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Extensive results are presented for various numbers of hidden
layers and nodes, using different sizes of training sets for the
four major seasons. The trained network is used for subsequent
rule generation.

Section II provides a brief review on radio climatology. The
fuzzy MLP, used here, is described in Section III for classifi-
cation and rule generation. The results on radiosonde data over
India for the four major seasons are given in Section IV. Sec-
tion V concludes this paper.

II. RADIO CLIMATOLOGY : AN OVERVIEW

A. Background

Research on radioclimatology solely depends upon the avail-
ability of meteorological observations on temperature, pres-
sure , vapor pressure , and various other related parame-
ters.Radiosonde, instrumented tower, andthreaded kytoon 1 are
the standard in-situ techniques used to obtain measurements for
these parameters. The availability of these data or observations
helps the research in the area of radiowave propagation, which
is one of the important fields of wireless communications.

To facilitate the research in radioclimatology and radiowave
propagation, Kulsrestha and Chatterjee [6]–[9] studied the dis-
tribution of surface radiorefractivity and the radiorefractivity
at 850 and 700 mb levels based on five years of data collected
from 36 surface stations and 12 radiosonde stations situated over
India. Srivastava [10] studied the refractivity in the lowest 1 km
over India in 1968. During the course of these works, the height
resolution was restricted to 1 km in refractivity profiles. In 1974,
the height resolution was improved by Majumder by taking re-
fractivity at surface and at 500-m altitude [11].

Prasad [12] has deduced the radio refractive index profiles
from radiosonde data collected from 32 stations twice a day
(0000 GMT and 1200 GMT) for a period of five years. He has
also studied the radioclimatology of some selected regions over
India by taking simultaneous observations from kytoon, air-
borne microwave refractometer, and radar [12]. Measurement of
radiosonde data over the eastern coastal belt of India reveals that
this region involves significant diurnal, monthly, and seasonal
changes, which in turn affect the performance and reliability of
different communication systems operating in the higher fre-
quency ranges. Keeping this in mind, Choudhuryet al. analyzed
the radiosonde data over Calcutta to estimate the percentage oc-
currence of different radiorefractivity gradients during different
months and seasons over this region [13], [14].

Apart from this, many scientists have analyzed the radiosonde
data and tried to apply the results directly to estimate the useful
parameters and factors of radiowave propagation. Rogers [15]
designed a useful experiment to study the effects of variability
of atmospheric radiorefractivity on propagation estimates. The
outcome of his results revealed that, for over-the-horizon over-
water electromagnetic propagation calculations at very high and
ultrahigh frequencies in the southern California coastal region,
the assumption of horizontal homogeneity leads to little more

1Here a kytoon-shaped balloon is not allowed to rise freely but the height is
controlled by a nylon cord attached with the balloon. Using this technique, one
can make observations up to a height of 2 km.

error than the described minimum error. Here minimum error
implies the root-mean-square error for estimating the propaga-
tion factor. It was observed that estimates based upon range-de-
pendent refractive structures provided substantially less error
than estimates based upon homogeneous refractive structures
only if they were sampled at intervals of two hours or less.
Vasseur [16] measured and analyzed one year’s radiosonde data
in Belgium. He suggested a new method to estimate the tro-
pospheric scintillation on satellite links. Fruitful research work
in the area of radioclimatology and radiowave propagation is
being performed also in Japan with rapid progress. In this con-
nection, Manabe and Furuhama have published a very useful
review work [17].

B. Tropospheric Radiorefractivity and Its Gradient

The tropospheric radiorefractivity at a particular height
can be expressed as

(1)

where is the atmospheric pressure in mb,is the water vapor
pressure in mb, and is the absolute temperature in Kelvin. On
the right-hand side of (1), the first term is called thedry term and
the other thewet term [18]. This expression of radiorefractivity
is valid up to 100 GHz, with an error less than 0.5%. Likewise,
the radiorefractivity of the reference level can be written as

(2)

where the subscript denotes the reference level.
After the estimation of and , its gradient can be

calculated as

(3)

where is the radiorefractivity at higher level, is the ra-
diorefractivity at reference level, is the height of the higher
level, and is the height of the reference level.

III. FUZZY MLP: CLASSIFICATION AND RULE GENERATION

The fuzzy MLP model [5] incorporates fuzziness at the input
and output levels of the MLP and is capable of handling exact
(numerical) and/or inexact (linguistic) forms of input data. Any
input feature value is described in terms of some combination
of membership values in the linguistic property setslow (L),
medium (M), and high (H). Class membership values of
patterns are represented at the output layer of the fuzzy MLP.
During training, the weights are updated by backpropagating
errors with respect to these membership values such that the
contribution of uncertain vectors is automatically reduced. A
schematic diagram depicting the whole procedure is provided in
Fig. 1. The various phases of the algorithm are described below.
Rules are generated from the trained network.



864 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 4, APRIL 2003

Fig. 1. Block diagram of fuzzy MLP.

Fig. 2. The�-set.

A three-layered feed-forward MLP is used. The output of a
neuron in any layer other than the input layer is
given as

(4)

where is the state of theth neuron in the preceding
th layer and is the weight of the connection from the

th neuron in layer to the th neuron in layer . For nodes
in the input layer, corresponds to theth component of the

input vector. Note that .

A. Input Vector

An -dimensional pattern is repre-
sented as a 3-dimensional vector

(5)
where indicates the membership function of the corre-
sponding linguistic -setslow, medium, and high along each
feature axis and refer to the activations of the 3
neurons in the input layer.

When the input feature is numerical, we use the-fuzzy sets
(in the one dimensional form), with range [0,1] represented as

for

for

otherwise
(6)

where is the radius of the-function with as the central
point. This is shown in Fig. 2. Note that features in linguistic and
set forms can also be handled in this framework [5].

Hence, in trying to express an input with linguistic prop-
erties, one effectively divides the dynamic range of each feature
into three overlapping partitions, as in Fig. 3. The centers and
radii of the functions along each feature axis are determined
automatically from the distribution of the training patterns.

B. Output Representation

Let the -dimensional vectors and
denote the mean and standard deviation, respec-

tively, of the numerical training data for theth class . The
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Fig. 3. Overlapping structure of� functions.

weighted distance of the training pattern from the th class
is defined as

(7)

where is the value of the th component of theth pattern
point.

The membership of theth pattern in class , lying in the
range [0,1], is defined as [19]

(8)

where positive constants and are the denominational and
exponential fuzzy generators controlling the amount of fuzzi-
ness in the class membership set and for an
-class problem with output nodes.

C. Rule Generation

In general, the primary input to a connectionist rule genera-
tion algorithm is a representation of the trained ANN, in terms
of its nodes and links, and sometimes the data set. One inter-
prets one or more hidden and output units into rules, which may
later be combined and simplified to arrive at a more comprehen-
sible rule set. These rules can also provide new insights into the
application domain. The use of ANN helps in 1) incorporating
parallelism and 2) tackling optimization problems in the data
domain. Fuzzy neural networks [1] can be used for the same
purpose and can also handle uncertainty at various stages.

The fuzzy MLP is trained using backpropagation and the con-
nection weights pruned with weight decay. The trained network
is next analyzed for rule generation. The strong paths from the
output nodes (classes) to the input (features), i.e., those paths
having large magnitude, are extracted. We consider both posi-
tive and negative link weights in the process. The antecedents

of the rules are in terms of the linguistic values at the input to
which the path can be traced.

Algorithms for rule generation from neural networks mainly
fall into two categories—pedagogical and decompositional [3].
Our algorithm for rule extraction [20], [21] can be categorized
as decompositional. It is described below.

1) Compute the following quantities:
mean of all positive weights,

mean of all positive weights less than ,
mean of all weights greater than .

Similarly calculate and for negative
weights.

2) For each hidden and output unit:

(a) For all weights greater than search for
positive rules only, and for all weights less than

search for negated rules only bySubset
method.

(b) Search for combinations of positive weights
above and negative weights greater than

that exceed the bias. Similarly search for
negative weights less than and positive
weights below to generate rules.

The Subset method [22] conducts a breadth first search for
all the hidden and output nodes over the input links. The algo-
rithm starts by determining whether any sets containing a single
link are sufficient to guarantee that the bias is exceeded. If yes,
then these sets are rewritten as rules in disjunctive normal form.
The search proceeds by increasing the size of the subsets until
all possible subsets have been explored. Finally, the algorithm
removes subsumed and overly general rules.

Let us now explain our algorithm with a simple example.
We consider weights having value greater than
as strong connections [plotted as thick lines for a sample
network, as shown in Fig. 4(a)] and weights having value
between and as moderate links (plotted as
normal lines in the figure). We obtained ,
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(a)

(b)

Fig. 4. (a) Positive and (b) negative connectivity of fuzzy MLP for
Post-Monsoon data.

, and . Similarly calcu-
late , , and for negative weights.
The corresponding network (representing only the negative
links) is provided in Fig. 4(b), with ,

, and .

IV. RESULTS

The radiosonde data consist of a set of 1440 patterns obtained
from the database of the Indian Meteorological Department,

Calcutta. There are four seasons:Post-Monsoon, Winter, Pre-
Monsoon, andMonsoon, each contributing 360 pattern points.
The seven input features correspond to temperature, pres-
sure , vapor pressure , height , temperature at ref-
erence level , vapor pressure at reference level , and
height of the reference level . The four intervals for
are mapped to three output classes, clubbing intervals 3, 4 to
class 3 only. These classes refer to subrefraction, normal refrac-
tion, and superrefraction and ducting, and are denoted as 1, 2,
3, respectively, in the results. The input features are split into
21 components in the linguistic space of (5). Cross-validation
of results is made with atmospheric science experts.

Various three-layered networks were used with different
numbers of hidden nodes and training sets. The training set size

refers to random, class-wise selection of training data
from the entire dataset. The remaining 100 data constitute
the test set in each case. Different random initializations were
made, and consistent results were obtained for classification
and rule generation.

Tables I–IV provide the classification results for the
Post-Monsoon, Winter, Pre-Monsoon, and Monsoon data,
respectively, for and hidden nodes 2, 3, 4, 5,
6. The mean square error refers to the squared error between
the desired and computed outputs at the output layer of the
network, averaged over the test set under consideration. Sets of
refined rules extracted from the network, considering only the
strong and moderate links, are also presented.

Fig. 4 depicts the positive and negative connectivity of a
pruned fuzzy MLP with five hidden nodes and 60% and 70%
training set, respectively, forPost-Monsoon data. Extracted
rules are as follows.

• For class 1 (subrefractive):
Positive: If is medium, is low or medium, is low,
is medium or high, is medium, is low;
Negative: If is nothigh, is notmedium or high.

• For class 2 (normal-refractive):
Positive: If is low or medium, is low or medium,

is low, is medium, is high, is high;
Negative: If is notmedium or high.

• For class 3 (superrefractive):
Positive: If is low, is medium, is low.

The validity of the extracted rules can be cross-examined on
the basis of experimental result obtained from the analysis of
radiosonde data as well as on the basis of mathematical ver-
ification of the well-established relations of refractivity and its
gradient [(1)–(3)]. The expression of refractivity implies that the
radiorefractivity is directly proportional to pressureand vapor
pressure , and inversely proportional to temperatureand its
square term . It also shows that the vapor pressurecon-
tributes very largely to radiorefractivity, as it is multiplied by
a very high numerical value. Moreover, the expression for ra-
diorefractivity gradient [(3)] depicts that the condition of subre-
fraction will be fulfilled when the radiorefractivity gradient
is less negative or positive. To satisfy this condition, mathemati-
cally the radiorefractivity at reference level must be slightly
greater or smaller than that of radiorefractivity at higher level.
Similarly, for normal-refraction, must be moderately greater
than . On the other hand, for superrefraction and ducting,
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TABLE I
RECOGNITION SCORESWITH FUZZY MLP FOR POST-MONSOON DATA

TABLE II
RECOGNITION SCORESWITH FUZZY MLP FOR WINTER DATA

must be significantly greater than, so that may become
more and more negative.

The extracted positive rule forPost-Monsoon season (class
1) shows that the subrefractive condition prevails when temper-
ature at higher level is medium, pressureis low or medium,
the temperature at reference levelis low, the vapor pressure
at reference level is medium, the height of the higher level

is medium or high, and the height of the reference levelis
low. The analyzed radiosonde data for thePost-Monsoon season

were thoroughly scrutinized, and it was observed that the oc-
currence of this type of combination of atmospheric parameters
leads to formation of subrefractive gradients for the majority of
cases. On the other hand, theoretically, this type of combination
suggests that the radiorefractivity at the higher levelwill be
medium, whereas the radiorefractivity at the reference level
will be moderately high (because is medium and is low).
Therefore, the term in (3) will be a moderately negative
term and the term will be medium or high (becauseis
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TABLE III
RECOGNITION SCORESWITH FUZZY MLP FOR PRE-MONSOON DATA

TABLE IV
RECOGNITION SCORESWITH FUZZY MLP FOR MONSOON DATA

medium or high and is low). On dividing, this contributes to
a less negative value for , usually lying in the subrefractive
range.

This positive rule is also well supported by the negative rule,
which suggests that inPost-Monsoon season the subrefractive
condition will not occur when the vapor pressureat the higher
level is not medium or high, i.e., is low. Now if is low, then

will be low and will be more negative, which prac-
tically indicates the occurrence of superrefraction or ducting.

In support of this, an investigation on analyzed radiosonde data
for this season also shows that if the vapor pressure gradient
is negative, i.e., the vapor pressure decreases with height, then
the probability of formation of superrefractive gradient is very
high. Likewise, the rest of the generated rules are verified for
this season as well as for the other three. We do not go into their
details here because of space constraints. It is observed that there
exists a very good agreement between the generated rules and
the recorded radiosonde observations.
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(a)

(b)

Fig. 5. (a) Positive and (b) negative connectivity of fuzzy MLP forWinter data.

Fig. 5 depicts the positive and negative connectivity of a
pruned fuzzy MLP with five and three hidden nodes and 50%
and 60% training set, respectively, forWinter data. Sample
extracted rules are as follows.

• For class 1 (subrefractive):
Positive: If is low, is low or medium, is high,

is medium or high, is low or medium.
• For class 2 (normal-refractive):

Positive: If is medium, is high, is medium;
Negative: If is notmedium or high, is not low,

is not low, is not low, is notmedium.
• For class 3 (superrefractive):

Positive: If is high, is high, is medium or high,
is low, is low or medium.

(a)

(b)

Fig. 6. Positive connectivity of fuzzy MLP for (a)Pre-Monsoon and (b)
Monsoon data.

Fig. 6(a) depicts the connectivity of a pruned fuzzy MLP with
three hidden nodes and 70% training set forPre-Monsoon data.
Positive rules extracted from this trained network are as follows.

• For class 1 (subrefractive):
If is low, is low, is low, is high.

• For class 2 (normal-refractive):
If is low, is low, is low, is medium.

• For class 3 (superrefractive):
If is low, is medium, is low or medium, is high,
is high, is low.
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Fig. 6(b) depicts the connectivity of a pruned fuzzy MLP
with four hidden nodes and 70% training set forMonsoon data.
Sample positive rules extracted from this trained network are as
follows.

• For class 1 (subrefractive):
If is medium, is medium, is low, is low or

medium, is medium.
• For class 2 (normal-refractive):

If is low or medium, is high, is low or medium,
is medium or high.

V. CONCLUSION

We have described a method of linguistic rule generation
for categorizing the modes of radiowave propagation in a neu-
rofuzzy framework. The fuzzy MLP used here learns the re-
lationship between the input parameters, , , and the
output class . Studies have been made using different net-
work topologies. The extracted rules are used to justify inferred
decisions. These have been verified with the radiosonde obser-
vations recorded over Calcutta during four different seasons. It
has been found that there exists a good agreement between the
generated rules and recorded observations.

The use of the fuzzy MLP enables one to estimate the refrac-
tive condition of the higher level in the experiments, even
in the absence of of (2). The practical utility of this aspect is
that the robustness inherent in neural net architecture is able to
handle missing data, possibly caused by malfunctioning of ra-
diosonde equipments.

It is concluded that said neurofuzzy approach, involving rule
generation, is useful in assessing the radiorefractive condition
of the tropospheric boundary layer. This enables the speculation
of radiowave signal situation at the receiver’s site. The extracted
knowledge can be used to set up ground-based radio communi-
cation link over a region. The resultant model will also be advan-
tageous to researchers working in remote sensing, atmospheric
science, and various other related fields.
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