but should also satisfy that, if q 2 CoverageSet(p),
sim(p,q) > thr, 0 < thr < 1. The larger the thr value, the smaller the number of the selected
cases. The classification accuracies are different when different thr values are used. thr can
therefore be determined by the required size of case base or according to a user-predeter-
mined categorization accuracy. In Section 5, our experimental analysis, we shall demon-
strate and discuss the relationships between the threshold and the size of case base, and
the classification accuracy.

4.3. FIS algorithm

In order to compare our proposed case selection algorithm with other methods, this
section presents a document reduction strategy which integrates feature reduction. This
strategy is described in the following case reduction algorithm, called FIS (Feature and In-
stance Selection), which removes documents containing none of the selected feature terms, or
in other words, the algorithm preserves documents containing at least one selected feature
term. A similar algorithm is proposed in [15], which integrated feature and instance
reduction.

FIS (Algorithm 2)

Assume the set of M original feature terms is {t1, t2, . . . , tM}; m selected feature terms is
ft01; t

0
2; . . . ; t

0
mg, where ft

0
1; t

0
2; . . . ; t

0
mg � ft1; t2; . . . ; tMg. Using the document vector represen-

tation method, each document D is represented as [v1,v2, . . . ,vm], where

vi ¼
1 if D contains ti;

0 if D does not contain ti;

�

i ¼ 1; 2; . . . ;m.

For each document, the corresponding feature values of the selected feature terms
ft01; t

0
2; . . . ; t

0
mg is denoted by ½v01; v

0
2; . . . ; v

0
m�.

Initialize document set, DS = ; (empty set). DS will store the set of selected documents.
For every document D in case base CB,

if there exist at least one such j that v0j ¼ 1, for j = 1,2, . . . ,m,
then add D to DS, DS = DS [ {D}.

(i.e., set DS = CB,
for every document D in case base CB,
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if for all j, v0j ¼ 0, j = 1,2, . . . ,m,
then remove D from the case base, DS = DS � {D}.

)

The feature reduction and case selection process generates a case base with many fewer
feature terms and cases. Using the constructed case base and the methodology of CBR,
the document labels are predicted. When a query case (an unseen document)
occurs, the most similar case(s) are retrieved-based on a similarity computation. In this
paper, the most often used tf–idf is applied in the weight computation of each feature
term. A similarity measure is given for the similarity computation. The label of a given
unseen document is then predicted using the 1-Nearest Neighbor rule.

5. Experimental analyses

In these experiments, we use text datasets sampled from the Reuters21578 dataset [34].
Table 3 provides details of these datasets. The documents are randomly selected for given
topics. Since the main task here is to assign labels to the unseen documents, our main
interest is to see what percentage of document class labels is successfully predicted. Here,
our main criterion for evaluating the performance of the proposed case-based reasoner for
TC is classification accuracy.
For the entire set of distinct words which occur in each text dataset, apply the filtering

process using the stoplist and delete the low frequency terms. The distinct words that are
consequently preserved are considered as the original feature terms. The initial accuracy is
defined as the classification accuracy when using the original text datasets, which have not
been reduced either for the number of their feature terms or documents. This accuracy is
heavily dependent on the properties of the sampling data, such as the distribution of doc-
uments, and the partition of the training data and testing data. While it would also be
interesting to try to improve the initial accuracy by analyzing these dataset characteristics,
in the focus of this paper is on reducing both the number of feature terms and the number
of documents, as well as on maintaining the classification accuracy.

5.1. Feature reduction, document reduction, and classification accuracy

In this section, we present and analyse the experimental results in terms of feature and
document reduction and of classification accuracy. Two feature reduction methods are

Table 3

Different text datasets

Text dataset # Documents # Distinct words Initial accuracy (%)

Reut1 110 222 77.8

Reut2 67 151 44.4

Reut3 76 390 41.4

Reut4 46 210 62.5

Reut5 43 256 62.5

Reut6 74 436 53.8

Reut7 1000 653 51.2

Reut8 1578 2018 72.8
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used: the discernibility matrix-based method and the approximate reduct-based method.
As the discernibility matrix-based method has a relatively high computational load, we
make use of only six text datasets, Reut1–6. For the approximate reduct-based feature
reduction method, however, we make use of all of the text datasets.
For convenience, we now introduce some notations which will be used throughout this

section:

Reduced feature ¼
jReduced feature setj

jOriginal feature setj
� 100%;

Reduced document ¼
jReduced document setj

jOriginal document setj
� 100%;

and DAccuracy is the difference between the classification accuracy without feature and
document reduction and the classification accuracy after feature and document reduction.

5.1.1. Discernibility matrix-based feature reduction and document reduction

Using the discernibility matrix-based feature reduction and document selection in
developing the case-based reasoner, greatly reduces the sizes of the original text datasets
in terms of both the number of keywords and documents. The classification accuracies
change correspondingly.
Table 4 provides results for the accuracy of the feature and document reduction for

each of the six datasets. It shows that the features and documents are dramatically
reduced. Taking Reut1 as an example, there are 222 different feature words and the initial
accuracy is 77.8% (see Table 3). Through generating approximate reduct of the initial fea-
ture terms, the number of terms is reduced from 222 to 67, i.e., 69.8% features are
removed. Further, based on the concept of case coverage and reachability, the number
of cases (documents) in the training dataset is reduced from 41 to 7, i.e., the percentage
of reduced documents is about 82.9%. Using the reduced training dataset and feature
terms, the problem-solving accuracy is 66.7%, and therefore DAccuracy is (77.8%–
66.7%) = �11.1%. This experimental result shows that some useful information is lost dur-
ing the feature and document reduction. In this testing, the parameter thr is set to be 0.95.
If we set thr be larger, the less documents are removed, and the less information is lost. The
relationship between thr values and accuracy will be analyzed in the following tests.
Using different thr values, the amount of reduced documents and the classification accu-

racy may change correspondingly. Higher accuracy can be achieved by setting larger
threshold. Some results are shown in Table 5, where ‘‘D-Redu’’ denotes the percentage

Table 4

Feature and document reduction (thr = 0.95)

Dataset Reduced feature (%) Reduced document (%) DAccuracy (%)

Reut1 69.8 82.9 �11.1
Reut2 33.1 88.2 +22.3

Reut3 84.1 42.9 +6.9

Reut4 42.4 47.4 �12.5
Reut5 33.6 85.7 �25.0
Reut6 68.8 95.0 �38.5
Average 55.3 73.7 �9.65
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of reduced documents and ‘‘Accuracy’’ denotes the corresponding classification accuracy
using the reduced case base.
Fig. 3 illustrates the relationships between threshold, thr, the average of document

reduction, and the accuracy of the algorithm when applied to Reut2. When larger thresh-
olds are set, fewer documents are removed but accuracy is improved. The situations are
similar for other datasets. In Fig. 3, when thr = 0.95, 40% of the documents are removed
from the original case base and the accuracy is 60%. When thr = 0.98, 20% documents are
removed, accuracy is 77.8%. There is always a trade-off between the number of documents
removed and the classification accuracy. Different thresholds can be set depending on dif-
ferent requirements of accuracy and case base size.
In this paper, our main goal is to find out the threshold for each text dataset which can

produce minimal size of case base and preserve the initial accuracy. For this purpose, we
need to determine different thresholds (represented by thr0) for different text datasets.
Table 6 sets out these thresholds and the degree of document reduction that they produce.
Using thr0 on each dataset removes an average of 36.5% of documents, which is less than
using thr = 0.95, which removes an average of 73.7% of the documents (see Table 4). As
thr values do not affect the feature reduction process, using thr0 and other threshold values
show no difference in term reduction.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

thr 0.85 0.9 0.95 0.98 0.99

D-Redu

Accuracy

Fig. 3. Threshold vs. average of document reduction and accuracy.

Table 5

Threshold thr vs. reduced documents and accuracy

thr Reut1 Reu5

D-Redu (%) Accuracy (%) D-Redu (%) Accuracy (%)

0.85 97.6 11.1 – –

0.90 95.1 33.3 – –

0.95 82.9 66.7 91.4 37.5

0.98 17.1 77.8 54.3 50.0

0.99 0.0 77.8 22.9 62.5
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5.1.2. Approximate reduct-based feature reduction and document reduction

In this section, we test both the approximate reduct-based feature reduction method
and the document reduction together using all eight text datasets. Since this reduct
generation algorithm is fast, thousands of feature terms and documents (Reut7 and Reut8)
can be handled during feature reduction. In these testing, as the classification accuracy de-
creases dramatically when b < 1, we set the parameter b to 1.
Table 7 shows the results of reduced features and documents and the classification accu-

racy. The approximate reduct-based feature reduction method can be seen to be superior
to the discernibility matrix-based method in both feature reduction and classification accu-
racy. It removes on average 85.9% of features and 37.1% of the documents from the ori-
ginal case base. Further, in most tests it maintained the original classification accuracy and
in some text datasets even improved it.
While the results are not provided here, the relationships of the threshold, thr, the

number of reduced documents and the classification accuracy is the same as can be seen
in Table 5 and Fig. 3.

5.2. Problem-solving efficiency: the saved time and cost time

This paper takes the main goals of feature and document reduction as being to reduce
the burden of storage and to speed problem-solving. In this section we present some exper-
imental results about the second concern, the relationship between the time taken up in
reducing feature terms and cases (documents) and the saved time in classification. The

Table 7

Approximate reduct-based feature and document reduction

Dataset Reduced feature (%) Reduced document (%) DAccuracy (%)

Reut1 68.5 85.2 0.0

Reut2 71.5 9.6 0.0

Reut3 89.5 17.1 +3.8

Reut4 91.0 65.1 0.0

Reut5 87.5 12.8 +12.5

Reut6 90.4 5.3 +18.7

Reut7 92.2 46.0 �6.0
Reut8 96.6 56.0 �0.7

Average 85.9 37.1 +3.5

Table 6

Document reduction when using thr0

Text dataset thr0 Reduced document (%)

Reut1 0.99 17.1

Reut2 0.95 88.2

Reut3 0.95 42.9

Reut4 0.99 26.3

Reut5 0.99 22.9

Reut6 0.99 21.7

Average 0.98 36.5
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saved time is defined as the difference between the time required to solve a problem using
the original, unreduced case base and the time taken to solve a problem using the reduced
case base.
In this section, the problem-solving efficiency is described by the ratio between the

saved time and the cost time in feature and document reduction. This ratio (i.e., saved
time/cost time) is called relative saved time. When the relative saved time is greater than
1 (i.e., the saved time is greater than the cost time), the efficiency of the case-based reasoner
is improved; otherwise, the efficiency is degraded.
Figs. 4 and 5 show our experimental results of this relationship between the saved time

and the cost time used in feature and document reduction. The x-axis in the two figures is
the number of feature terms. The y-axis is the relative saved time, i.e., the ratio between
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how many seconds are saved using the reduced case base and how many seconds it takes to
generate reduct. N denotes the number of times that the reduced case base is used in TC.
Figs. 4 and 5 show that as N increases so does the ratio of saved to cost time proportion-
ally increase. Notice that the cost time is the main time-consumption on generating reducts
for the original feature terms. Although this time-consumption is not trivial, this cost can
be recovered in the long run with the increasing use of the constructed smaller case base
with fewer features and documents. From Fig. 4, it is also observed that there is no nec-
essary relationship between the relative saved time and the number of original feature
terms. Nonetheless, in Fig. 5 we note that as the number of selected features rises, the rel-
ative saved time falls. In sum, with the increase use of the reduced case base, the efficiency
of the case-based reasoner is improved using the reduced case base.

5.3. Comparisons: feature reduction methods and case selection algorithms

This section makes some comparisons to prove the effectiveness of our approximate
reduct-based feature reduction method and the developed case selection Algorithm 1. In
Section 5.3.1, the approximate reduct-based feature reduction is compared with the DF
thresholding method. The main evaluation criteria are reduced features and classification
accuracy. In Section 5.3.2, some comparisons are made between the case selection Algo-
rithms 1 and 2, where the reduced documents is the main evaluation index.

5.3.1. Approximate reduct-based feature reduction and DF thresholding method

Document frequency (DF) is a simple and efficient measure for feature term reduction
[10]. The feature selection rule in the DF thresholding method is: only those keywords
whose DFs are larger than a given threshold are retained. It is one of the most often used
methods in TC to limit the number of feature terms. The basic assumption of this method
is that rare terms do not contribute useful information to category prediction.
In this section, we make some comparisons between our proposed approximate reduct-

based method and the DF thresholding method. The amount of reduced feature terms and
the classification accuracy are used as the evaluation indices. Table 8 show the experimen-
tal results. In the DF thresholding method, we select the ‘‘Threshold’’ values from [0,1]
during training. For each dataset, the threshold is determined as the smallest value that
can preserve the initial classification accuracy. The ‘‘Reduced features’’ is the percentage
of the reduced features in the original feature terms. ‘‘P(DF)’’ is the classification accuracy

Table 8

Comparisons between approximate reduct-based method and DF thresholding

Datasets Threshold Reduced features (%) P(DF) (%) P(AR) (%)

Reu1 0.10 29.7 77.8 77.8

Reu2 0.30 20.5 33.3 33.3

Reu3 0.50 5.1 31.0 41.4

Reu4 0.20 20.0 87.5 62.5

Reu5 0.20 18.8 75.0 75.0

Reu6 0.15 39.0 68.8 75.0

Reu7 0.15 23.1 45.2 50.0

Reu8 0.20 3.7 65.6 69.4

Average 0.23 20.0 60.5 60.6
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after using the DF thresholding method; while ‘‘P(AR)’’ is the accuracy after using the
approximate reduct-based feature reduction. It shows that these two methods can achieve
similar classification accuracy (the difference is smaller than 1%), but the DF thresholding
has less capability to reduce feature terms. From Table 7, on average, 85.9% of original
feature terms can be removed using the approximate reduct-based method. In contrast,
there are only 20.0% of feature terms are reduced using the DF thresholding.

5.3.2. Case selection Algorithms 1 and 2

This section compares the two case selection algorithms, Algorithms 1 and 2 (Sections
4.2 and 4.3) in terms of their ability to reduce cases. We first use Reut1–8 to test the two
algorithms, and then use the modified datasets obtained after adding many duplicated
documents in Reut1–8. The experimental results demonstrate that the Algorithm 1 can re-
duce more documents especially when many of the documents are duplicated.
Table 9 shows the document reduction results on the text datasets Reut1 and Reut2.

Here, (1) and (2) denote using Algorithms 1 and 2 to implement the case reduction. It
shows that many more documents are reduced using Algorithm 1 than those reduced using
Algorithm 2. Since the number of reduced documents is zero in Reut3–8 using Algorithm
2, these results are not included in Table 9. From Table 7, it is obvious that Algorithm 1
removes more documents than Algorithm 2 does in the text datasets Reut3–8. Therefore,
using Reut1–8, Algorithm 1 outperforms Algorithm 2 in terms of case reduction ability.
Note that the threshold used in Algorithm 1, thr = thr0 in different datasets, therefore
the classification accuracy is not sacrificed through case reduction.
Next, we give some analyses of Algorithms 1 and 2 when using the modified datasets

incorporating duplicated documents. In this situation, the case reduction capability of
Algorithm 2 changes with different distributions of duplicated documents. If most of the
duplicated documents lack the selected feature terms (which means that most of the dupli-
cated documents will be removed using Algorithm 2), the reduction performance of Algo-
rithm 2 will improve; if the duplicated documents contain at least one of the selected feature
terms, the reduction capability will decrease. In contrast, the number of selected cases using
Algorithm 1 cannot be affected by the duplicated document. Algorithm 1 can remove all the
duplicated cases. Therefore, compared with Algorithm 2, more reasonable and stable per-
formance of case reduction can be achieved by applying Algorithm 1 to the case base.
In the tests of this section, the used modified datasets are the larger versions of Reut1–8

which are achieved by duplicating the documents in Reut1–8 repeatedly. The number of
reduced documents using Algorithm 2 is proportional with the number of total documents
because the even distribution of duplicated documents. Therefore, the percentage of the
selected/reduced documents is the same as that of the original dataset. Using Algorithm
1, the number of selected documents is the same in all the duplicated larger versions of
the same dataset. Let r0 be the original percent of reduced documents using Algorithms
1, ri be the percent of reduced documents using Algorithm 1 on the ith iteration dataset

Table 9

Case reduction using Algorithms 1 and 2

Dataset Reduced document (1) (%) Reduced document (2) (%)

Reut1 17.1 2.4

Reut2 88.2 11.1
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(i.e., the dataset after appending one duplicate of every documents in the i � 1 iteration).
There is a relationship between ri and ri+1 as follows:

riþ1 ¼
1

2
þ
1

2
� ri;

riþ1 � ri ¼
1

2
�
1

2
� ri > 0.

Fig. 6 shows the document reduction of Algorithms 1 and 2 on the larger version of Reut2.
Using Algorithm 1, more documents are reduced when the number of iteration increases.
While using Algorithm 2, the percentage of reduced documents does not change with
respect to the number of iterations. Thus, Algorithm 1 is shown to be superior to
Algorithm 2 in terms of document reduction when there are many duplicated documents.

5.4. Comparisons with 1-NN and SVM classifiers

This section reports on experiments conducted to compare our rough case-based rea-
soner (or rough CBR classifier) with other classifiers such as the basic 1-Nearest Neighbor
(1NN) classifier and the support vector machine (SVM) classifier. SVM is widely regarded
as the most successful classification tool, especially in the domain of text categorization.
Since most SVM algorithms can handle only binary class problems, we use a text dataset
in which the documents are classified as topic ‘‘earn’’ and ‘‘nonearn’’. In the dataset, there
are 100 documents, 280 original feature terms. We use 55 documents as training data and
the remaining 45 documents as testing data. The rough CBR classifier uses the approxi-
mate reduct-based feature reduction algorithm.
We use three evaluation indices in these comparisons: the number of features, classifi-

cation accuracy, and the average time for classifying one unseen document. Table 10
shows the comparison results. The rough CBR classifier is shown to be the most promising
in terms of all the evaluation indices. It reduces the number of features and documents and
consequently reduces the classification time, and also achieves the highest classification
accuracy among the three classifiers.

Algorithm 2
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Fig. 6. Comparison of the two algorithms on reducing duplicated documents.
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6. Conclusions and future work

In this paper, a novel rough set-based case-based reasoner is built to implement the task
of TC. Different from the traditional case-based reasoner, we incorporate two components
of rough set-based feature term reducer and CBR-based case selector in the reasoner
development. The rough set-based feature reduction method is integrated with CBR-based
case selection policy to deal with the high dimensionality and large number of documents.
To build the feature term reducer, a rough set-based approach based on the concepts of
discernibility matrix and approximate reduct is used for reduct computation. On the other
hand, to build the case selector, the problem-solving properties of case coverage and case
reachability are introduced to address the task of reducing the size of case base. Using
the proposed case-based reasoner, we conducted some experiments on the dataset
Reuters21578. Different sub-datasets are generated for testing the proposed method. The
results show that many fewer feature terms can be selected in each case, and the number
of cases can also be reduced depending on the accuracy requirement. Comparisons are
made between our proposed case selection algorithm (Algorithm 1) and FIS (Algorithm
2). The results show that Algorithm1 demonstrates greater capability to reduce the size
of a case base both on the original and the duplicated datasets. Some experiments are also
conducted to compare the rough set-based reasoner with the 1-NN classifier and SVM clas-
sifier. The rough CBR classifier is shown to be the most promising in terms of classification
accuracy and the required time to predict the class label for one unseen document. Future
work includes testing the feature and document reduction algorithms in larger text collec-
tions. More comparisons should be made between our proposed feature reduction method
and other feature reduction/selection or feature weighting techniques. When dealing
with the numerical weights, fuzzy sets can be used to better represent the document vectors,
instead of considering these numerical weights as Boolean variables.
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