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This paper suggests simple Bartlett-type modifications for 2 wide class of test
slabistics that includes in particuiar the efficient seore and the hikchihood rutic
statistics.

1. INTRODUCTION

Ever since the early work due to Bartlett [ 5, 6], corrections leading to a
better approximation of the oull distribution of the likelihood ratio (LR)
statistic by the chi-square distribution received considerable attention in
the literature (see, e.g., Lawley [18], Barndorfl-Nielsen and Cox [2,3],
Cox [16]. Cordeiro and Paula [15], Bickel and Ghosh [9] and the
references therein). Recently, C.R. Rao, in a private communication, and
also Cox [16] posed the problem of developing similar corrections for
other popularly used statistics like Rao’s efficient score statistic {Rao [25,
p. 4177). It is attempted here to settle this problem to some extent.

In order to motivate the ideas, we begin with the one-parameter case and
develop simple Bartlett-type modifications for a large family of statistics

Key words and phrases: Bartlett-type modification, multivanate Fdgeworth expansion,
likehhood ratio statistic, Raa’s statistic.
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104 CHANDRA AND MUKERIEE

which includes, in particular, the LR, Rao's and Wald's statistics, 1t 15
noted that the usual Bartlett’s correction for the LR statistic follows as a
special case of our results. This is done in Section 2. In Section 3, we extend
the ideas to the multiparameter case and consider the modifications for
Rao's statistic. Tt is noted that the suggested modifications do not aler the
powers of the corresponding tests, at least up to the second order, in the
senge of Chandra and Josht [12] and Mukerjee [24]. Some possible exten-
siotis have been bricfly indicated in the concluding remarks. Tt may be men-
tioned that the technigue of proof employed is essentially of a standard
type known from the feld of Edgeworth expansions and Cornish-Fisher
expansions. The technique is applied to the signed square root of test
statistics of the chi-squared tvpe. This kind of approach has heen applied
to the log-likelihood ratio statistic by MeCullagh [20, Sect. 74.5] and by
Barndorff-Nielsen [ 1 ]—see also Chandra and Ghosh [117, Chandra and
Joshi [ 127, and Bickel and Ghosh [9].

2. THE ONE-PAarRAMETER CASE

For a sequence {X,}, nz1. of iid., possibly vector-valued, random
variables with a common density f{x, #) #&&, an open subset of #',
consider the problem of testing 7,: # =4, against the alternative @ #48,.
Without loss of generality, by a reparametnzation i necessary, let # =1,
where .# is the per observation information at #,. Consider a family % of
test statistics i, such that for every A, =%, a set 4, with Pyid.)=
1+ ofn ') can be obtained with the property that on 4,

l,,=I[WR]:+G{H_J}, 2N
where

F‘V,,= H] +n !'rzil.-"jH1H1+ UIH?J
+n (p H Hy+ i Hy + v H + y HiH),
. (22)
CH.=n"'7 { E (o log fiX,, g )il —Hfr},
f=t

fo= Eg{d log fIX. Bo)idf' ],

i=1,2, 3, and vy, t7, ¥, ¥1, Fi. Ve are real numbers which do not involve #.
As noted in Chandra and Mukerjee [13], the family # is very rich and
includes, in particolar, the LR, Rac's and Wald's test statistics to be
denoted here by Ay, Aa,, 43, respectively—for suitable choices of &, 54,
¥1s ¥1, V1. ¥ao The forms of the expressions (2.1} and (2.2} for the LR
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statistic 4,, were given by different avthors (Lawley [18], MeCullagh and
Cox [21, Sect. 2270

In the one-parameter case, Bartlett's correction for the LR statistic is
essentially based on the observation that

Eyldin) =t +afn+ oln~")

and that
Pulinfl +amisx]=| gV d+oin='), ¥x20, (23)
i

where @ is a constant free from » and g,( ) is the density of the chi-square
distribution with 2 degrees of freedoni. The structure of the Bartlett correc-
lion, as in {2.3), is casily explained by McCullagh and Cox [21] sce
expression {11} in their paper. A detailed expression for the constant a has
been given at the end of this section,

That the above simple techniygue wili not be applicable to the tests in the
family &, in gencral, follows il one simply considers Rao’s statistic and
notes that E, (4., )= 1, so that no appropriate divisor as in the left-hand
side of (2.3) is available. This difliculty can be overcome by considering the
squarte root version of the statistics as in (2.1) and (2.2). Denoting the B,
corresponding to A, 2., A by W\, W, W, respectively, note that
on A,

Andil+aim) = (W, —n~aH V +oln ). {2.4)

The relation (2.4) suggests that for any A, € #F one can consider a modified
version £¥, where

iy =(Wr, (2.5a)
W*=W, +n “SbHY+n cH, +sH}), (2.5b}
the constanis &, ¢, s, free from &, being so determined that the relation

P&[A:£I}=‘|l; gizhdzdoln '), Vx=z0, (2.6}

holds. We emphasize that the modifications of the form (2.5a), (2.5b) are
guite simple and that the random terms in the modifications involve only
the first derivative of the log-likelihood which, anyway, one has to compuis
for almost any inference problem, The constant coefficients &, ¢, 5 may, of
course, depend on expectations involving the higher order derivatives, but,
in a given context, these coefficients can be computed once and for all (see
Theorem 2.1 below). As will be shown now, these modifications are
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applicable to the entire family of test statistics under consideration, Let
h':f] =a|1' i{}gj{l’, ﬂulll.'dn.' {-I £f£4}’ I-'g}f_-.“- - E”“{{hl'”}f {km:‘}f {hﬁ-‘l-}-’a {hH-:l}u-},
L.!:.'u': L;‘,uws L;f= L.}'ﬂi Li=Ly.

TueoreM 2.1, For everp A, €3, there exists a wnigue choice of the
constant coefficienis b, ¢, 8 i (2.3b) suek thae (2.6) holdy. This unigue cheice
is given by

b=—iL; (v Ly +v2)

e=fLa—=3)—gli+ 0Ly + 1 =Ly L)+ (07— HLgy — 1 = L),

s= =L -3 -3+ 120, (L + 1~ L L)+ 1203 Ly — 1 = £5)
+24{y, LY + 7Ly +rs+ ¥ b

Proof. Using the findings in Chandra and S8amanta [14] (we use the
corrected version of a printing mistake there), the approximate cumulants
of W¥ as defined in (2.5b), under 0, are given by

kin=n""pyxoln '), ky=1l4n"'prtoln '),
ky=n"Ypi+o0in™"),  ky=n"tpy+oln""),
ko,=oln 'y (r=z5),
where the p/'s, which are free from a, are
py=uvyL, +{vs + ), (2.7a)
pr=2{o Ly + 1+ (ma+ B L+ p (L — 1 +2L3))
+3p L+ 3+ + 3, Ly 0}
+ui(Loy— L+ L3+ 2062+ B¥ +4e(va+BY Ly, (2.7b}
pr=La+6n L, +6{r.+ 5], {2.7c)
Pa=La—34 120 0Ly + 1+, L)+ 24, +5)
X Ly+ 1203 ( Loy — 14+ 3L} + 48[, + b)Y
+960,(0;+B) Ly, + 24{ vy L + oL+ 73+ + yalig)  (27d)

Hence, the approximate characteristic function of WF, under #;, is given
by (here {=./—11¢}

Ba(E)=exp(dEI[ 1+~ {p, 4+ £p:E7)
i e+ e E+Gpps+ap0 8"
+3p38 T+ eln™") {2.8)
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Recalling the symmetry of the normal distribution and making use of an
Edgeworth expansion {(see Bhattachirya and Ghosh [8], Bhattacharya
[7]) for the distribution of W} under 8, it is clear that (2.6) will hold
provided &, ¢, 5 are 50 chosen that

prtpi=0, aPLf+ 2apa =0, pi=0. (2.9)

By {2.7a)-(2.7d), it can be seen that the unique solutions for b, ¢, 5 satis-
fying (2.9) are as in the statement of the theorsm. |

In particular, for Rao's efficient score statistic, v, =t;=y, =),=
vy =y, =0, 30 that the solutions for b, ¢, s are simple and given by

pheo— _1F. R NP M L3 sP= &(L,-3-30)
(210

In particular, if L, =0, as happens in many situations of practical interest
{sce Example 21 below), then H**" =0, ™ = HL,—3), ™ =
—&(L4—3), so that by (2.5a} (2.5b),

i =[1+ MLy 3 An— l,n“’{L,,—E}J.;n

= {2.11)
=Aa /il —n lagil —iz,/3)  +ein '),

where g, =(L,— 3¥4, and this resembles the Bartlett correction for the LR
statistic. It 15 also interesting o derive the usual Bartlett correction for the
LR statistic 4, from Theorem 2.1. Since for 4,,, v, =4 v3= Loy, ¥1=4
V1= t5Loots ¥1= 15 Loon + 3501 ¥a=1 {see Chandra and Joshi [12]), the
solutions for b, ¢, 5 are given by

bR =R =0, =1, - %Li 1 41[}--"}1 Ly Ly}~ %{Lni_LffJ:

using simple regularity conditions (see Chandra and Mukerjee [13] ) Since
bR = LR —_ 0 the above agrees with (2.4} and henee with (2.3). Also, from
{2.4), (2.5b), the constant a in {2.3) eqals —2c'%; ie,

a= i‘{anz i Lf| LRI %—L; - é{LIL —L L)

ExampLe 2.1. Let X, X,, .. be iad. 2x1 vector random variables
each distributed as hivariate normal with zero means, unit variances, and
an unknown correlation coefficient 8 (& < I). Consider H,: # =0 against
the alternative & 0. It can be scen that here # =1, Ly,=0, Ly=9, s0 that
by (2.11),

AR =(l43n A, —te~ " =41 — o W3-d)} +aln™t).
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3. TiE MuLtiparameTer Case: Bao’s Test

The 1deas of Seciion 2 can be extended to the multiparameter case with
reference to a general class of tests along the line of (2.1}, (2.2). However,
in this section we present results pertaining only to Rao's test in order to
simplify notations and to save space. It may also be emphasized that in this
article we are primarily concerned with Rao's test in consideration of the
recent studies on its optimality properties (Chandra and Joshi [12],
Mukerjee [22, 247}

Consider the setup of Sectivn 2 with the exceplion that #=(#,.... 8,) s
now pz2)-dimenstondl. We are interested in testing Ay 6 =48, against
. Also, withoul loss of generality, if necessary by a reparametrization,
let the per observation information matrix at 0, be £ the pxp identity
matrix. Then Rao's test statistic s given by A, =1 H |, where H dsapx |
vector with its ith element given by H,,=n '2 X", 2log fiX,. 8,68,
| i< p Geoeralizing Lhe ideas of Section 2, we consider a modified
version of i,, as

A= (HT)Y (H}), {3.1a)
where

H¥=H +n "“2B(H @H)+n "[CH,+S(H,@H,@11)}, (31b)

the elements of the matrices B, C, S, which are of orders px p*, px p, pxp*
respectively, being constants, free from n, to be so chosen that the relation

Pl €xi=) glzidz+oln V), Y20, (3.2)
Hik

holds. Here @ stands for Kronecker product. Note that the random terms
in the modification in (3.1a), {3.1b), like those in {2.5a), (2.5b), involve
only the first partial derivatives of the log-likehhood.

The following notations will be helpful in the derivation. For
14 f, u,w=p, let

Gl = Eq {{81og f{X, 8,)/30, )2 log f( X, 6,)i6,}
x (¢ log f(X, B, )/08,) ],

G = B, {18 10g [1X, 8,)/38, )2 log f(X, 0,)/06,)

x (C log f (X, t,)/80,)(@ log f{ X, 0,)/28,)}.

Note that G')), G4, are invariant under permutation of the subsecripts.

e ? s

Also, for 1 =7/<p, let the elements in the ith rows of B and § be 6, and
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S arranged in lexicographic orders of j, # and j, u, w, respectively
(1=j,u,w=p) Let c, be the {7 fith element of C and J, stand lor
Kronecker delta {1 <4, j<p).

A tedious algebra, the details of which are omitted here 10 save space,
shows that the approximate cumulants of I = (I¥, .. IHf), say, under
By, are

ki dHE =n""p" +0(n~1),

Ko HY HEY=8,+n a7 +oln '),

ks (HY HE, HE)=n""p v 0(n™!),

i
kq"{.Hr}, Hr_r'! H?u:l 'Irf.lkw} =n_lﬂl:l“ + 'U[ﬂ_ ! :'1 1 g !-:I j1 i, W g.ﬂa

ifwn

where for 1 <@ fu, w=p,
f
p£1]= E. bén,u;! {3.3‘:[}
ey

P P
PE}“=E E {bi{rrG,'r;::*]+bquGE;-r]}+E E {bl'urbf’f?+bfu*'bﬂ!]

g.r =1 g.r—1

a
+ T (Syigg+ Sigig + Sigai+ Sy + Sy + a0+ E5+ i (33b)

g=1

)= G“ ' + [.bgfa + hmj + 'f"ja'u + b_r'm' + JEI:Jr'j + Ii"‘al.il'}- {3'3{:]

i iR iiw

.l':";;:::u= GE;J“_ {ﬁr',l'auw + 5|’u'ajw + arwaju)

r
r 1 r
+ E Siinat I E E [bil-’.”zbhrrr'q * bllimbr'if-w

=

”
+ bl’uif} b:’_‘. a4 + 'il" i |'2qb|'34,r|'¢} + % z E {hé-_qli; + b.i-_izq::l Gl] ;i {3'3'.:] }

gilaig?
g=1

wherz ¥ denotes sum over the 24 possible permutations (i, is, iy, i) of
(, j, u, w). All higher order cumulants of H¥ are of order ain™').

Hence, as in the one-parameter case, if one considers a multivariate
Edgeworth expansion for ¥, under 8;, and uses the symmetry of the mul-
tivariate normal distribution, then it can be seen that (3.2) holds provided
the elements of B, C, § are so chosen that, analogously to (2.9), the fol-
lowing hold:

(3 (31 _ Loy 143 14000 03]
Iul'uw'pﬂfr_ﬂ" ﬁpl}uw-i_gluf p.iu-nl_[}‘

pEtE =0, Wigijuwgrsp
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From (3.3a)-(3.3d), it can be seen thal the above hold provided

b
'?é_r'rn' T {GE;L {a buu + 'am ﬂ + f} ﬂ.lu.]

— 1l
w= —g0

Eh ifu 7

h-1

E [':IG“I- Grh{ﬂm [a-m(}ln”

ruwc.l iy 7 pwg g g
g—1

_.._=§{5;

=l

I

_ §fly=il) |.1| (L roill

E E [i' qu: ’.‘_(J {Fr.rr
ga.r=1

e A ey 1<iju, wsp,

which extend (2.10) to the multiparameter case.

Remark 1. The results in Chandra and Samanta [14] imply that the
modifications suggested in (2.5a), (2.5b) in the one-parameter case do not
alter the power, up to the third order, in the sense of Chandra and
Joshi [127]. In the multiparameter case, it follows from Mukerjee [24] that
the modifications suggested in (3. la} {3.1b) always keep “afvarage‘ DOWET,
up to the second order, unaltered; in fact, average power remains unaltered
up to the third order if G{' =0 for each i, j, u (this ensures B=0in (3.1b)},
a condition which holds in many situations—Tfor example, in testing for the
veetor of location parameters in a multivariate Cauchy distribution.

Remark 2. For the modified versions of the tests as considered in this
paper, the remainder terms in (2.6), (3.2) are actually of order =% —
see, £g, Chandra and Ghosh [11] and Chandra [10]. A similar
phenomenon in connexon with the Bartlett coreetion for the LR statistic
has been observed by Barndorf-Nielsen and Hall [4].

Remark 3. 1o this paper, we have considered simple null hypotheses. In
the presence of nuisance parameter(s) the position 1s as follows: Let & be
the parameter of interest and m be the nuisance parameter. If # be one-
dimensional then combining the methods in this paper with those in
Mukerjee [23] it should be possible to derive appropriate modifications for
Rao's statistic. The problem, however, becomes much more complex for
multidimensional #—in particular, if & and m are both multidimensional
then in gencral one cannot employ parametric orthogonality (Cox and
Reid [17]) and tensor methods (McCullagh [19, 20]) should be useful.
These aspects deserve further attention.
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