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The pange theoretical formulation of a frustrated Ising model is studied here. In
this formulation the Chern—Simons term has played the key role, The inherent
anisotropic feature of the system is associated with the order parameter which
violates the commutativity of translation.

I. INTRODUCTION

The study of disordered systems has been a fast-growing field in condensed matter physics
in the past 20 years, Spin glasses are a class of disordered magnetic materials that, in some
sense, are related to ordinary magnets as glass in the crystalline solids. In spin plasses the
interactions between the spins are “in confiict”™ with each other, due to some “guenched
dizsorder™ in the system. No conventional long-range order (ferromagnetism, antiferromag-
netism, etc.) can occur, but nevertheless a fairly sharp cusp of the susceptibility y indicates™
a “transition™ to a new state, where the spins are thought to be moere or less “frozen in"” in
random directions. It is koown that various classes of random interactions exist for spin glass
behavior. It is essential that the randomness leads to “frustration,™ i.e., there is no ground
state satisfactory for all bonds. The presence of both randomness and frustration is thought to
be the requisite property of a spin ghass, Since the statistical mechanics of systems containing
both randomness and frustraiion is very hard, interest has arisen in studying **fully frustrated™
systems: the nearest-neighbor Ising triangular* or facecentered cubic®™ antiferromagnetic or
fully frustrated square (¥illain's odd model’) and simple cubic lattices. Here we shall try to
study the frustrated Ising system on the basis of certain geometrical and topological properties
of spin system.

Tt is well known that an Ising model represents a system of fermions. In higher dimensions,
a fermionic language of Ising medel iz still possible but muoch less transparent as nonlocal
interactions are required. In the geometry developed below we are going to show that the
above-mentioned equivalence can be realized transparently in three space dimensions. Tn a
recent paper'” it has been shown that the quantization procedure of a fermion involves the
introdection of an anisotropic feature in complexified Minkowski space-time that gives rise to
b dnterinae! halintiier sormesrandin to feomino and antifermion. The anisotropic feature in the
internal space may be visualized by the fixation of & particular azis that behaves like a vortex
line attached to a space-time point. When such vortices are considered at the different sites of
a lattice the system considered can be called an Ising system. This suggests that a statistical
sysiem can be described in the language of gange theory which takes into account the fiber
structure of “direction vector™ attached to a space-time point. Indeed this leads to a SL{2,¢}
gauge theory and the Ising Hamiltonian can be considered to be represented by a curreni—
current interaction in the continuum Yimit, when the current is constructed out of the non-
Abelian SL(2,c) gauge fields B, In a different paper,'! with the help of this non-Abelian gange
field the Ising system has been studied. Here we shall study the frustrated Ising system from
this gauge theoretical formulation.

In Sec, IL, we recapitulate the gauge theoretic formulation of a spin system. In Sec. III, we
study the frustrated Ising model from this view point and, finally, in Sec. IV, we consider the
order parameter for such a systemn.
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734 8. Basu: Frustratod Fsing system

il. ISING MODEL AND FERMIONS

In a recent paper'” it has been shown that the quantization procedure of a fermion involves
the introduction of an anisotropic feature in the internal space so that the internal variable
appears as a “direction veclor.” The twa opposite orientations of the direction vector corre-
sponds 1o particle and antiparticle. 'T'o have equivalence with the Teyorman path integral we
have 1o take into account complexified space-time when the coordinate is given by z{_:-—--xlu 142,
where £, corresponds to a direction vector attached to the space-time point x, * Since for
quantization we have to introduce Brownian mation processes both in the external and internal
space, after quantization, for an observational procedure we can think of the mean position of
the particle g, in the cxternal observable space with a stochastic extension determined by the
internal stochastic variable £,. “The nonrelativistic quantum limit is obiained in the sharep paint
limit.'? It has boen shown that when we consider Lhe internal space anisotropic in nature so that
£, appears as a direclion vector we can gencrate Lwo internal helicities in terms of two spinorial
varisbles giving rise to lermion and antifermion. This helps us 1o bhave a gauge Lheoretic
extension of a relativistic quantum particle when the gavge group is given by SL{2.). This
inherent gauge struciure seems 1o be the major ingredient of quantization procedure.

It is now noted that when a direclion veetor £, is attached to a space-time point x,, the
[ailicization corresponds to an I[sing sysiem. Ewvidenuly, the inherent gauge field theoreiic
extension of a fermion then finds its relevance for an [sing sysiern and we can consider a gauge
theoretical formulation for an [sing model. When we consider that the two opposite orfenta-
tions of the direction vector £, attached to the space-time point x, in the complexified
Minkowski space-time having the coordinate z,=x,-+i§, give rise to two opposite internal
helicities corresponding to fermion and antifermion, We can formulate the “internal heliciey™
in terms of the rwo component spinorial variable &{8)." In fact, for a massive spinor we can
choose the chiral coordinate in this space as

F=xf4 (/235 (e=12), (1

where we identily the coordinate in the complex manifold ="+ with £={1/2)1L0".
We can now replace the chiral coordinate by the matrices

2 =M (AN e, (2)
wheye
. [Pt it
. i xx!
and

A8 (2.e).
With these relations, the twistor eguation is now modified as
2 AP =0, (3

where I1, (I1,.) is the spinorial variable corresponding to tie four momentum variable p ., the
conjugate of x,, and is given by the matrix representation

gt =1 (4)

andg
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A=), Z= (et
with
ot =[x+ (DA,
Equation (3) now involves the helicity operator
S=—_AMge1, M, . {3}

which we identify as the internal helicity of the particle angd which corresponds to the fermion
number. We note here that the matrix representation of o (which is the conjugate of 2*) in the
complex coordinate z° =x* + i is written as g2 =TT, which implies (*)*=0. Therefore
the particle will have mass due to the nonvanishing character of the quantity (£,)".

We observe that the complex conjugate of the chiral coordinate corresponds to a massive
particle with opposije internal helicity which will represent an antifermion. In the null plane
where (£#)7 = 0 we can write the chiral coordinate as

MM ()8 (6)
where the coordinate £ is replaced by
S =(1/21848"
Therefnre the helicity operator can be written as
= — oI, = —E, (7)
where
e=igt'M,, E=—ifT,.

The corresponding twistor equation deseribes a massless spinor field. The state with the inter-
nal helicity +7 is the vacuum state of the fermion operator

Ei§=+i> =0, (%)
Similarly, the siate with the internal helicity —3 is the vacuum state of the fermion operator
E|S§=—1»=0 (9)

In case of 5 massive spinor, we can define a negative definite plane D~ where for the coordinate
=x" 4 Et, £ belongs 1o the interior of the forward 11ght canc {£»0) and as such represents
the upper haif-plane with the condition det £'* > 0 and § Tr £*" = 0. The lower half-plane D~
is given by the set of all coordinates ##* with £¢ in the interior uf'the backward light cone (£«20}.
The map z—z¥ sends the upper half-plane to the lower half-plane. The space M of null plane
fdet E’“ =0} is the Shilov boundary so that a fenction holomorphic in P~ (D™ is deter-
mined by its boundary values. Thus IF we consider thal any [unction ¢lz)=¢(x)+id(£) is
halomorphic in the whale domain, the helicity 41 (-3} in the null plane may be taken 1o he
the limiling value of the internal helicity in the upper (lower) half-plane,

In the senze of Minkowski space-time, the domain having the characteristics £%0 and £<€0
in the upper and lower half-planes indicates that the domain is disconnected and anisotropic in
nature. This indicates that the behavior of the angular momentum operator in such a region
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will be similar to that of a charged particle moving in the ficld of a magmelic monopole. [n such
a case, the wave function ${z,)=¢(x,) —Jufcﬁl[é'.u]l deseribes a particle moving in the external
space-time having the cgordinate X, with an allached direction vector £, Thus the wave
function should take inte account the polar coordinates r, &, 4, along with the angle x spegi-
fying the rotational orientation around the direction vector 5. The eigenvalue of the operator
378y corresponds Lo the internal helicity, For an extended body represented by the De Sitier
group S0(4,1}, B, &, and i represent the three Euler angles.

In three spuce dimension, these three Enler anples have their correspondence in an axi-
symmetric system. In that case the anisotropy is introdoced along a particolar direction and the
components of the linear tnomentatmn satisfy the relation

[£:. o] = iapeecpx’sr, (10}
where jiy, is the strength af the magnetic monopole,

In the case of a charged particle moving in a field of a magnetic monapole, the fuee-
momentum IT is defined as'>

p=H—pyDir}, {(n

wheare

5 Exa{tn)
=]

and 9 i a unit vector. Wo see Lhat when =0, p=1I, i, pra represents the measure of
anisalrapy.
In this space, the angular motentum aperaior S is defined as

J=rXp—pyt {12
so that Fe= Lz—lu._ﬁ, and the eigenvalue of J° is a coaserved quantity and nat the eigenvalue of

L. Fierz'® and Hurst'” have extensively studied the spherical harmonics incorporating the
term gy Following them we write

_y:"-#M:“_i_x}- =gy ey - Tmed e

—

Kepzm [ iyt tuelmt=ioe) (13)

with x=cos 0. The quantities s and g just represent the cigenvalues of the operators f{d/34}
and f{&/'dx ), respectively, when the wave function is written in terms of the angles &, ¢ and .
For m==£1, ptae= =% and r=1

Y}ﬁ'lﬂ=siﬂ {Bﬂ}fhﬂ.‘lf:&—xl,

Yia 2 P =cos (/2)el ¥
{14)
Yi:jg:—]."zlcgs (szjetU1}[¢_x]'

¥V igin (Or2)el —HRIS—E,
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These represent spherical harmonies for halferbital angolar momentum (=11 with u,,
= =1, The fact that in such an anisotropic space the angular mowmentum can take the value |
is then fbund to be analogoos to the result that a monopolecharged particle composite repre-
senting a dyon satisfying the condition gg=2m have their angular momentumn shifted by § unit
and their statistics shift accordingly.’® Thus we note that a fermion may be viewed as a scalar
particle moving with 7=] in an anisotropic space. An Ising model then cortesponds to such a
particle moving with /=3 having a fixed {, value.

To study the topological properties of such a system we note that in the complexilied
space-time exhibiting the jntn;.ma] helicity states, we can now write the metric as g {x, 8, 0]
It has been shown elsewhere'® that this metric structure gives rize to the SL(2.0) gavge
theoretical eatension of such a particle and generates the ficld strength tensor £, in terms of
gauge fields &,, where 8, are matrix valued having the SL{2,c} group structure. Here £ i3
given by

Fp=0,8,—3,B,~| B.B,). (15)

This effectively helps us Lo write the configuration variable

Q,——i(3/3p, - B,), (16)

where B, takes care of the stochastic extension of the particle.
The asymptotic zero curvature condition £, = helps us to wrile the non-Abelian gauge
field as

B,=U"'3,U, UeSL(2,¢).

WiLh this substitution, we note that the term £, F*" in the Lagrangian gives rise to the Skyrme
term Tr [8, U078, 047 FF. Now the Skyrme Lagrungw.n is

L=M*Tr(8,U% 3,0+ Tr[d, U+ 30U+ )2, (17}

where the first term can be derived from the term like B, B*. Here M is a suitable constant
having the dimension of mass. Thus we find that the quantization of a Fermi feld constdering
an anisotropy in the internal space leading to an internal helicity description corresponds to the
realization of 2 ncmhnear sigma model, where the Skyrme term  (Lgn,
=Trjd, VU™ .80 U1 introduced for stabilizing the soliton automatically atises here as an
effect nf guantization. Thus in this picture formions have solitonic feature and the fermion
number has some tapological onigin. Tndeed, for the Hermitian representation, we can take the
group manifold as SU{2) angd this leads to a mapping from the three-sphere $* 1o the group
space 57 [SU{2)=5"] and the corresponding winding number is

1
G=5 fds** T U U A, U U U] {18}

Evidently, ¢ is topological index and represents the fermion number. The Skyrme term which
arises here as an cffect of quantization does not manifestly cxpress the internal anisotropy as it
iz invariant under P and ¥°. So o incorporate this anisotropic fealure in rthe Laprangian, we
should add the Wess—Zumino lerm. The W..Z action is given by

. Hd0p Te( U= 3, U0 900!
S\W._ﬁ;f Db r{ # i
KU g, 0013, Ud %, x=xax% (19}
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Here, the physical space-time is the boundary of Lhe flve dimensional domain, Witten™ has
shown thal, for the existence of a consistent quantutn description, & most be an integer.

In the geometry developed we have ntroduced spinor structure (o each space-time potnt
and have pot a superspace. This geometry effectively gives rise to the SL(2,0) gange fields (as
the spingr—affine connecliom) having the feld strength

Fo=08,8-4.8 |[8.,8.],

where 8, is the matrix-valued potential. In superspace a given covariant tensor £, does not
have contravariant components F*'. So, if we now demand SI(2,0) invariance, we will have Lo
follow Carmelli and Malin®! and choose the simplest Lagrangian density which is invariant
unitder SLE2,0) transformations:

L= —1Tr(e™F F 5, (20)

where £2%%% i3 the completely antisymmetric tensor density in Four dimensions with £ =1,

Applving the usual procedurs of variational caleulas, we get the field equations
A(eWEE o) — [ ByeE 5] =0 {213

Let ns consider the infinitesimal generalors of the group SL{2,c) in the tangeni space as
g 0 1 0 01
liag N . i B 22
g[lﬂ],gz[ﬂ_l]gjlﬂﬂ] (22}
Then we can write

-Blr;=bf,3“='blu'gv F#v=fﬁ\gﬂ:f};v'g- |:23}

Evidenily, in this space these SL(2.c) gauge ficlds will appear as background fields.

Thus Lo describe & matter field in this geometry, the Lagrangian will be modified by the
introduciion of this SL{2.c) invarfant Lagrangian density. Hence the Lagrangian for a massless
Dirac field is gven by

L=— gy, Db —§ Tr e®®F ;0F )5, (24}
where D, is the SL{2,c] gauge covariant denvatives defined by
D,=d,—igB,, (25)

where g is some coupling strengli.
We can now construct a conserved current corresponding (o0 this Lagrangian (neglecting
the coupling with the pangs field)

It = et 2 W g =T 5 T (26)
We find from (21} that
(D £ 5 — B, X Eog) =00, (27)
Then we can write,
T =" S F =3 o (28)

So,
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8,J =038 f o—0. (29)

It is to be noted here that this J§ is the current corresponding to the spinorial variable “8 that
gives rise to the internal helicily and is thus associated with the “vortex lines' atiached to the
space-time point x,. We also note that Jy* chunges sign under space reflection. This picture
enables us to think that the Ising interaction

—Jzﬂ'ﬂfu
r

(o orientation of the spin axis at a lattice site with value 4+ 1 or — 1) can be associated with
the current—current coupling Jg*« J¢* in the continuum limit,

However, in the Lagrangian (24], if the Thrac massless spinor is split in chiral forms and
the internal helicily is identified with lefi {dght} chirality corresponding to #(8), then the
three SL(2,c) gauge field equations give rise to the following conservation laws: ™

a.'.l: [%{ _‘:glnﬁk'}"pd‘lk) "-i'Jj::] =ﬂ-
8,30 —igl pyth, +ighayaby) HI5]1=0, (30)

ap[%{_f:g@LT#ﬂ!"L} +Ji] =0.
These three eqaaiions represent a consistent set of equations if we choose
1__ g i_p
J, =T/ J=TA, (313
which evidently goaraniees the veclor current conservation. Then we can write
Bl bay g -To) =0, A (dpy b —Jo) =0 (32)
From these we find
Bl Truysd) =3y = — 20,7, (33)

Thus the anomaly 15 expressed here in terms of the second component of the SL{2.e) gauge
field current J’ﬁ. However, since in thos formalism the chiral curvents are modified by the
introduction of .Ii, we note from {32) thal the anomaly vanishes.

The charge corresponding to the gauge field part iz

g _J-.r.f & =J‘ s £¥ day £y (L4k=1.2,3). {34)
SUIrTACE

Visualizing flﬁ to be the magnetic field like components for the vector potential 57, we see that
g is actoally assoctated wilth the magnetic pole sirength for the corresponding field distribution.
Thus we find that the quantization of a Fermi field associates a backpround magnetic Aeld and
the charge Uﬂﬁ:ff?ﬂnding o the gange field effectively represents a magnelic charge.

Thus term £ Tr F43F v in the Lagrangian can be actually expresscd as a four divergence

of the form 4,12, where

i 1 refFyd g 1 e i
W= — 1m0 1k |5 Bl —3 (BuByBy) |, (35)
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We recognize that the gauge field Lagrangian is related io the Pontryagin density
1 [ A THLY 3
P= —E)_' Tr *M FF,.=C?F“F, (35}
whete £2, is the Chern-Simons term. The Pontryagin index

2 f Pd'x (37)

is then a topological invarjiant. As we kpow, the introduction of the Chern—Simjons term
modifies the axial vector current as

-
J,=d, 4200, (33}

where ﬂﬁﬁ 0 though J .157&[] We find (rom Eq. {33) that the Chern—Simoens term is effec-
tively represenioed by t].'IL current J construeted oul of the SL{2,} gauge ficlds. Thus we sce
that the anisoiropy of the 3pﬂcs-lec builds the Chern—Simons lerm antomatically in the
systemn and is associated with the topological aspects of a fermnion arising oul of the quantiza-
tion procedure.

In 2. 1 dimension, lhe Hopf invariant is defined as
SR PN 39
He X Y (39}
MNow if y denotes a four-dimensional index then

a4 I?I-'J-I-‘r'-J-A' F w _?:PF‘IAFHJFVA {4{})

connects the Hopf invariance Lo the chiral anomaly.* So (rom our analysis abave, we note that
Ew!i, J:; being the second component of the currenl arising out of the background 8L (2,00
gauge field iz associated with the Hopf term in a 2+ l-dimensional system. As we know, tha
Hopt term in a 24 |-dimensional system is analogous to the Wess—Zuming term in the Skyrme
Lagrangian in 3-- | dimensian. Thos we find that origin of the Wess-Zumino term is associated
with the inherent gauge field current Jﬁ.

This 15 analogous to the equivalence of a three-dimensional Ising system and a Polyakov
string. Tndeed that a Polvakov string may be associated with a nonlinear o model with a
Weiss-Zumino term and topological aspects of a Liouville field suggests thatl a Palyakoy siring
may be described by associating two vartex lines at the end points of a string when lor a
fermion (boson) the orientation of the vortex lines are in the same {opposite) direction, ™
This represents a three-dimensional Ising system. In a string picture, as for a fermion, we have
twa vorlex lines of same orentation at the end points, each vaortex line carrying a fermion
number ;l_ Since this corresponds to a three-dimensional Ising system1, we have the effect of
fractignal statistics in three dimensions.

This analysis suggests that an Ising model Hamiltonian can be represented in the contin-
wwm limit by the interaction J’i -Jﬁ."' Also the current Ji can be considered o be the source of
the gavge lield B, such that

Foin=0By s a5 =08, _. (41}

This suggests that for a three-dimensional Ising model, we can formulate a Z; gauge field which
corresponds Lo the dual lattice, !
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lll. FRUSTRAATED LSING SYSTEM

From our analysis above, it appears that the Tsing spin system can well be represented by
chiral currents Ji in the continuum litmit and as such can be considered to represent a chiral
spin liquid. Howaver, the inherent Z symmetry of 1the Hamillonian suggests that chiral sym-
melry must be preserved. That is, for a ferromagnetic system we can have interactions like
J’ﬁ[miiwl ar Ji[glJi,;g}. Evidently these interactions will preserve chiral symmetry and as soch
will be refiection invariant and hence the overall system will not bear any specific signature of
the chirality. For an antiferromagnetic system the corresponding interaction will be Jiw].!im}
and, in general, this is also chiral invarant. However, for a system with an odd aumber of
antiferromagnetic links, this may lead Lo the breakdown af chiral symmetry. According to the
definition of frustration, this system will lead to frustrated spin system. We can associate the

%{ﬁ"r::m: interaction with the interaction in terms of the gawsge potential A, .. i.e., with
Foo By Similarly, the eurrent i wis Wil be associated with the pauge ﬁeld B,_, where

. [E.u—} repregents the fink vanah!e. It is noted that to describe an antiferromagnetic link
where the end lattice points have orientations in the opposite direclions, the interaction in the
continuom limit is given by Jim-‘_?r o5, where G, is given by

-"_.'.l:v_-B B\-

Evidently, this involves a change in chicality in the link variable. For a system with an even
numher of antiferromagnetic links, the change in chirality in one link is compensated by the
change in chirality in another link. Hence there is no change in chirality in the closed loop and
wa can say that the whole systemn i invariant under chirality transformation. However, [or 2
closed loop with an odd number of antiferromagnetic links, which is called a frustrated loop,
the case will not be as above and the {rustraled system will not be invariant under chirality
transformation.

The change in chirality in a link where the gauge potential B, changes to B, may be
vistalized through the introduction of fictitious chiral currenl al 4 certain point on Lhe link
where the interaction may be written in the form

;.:+ ! 1l!"f..ﬁ!'rtcr'!"I.?] ! L'H?'v g B, _,

where al that point, the lefi-handed spinor 3 changes to a right-handed spinor t, through
space reflection. For a system with an odd number of antiferromagnetic links this change in
chirality of the fictitious spinors will lead to the change in chirality of the Lotal system, ie.,
there will be a change in chirality in a frustrated loop, This can be described by a chiral spin
liquid bearing the chiral signature of the fictiticns spinar o, or 1.

I¥. ORDER PARAMETER OF A FRUSTRATED SPIN SYSTEM

Qur foregaing disconssion suggests thal the order parameter of [rusirated spin system can be
denoted by a chiral fermion oy or gp. Therefore it may be inletred that Lhe order paramelter of
a frustrated system is fermionic in natore, which is also commented by Kadanoil and Ceva®
and also by Fradkin ef af*

A discussed in Sec. 11, chiral fermion may be depicted by a scalar parlicle moving with
{=11in an anisotropic space with a specific £, value. Indeed, in an anisotropic space the angular
momentum ia given by

J=r3 Pyt

where (13 corresponds 1o the measure of anisolropy given by
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x.i:

[ p 1 pr e x. hi=123,

and this behaves as 2 magnetic monopole charge, The spherical harmonics ¥7*% with 1=3,
m=£l pg==+1 are denoted as

Y1 e=sin (8/2)e -2,
YA = cog(f/2)e Tdm2,
e G g Y ML LR T
Finr osin(ed)e 8 THE
Tt is 1o be noted that the doublet
ua,_:(i) with ¢,=¥Y3"(8.6,2) and ¢,= 7,5 >(8,8,%) {42)

carresponds to a two-component spinor. The charge conjugate state of (423 is given by

& 2 - ,
wﬂx——-(g;) with ¢, =¥737 "2 (8,6,%) and =PI 12(0,4,x). (43}

Now, writing g, =@, (2=12) and g, ,~7[; where I, is the conjugate of $, and is gven
by MM —=(1/{}3/d¢, We can constiuct a 4-componenl spinor

i)

F7+=(_¢:H]'

with jts charge conjugete sfate

The doublet

(2

represents an eight component conformal spimor and p and g~ represent two cartan semis-
pinors as Pand T rofleclion changes pe= o™, Thos we can represent the spinorial varable g oe
e {thy) as the arder parameter for the three-dimensional frusirated Tsing system thar is
fermionic in nature, On the other hand, if we want to write the spinorial variables in terms of
the oscillator variables?®

s bu {az]sz}j

then

o=, +iT1} 32,
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bg= [ (ip — L3 1V, (44}
b= i{d,—ill}) /va.
We can define the operators
K=ata, L= b;ﬁaigaﬁ;-:-
from which we can define a new operator
pa—laya,—b) b1/ 2={K—L)/2, (43)

which denotes the internal orientation of the sysiem and corresponds to the specific £, value,

We can take the eigenvalue of pray as the order parameter implying £ and T viclation.
Evidently, the order pararneter canmot be classificd in terms of the irreducible represcnta-

tions of SL(2), where J is the total angular momemntun as in the case of "He—4 Phase.”®

V. DISCUSSION

We have deseribed here a gauge theoretical version of a frustraled spin systeny where the
Chern-Simons lerm corresponding to the current Jﬁl 61 {.Ii[a.]} takes a specific role. In 241
dimensicns, this term effectively corresponds to Lhe Hopfl term. An Ising system in three of two
dimensions ean be deseribed by a constent Hme surface in these dimengions when the interac-
tions involve these currents in the continoum Yitnig. A frustrated system is deseriled by a chiral
spin liquid where it bears the signature of a chiral spitor ¢y or ¥ This may be considered to
represent the order paramneier. This may also be related to a Cartan semispinor characterizing
the properties of P and T wviclation. This may also be characterized by solitonic features
associaled with fhe Chern-8imons term and may be associated to the Pontrvagin index. in-
deed, the Pontryvagin index is given by g==2] J’% d’x and is related to the chiral anomaly
through the relation g=— [ SFJ';, @*x. " Since the (rustrated spin sysiem in three dirsensions
may be associated with a chiral spin liquid where 1he Hamillonian docs nol remain invariant
under chirality transformation, the Pontryagin index behaves as a good topological index to
specify the order parameter,
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