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1 Introduction

Let Möb(ID) be the group of biholomorphic automorphisms of the unit disk, and
T be a contraction on a Hilbert space H. Each ϕ2θ,a in Möb(ID) has the form

ϕ2θ,a(z) = e2iθ(z − a)(1− āz)−1, |a| ≤ 1 and θ ∈ [0, π).

Define ϕ2θ,a(T ), by the usual functional calculus. We call an operator T homoge-
neous, if T is unitarily equivalent to ϕ2θ,a(T ) for all ϕ2θ,a in Möb(ID). In this paper,
we obtain a family of homogeneous operators using the Sz.-Nagy-Foias model for
contractions, and we study a corresponding class of projective representations of
Möb(ID).

In a recent paper [8], D.R. Wilkins has studied operators in B1(ID), which are
homogeneous under the action of certain Fuchsian groups. Homogeneous tuples of
bounded operators on a Hilbert space are discussed in [5].

Let us fix some notation. Let

SU(1, 1) =

{[
α β
β̄ ᾱ

]
: |α|2 − |β|2 = 1

}
.
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The group SU(1,1) acts on the unit disk by

ϕ̃g(z) = (αz + β)(β̄z + ᾱ)−1, for g =

[
α β
β̄ ᾱ

]
in SU(1, 1).

Note that as a topological group SU(1, 1) is homeomorphic (in fact, diffeomorphic)
to the product space T× ID; where T is the unit circle. For g in SU(1, 1), if we set
θ = arg α (mod 2π) and a = −β

α
, then the map g → (eiθ, a) is a diffeomorphism,

and the inverse of this map is obtained by setting α = eiθ(1 − |a|2)−1/2 and β =
−a eiθ(1− |a|2)−1/2. The map ϕ̃g can now be rewritten as (we will drop the tilde)

ϕg(z) = e2iθ(z − a)(1− āz)−1.

Thus, if g in SU(1, 1) is identified with (eiθ, a), where 0 ≤ θ < 2π, and |a| < 1,
then the map q : SU(1, 1) → Möb(ID), defined by

q(g) = q(eiθ, a) = ϕg = ϕ2θ,a, θ ∈ [0, 2π) (1.1)

exhibits SU(1, 1) as a two fold cover of Möb(ID). The covering map is just q.
We define a function on SU(1, 1)× ID as follows

j(g, z) = ϕ′g(z)
1/2 = (β̄z + ᾱ)−1 = eiθ

(1− |a|2)1/2

1− āz
. (1.2)

Note that j satisfies the relations

j(g1g2, z) = j(g1, ϕg2(z))j(g2, z),

j(e, z) = 1.

Recall that a projective representation is a mapping U : g → Ug of the group G
into the unitary group U(H) on some Hilbert space such that

1. Ue = 1, where e is the identity of G,

2. UgUh = c(g, h)Ug◦h, where c(g, h) is in T,

3. g → 〈Ugζ, η〉, is a Borel function for each ζ, η ∈ H.

The function c is the multiplier associated with U and is uniquely determined by
U . It has the following properties
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c(g, e) = 1 = c(e, g), where e is the identity of the group G, g ∈ G.

c(k, gh)c(g, h) = c(k, g)c(kg, h), g, h, and k in G.

The set of all multipliers M on the group G is itself a group, called the multiplier
group. If there is a continuous function f : G→ T such that

c(g, h) = f(g)f(h)f(gh)−1,

then the multiplier c is said to be trivial. Note that in this case, if we set

Vg = f(g)−1Ug,

then g → Vg is a linear representation of the group G, that is a strongly continuous
homomorphism ([7], Lemma 8.28, p.34).

It was pointed out in [4], that if a homogeneous operator is irreducible then
it gives rise to a projective representation of Möb(ID). Since the map g → ϕg is
a continuous homomorphism of groups, we may lift any projective representation
to the group SU(1,1). However, it turns out that the projective representations
of Möb(ID) we obtain from our examples of homogeneous operators are in fact
linear representations when lifted to SU(1, 1). In the following section, we discuss
the characteristic function for a contraction, and obtain some simple properties
of a homogeneous contraction. In particular, we show that a contraction with
constant characteristic function must be homogeneous. Next, we point out that
the study of homogeneous operators is related to that of systems of imprimitivity,
introduced by Mackey (cf. [7], p.58). We then obtain explicitly the projective
representation associated with the class of homogeneous contractions which have
constant characteristic function and show that the projective representations of
Möb(ID), obtained in this manner, lift to linear representations of SU(1, 1).

2 The Characteristic Operator Function for a Con-

traction

Sz.-Nagy-Foias model theory for contractions associates to each contraction an
operator valued holomorphic function ΘT (z) on the unit disk.

Let us fix the following notation.

DT =
√
I − T ∗T
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DT ∗ =
√
I − TT ∗

DT = ranDT

DT ∗ = ranDT ∗

ΘT (z) = −T + zDT ∗(I − zT ∗)−1DT ∈ L(DT ,DT ∗)

∆T =
√
I −ΘTΘT ∗

H = H2
DT∗

⊕∆TL
2
DT

M = {(ΘTf,∆Tf) : f ∈ H2
DT
}

M⊥ = H 	M.

By Sz.-Nagy-Foias theory, T is unitarily equivalent to the operator

T : (f, g) −→ (zf, eitg)

on H, compressed to M⊥. The compression of T will again be denoted T . It is
the basic theorem of Sz.-Nagy and Foias that two completely non unitary contrac-
tions operators T1 and T2 are unitarily equivalent if and only if their characteristic
functions coincide, that is, there exist (constant) unitary operators U and V such
that UΘT1(z)V = ΘT2(z), for all z in the unit disk (cf. [6], Proposition 3.3, p.256).
The dimensions of DT and DT ∗ are called the defect indices of T .

Theorem 2.1 Let T be a completely nonunitary contraction with at least one of
the defect indices equal to 1. The operator T is homogeneous if and only if the
characteristic operator function for T is a constant.

Proof: If ΘT (z) denotes the characteristic operator function for T , then the char-
acteristic operator function Θϕg(T ) coincides with that of ΘT (z), that is

UgΘϕg(T )(z)V
∗
g = ΘT (ϕ−1

g (z)), (2.1)

(cf. [6], p. 240). If T is unitarily equivalent to ϕg(T ) for all g in G then

U ′gΘϕg(T )(z)V
′∗
g = ΘT (z).

It follows that
U∗gU

′
gΘT (z)V ′∗

g Vg = ΘT (ϕ−1
g (z)).

Since ϕg acts transitively on the unit disk, setting z = 0 and ω = ϕ−1
g (0), we obtain

U∗gU
′
gΘT (0)V ′∗

g Vg = ΘT (ω).
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We note that ‖ΘT (ω)‖ is in fact equal to ‖ΘT (0)‖, and if one of the defect indices
is 1, then the characteristic function ΘT (ω) is either a DT or a DT ∗ valued holo-
morphic function on the unit disk. In any case, the unit ball of the range is strictly
convex, and by the strong form of the maximum principle for vector valued analytic
functions (cf. [1], Corollary III.1.5, p.270), it follows that ΘT (z) is a constant.

The converse statement is trivial. Certainly if the characteristic function ΘT (z)
is constant, then using 2.1, we find that

UgΘϕg(T )(z)V
∗
g = ΘT (ϕ−1

g (z)) = ΘT (z),

that is, the characteristic functions ΘT and Θϕg(T ) coincide. In other words, T is
homogeneous and the proof is complete.

Unfortunately, there exist completely non unitary contractions with non con-
stant characteristic functions, which are homogeneous. In fact, all the homogeneous
operators in B1(ID) discussed in [4], except the unilateral shift, are contractions of
class C.0, and their characteristic functions are inner. If the characteristic function
of any of these operators were to be a constant then T |DT

would have to be an
isometry. However, this is not the case for any of the homogeneous operators in
B1(ID).

Corollary 2.1 The unitary dilation U of a homogeneous operator T is itself
homogeneous and is therefore a bilateral shift of uniform multiplicity.

Proof: Since T is unitarily equivalent to ϕg(T ), it follows that the unitary dilation
U is also unitarily equivalent to ϕg(U). However, ϕg acts transitively on the unit
circle, and if µ is the spectral measure for U then µ ◦ ϕg must be equivalent to
the measure µ for all g, that is, the measure µ is a quasi invariant (cf. [7], p.14)
measure on the unit circle, the measure class of such a measure µ is the same as
that of the Lebesgue measure on T. If T is homogeneous, then

‖ΘT (ω)‖ = ‖ΘT (0)‖ ≤ 1,

and consequently, ∆T (ω) is invertible for all ω. This implies that the multiplicity
is constant and the proof is complete.

Let Linv(H) denote the set of invertible operators onH and let L : G→ Linv(H)
be a uniformly bounded homomorphism. The map L is said to be unitarizable, if
there exists a invertible operator L such that LLgL−1 is unitary for all g inG. There
are known examples (cf. [3], Theorem 5) of uniformly bounded homomorphisms
L : SU(1, 1) → Linv(H), which are not unitarizable.

5



Proposition 2.1 An irreducible contraction S is similar to a homogeneous oper-
ator T if and only if L−1

g SLg = ϕg(S) for all g in G, and the map L : g → Lg is
an uniformly bounded map into Linv(H), which is also unitarizable.

Proof: Suppose LTL−1 = S. Let U : g → Ug be the projective representation
associated with the homogeneous operator T = L−1SL. The map L : g → L−1UgL
is a uniformly bounded representation of G, which is evidently unitarizable, and
L−1
g SLg = ϕg(S).

On the other hand, if S is any operator such that L−1
g SLg = ϕg(S) and the

map L : g → Lg is uniformly bounded, then to say g → Lg is unitarizable means
that for some invertible operator L, the operator LLgL−1 is unitary and we have

LLgL−1(LSL−1)LL−1
g L−1 = L(ϕg(S))L−1 = ϕg(LSL−1).

Thus, the operator T = LSL−1 is homogeneous and is similar to S. The proof is
now complete.

If T and ϕg(T ) are similar for all g, we say that the operator T is weakly
homogeneous. How are the homogeneous operators related to weakly homogeneous
operators? If, for example, we can find an operator T , which is weakly homogeneous
but not similar to any homogeneous operator, with the added property that the
map L : g → Lg implementing the similarity is both uniformly bounded and
is a homomorphism, then in view of the proposition, we would have obtained a
representation of SU(1,1), which is not unitarizable.

3 Systems of Imprimitivity

Let G be a locally compact, second countable, continuous group and X be a locally
compact metrizable space. If G acts continuously and transitively on X, then X
is a transitive, G-space. Let φ be a ∗-homomorphism of C(X) into L(H) and
U : g → Ug be a projective unitary representation of G on H. Then (U, φ,X) is a
system of imprimitivity based on X, for the group G if we also have

Ugφ(f)U∗g = φ(f ◦ g−1) for all g in G. (3.1)

If X is compact then classification of such systems of imprimitivity is obtained
through classification of ∗-homomorphisms of the C∗-algebra C(X). Mackey shows
that, if X = G/H for some closed subgroup H of G, then there is a one-one
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correspondence between systems of imprimitivity based on X and representations
of G induced from the subgroupH. A good reference for all this material is ([2],[7]).

Let U : G→ U(H) be a projective representation of a locally compact group G,
and X be a transitive G-space. Let A be a function algebra, that is, a subalgebra
(not necessarily closed with respect to ∗) of the C∗-algebra of continuous functions
C(X), and φ : A → L(H) be a contractive homomorphism. Define a system of
imprimitivity for the group G over a function algebra A, to be a triple (U, φ,X)
satisfying 3.1. Typically, if G = Möb(D), then there is a subgroup H such that
G/H = ID, and the algebra A is the disk algebra A(ID); in this case we identify
A(ID) as a subalgebra of the C∗-algebra C(T).

Note that if T is homogeneous, then we obtain a projective unitary represen-
tation U : g → Ug of G such that

UgTU
∗
g = g · T,

here we have set g · T = ϕg(T ). If φ is the contractive homomorphism of the disk
algebra A(ID) defined via p→ p(T )then we see that

Ugφ(p)U∗g = Ugp(T )U∗g = p(UgTU
∗
g ) = p ◦ ϕg(T ), (3.2)

where we are thinking of g = h−1, so that the map h → Ug is a projective repre-
sentation. The relation 3.2 is the imprimitivity relation on the disk algebra. On
the other hand, given a system of imprimitivity for G over the disk algebra, we
obtain a homogeneous operator T by simply setting T = φ(z). Thus, there is a
natural one to one correspondence between homogeneous contractions and systems
of imprimitivity over the disk algebra.

Theorem 3.1 Let (U, φ,T) be a system of imprimitivity over C(T). If H is a
semi invariant subspace for φ(id |T) and each Ug leaves H invariant, then the op-
erator T = PHφ(id |T) is homogeneous with UgTU

∗
g = ϕg(T ). Conversely, given

an irreducible homogeneous operator T (or, equivalently, a system of imprimitiv-
ity over A(ID)), let g → Vg be the associated projective representation of G on H
satisfying VgTV

∗
g = ϕg(T ). Let WT be the minimal unitary dilation for T on K

containing H as a semi invariant subspace. Then there exists a projective repre-
sentation U : g → Ug of G on K, which leaves H invariant UgWTU

∗
g = ϕg(WT )

and Ug |H = Vg.

Proof: One half of this theorem is easy to prove. We need only observe that if H
is invariant for Ug, then the projection PH commutes with Ug and U∗g . Thus,

PHφ(f ◦ ϕg)PH = PHUgφ(f)U∗gPH = UgPHφ(f)PHU
∗
g .
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For the converse, we take WT to be the matrix

. . .

I
DT −T ∗
T DT ∗

I
. . .


,

where the box as usual denotes the (0,0) entry. If we restrict WT to the subspace

KT =

(hn) ∈ ⊕∞n=−∞H : hn ∈
DT for n < −1,
H for n = 0 and
DT ∗ for n > 1

 ,

then WT is a minimal unitary dilation of T . However since T is an irreducible
homogeneous operator on H, there is a projective representation g → Vg of G such
that VgTV

∗
g = ϕg(T ). Let Ug be the diagonal operator acting on ⊕∞−∞H, with each

diagonal entry equal to Vg. Note that ϕg(WT ) (cf. [6], Proposition 4.3, p.14) is
a minimal unitary dilation for the operator ϕg(T ). Since the unitary operator Vg
intertwines T and ϕg(T ), it is clear that Ug will map K onto Kϕg(T ). However,
KT is equal to Kϕg(T ). Therefore, Ug is a unitary operator on KT which leaves the
subspace H invariant. It is also clear that Ug intertwines WT and ϕg(WT ). Since
Vg is a projective representation of the group G and Ug is defined to be a block
diagonal matrix with each diagonal block equal to Vg, it follows that Ug is itself a
projective representation of the group G. This completes the proof of the theorem.

The second half of the theorem says that every system of imprimitivity over
the disk algebra A(ID) lifts to a system of imprimitivity over the C ∗-algebra of
continuous functions C(T).

4 Contractions with Constant Characteristic Func-

tion and Unitary Representations of SU(1, 1)

Theorem 4.1 Let T be a completely nonunitary contraction with constant char-
acteristic function

ΘT (z) = C ∈ L(DT ,DT ∗),
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where C is independent of z, and ‖C‖ < 1. Then for any linear fractional trans-
formation ϕ mapping IDonto ID, ϕ(T ) is unitarily equivalent to T :

ϕ(T ) = UϕTU
∗
ϕ. (4.1)

Furthermore, the unitary operators Uϕ can be chosen so that ϕ→ Uϕ is continuous
in the strong operator topology and so that

UψUϕ = c(ψ, ϕ)Uϕ◦ψ

where c(ψ, ϕ) is a complex constant of modulus 1.

Proof: By Sz.-Nagy-Foias theory, T is unitarily equivalent to the operator

T : (f, g) −→ (zf, eitg)

on H, compressed to M⊥, in the notation of section 2. The compression of T will
again be denoted T

T : (f, g) −→ PM⊥(zf, eitg),

since M is invariant under T , the operator T is a (power) compression. Thus,

ϕ(T )(f, g) = PM⊥(ϕ(z)f, ϕ(eit)g) (4.2)

holds for ϕ analytic in |z| ≤ 1. In particular, 4.2 holds for a linear fractional
transformation ϕ as in the statement of the theorem.

The following is a characterization of the space M⊥ :

M⊥ = {(f,−C∗(I − CC∗)−1/2f + e−ith) : f ∈ H2
DT∗

, h(e−it) ∈ H2
DT
} (4.3)

Indeed, since C∗(I − CC∗)−1/2 = ∆−1C∗, we have, for g ∈ H2
DT

< (f,−C∗(I − CC∗)−1/2f), (Cg,∆g) >

=< f,Cg > − < C∗f, g >= 0

and< (0, e−ith), (Cg,∆g) >=< e−ith,∆g >= 0, since ∆g ∈ H2
DT

and e−ith ⊥ H2
DT

.
This proves ⊇ in 4.3.

To prove ⊆ in 4.3, suppose (g1, g2) ∈ H is orthogonal to the right side of 4.3.
Since (g1, g2) ⊥ (0, e−ith), we have g2 ∈ H2

DT∗
. Now for f ∈ H2

DT∗
,

(g1, g2) ⊥ (f,−C∗(I − CC∗)−1/2f).
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So
< g1, f >=< g2, C

∗(I − CC∗)−1/2f >,

or
g1 − (I − CC∗)−1/2Cg2 ⊥ H2

DT∗
.

It follows that
g1 = (I − CC∗)−1/2Cg2 = C∆−1g2

and therefore

(g1, g2) = (Ch,∆h) ∈M ( where h = ∆−1g2 ∈ H2
DT

).

Now we prove that

PM⊥(0, h0) = (−C∆h0, C
∗Ch0) (4.4)

for h0 ∈ DT (i.e. h0 a constant function in L2
DT

). First,

(−C∆h0, C
∗Ch0)

= (−(I − CC∗)1/2Ch0, C
∗(I − CC∗)−1/2(I − CC∗)1/2Ch0)

= −((I − CC∗)1/2Ch0,−C∗(I − CC∗)−1/2(I − CC∗)1/2Ch0) ∈M⊥.

Secondly,

(0, h0)− (−C∆h0, C
∗Ch0) = (0, h0) + (C∆h0,−C∗Ch0)

= (C∆h0,∆
2h0) ∈M.

This proves 4.4.
Now, we can characterize the action of T on M⊥ by

T (f,−C∗(I − CC∗)−1/2f + e−ith)

= PM⊥(zf,−C∗(I − CC∗)−1/2eitf + h)

= (zf,−C∗(I − CC∗)−1/2eitf + e−it(eit(h− ĥ(0)))) + PM⊥(0, ĥ(0))

= (zf,−C∗(I − CC∗)−1/2eitf + e−it(eit(h− ĥ(0)))) + (−C∆ĥ(0), C∗Cĥ(0))

= (zf − C∆ĥ(0),−C∗(I − CC∗)−1/2eitf + h−∆2ĥ(0)).

Now, we will write ϕ for ϕ2θ,a, which has the form

ϕ(z) = e2iθ(z − a)(1− āz)−1 ∈ Möb(ID).
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We define elements of M⊥ by

Φ(f, n) = ϕ(eit)n−1(1− āeit)−1(f,−C∗(I − CC∗)−1/2f), f ∈ DT ∗

Φ(f,−n) = ϕ(eit) n(1− āe−it)−1(0, f), f ∈ DT .

for n = 1,2,. . . , it is clear that, for a given ϕ and for n = ±1,±2, . . . , {Φ(f, n)}
form a basis for M⊥. Furthermore,

< Φ(f, n),Φ(g,m) >= 0 if n 6= m.

Also, if n > 0

< Φ(f, n),Φ(g, n) >

= < (1− āeit)−1f, (1− āeit)−1g >

+ < (1− āeit)−1C∗(I − CC∗)−1/2f, (1− āeit)−1C∗(I − CC∗)−1/2g >

= (1− |a|2)−1[< f, g > + < (I − CC∗)−1/2CC∗(I − CC∗)−1/2f, g >]

= (1− |a|2)−1 < [I + CC∗(I − CC∗)−1]f, g >

= (1− |a|2)−1 < (I − CC∗)−1f, g > .

and if n < 0,

< Φ(f, n),Φ(g, n) > = < (0, (1− āeit)−1f), (0, (1− āeit)−1g) >

= (1− |a|2)−1 < f, g > .

For ϕ(eit) = eit, we denote Φ(f, n) by I(f, n) (I for identity function),
Define the operator Uϕ : M⊥ →M⊥ by

UϕI(f, n) = (I − |a|2)1/2Φ(f, n)

for n 6= 0 and f ∈ DT if n < 0, f ∈ DT ∗ if n > 0. Note that Uϕ is unitary and
satisfies

Uϕ(f(z), g(eit)) = (1− |a|2)1/2(1− āeit)−1(f ◦ ϕ, g ◦ ϕ),

for (f, g) ∈M⊥.
We compute, for n > 0 and f ∈ DT ∗ ,

UϕTI(f, n) = UϕT (zn−1f,−C∗(I − CC∗)−1/2ei(n−1)tf)

= Uϕ(z
nf,−C∗(I − CC∗)−1/2eintf)

= UϕI(f, n+ 1)

= (1− |a|2)1/2Φ(f, n+ 1).
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If n > 1 and f ∈ DT ,

UϕTI(f,−n) = UϕT (0, e−intf) = Uϕ(0, e
−i(n−1)tf)

= UϕI(f,−n+ 1) = (1− |a|2)1/2Φ(f,−n+ 1)

and, if f ∈ DT ,

UϕTI(f,−1) = UϕT (0, e−itf) = Uϕ(−C∆f, C∗Cf)

= UϕI(−(I − CC∗)1/2Cf, 1)

= (1− |a|2)1/2Φ(−(I − CC∗)1/2Cf, 1).

To complete the proof of 4.1, we apply the relation 4.2, to get, for n > 0,

ϕ(T )Φ(f, n) = Φ(f, n+ 1),

for n > 1,
ϕ(T )Φ(f,−n) = Φ(f,−n+ 1)

and, for n = −1,

ϕ(T )Φ(f,−1) = PM⊥(1− āeit)−1(0, f)

= (1− āeit)−1(−C∆f, C∗Cf)

= Φ(−(I − CC∗)1/2Cf, 1).

(The next to last equality is verified by checking that the right side lies in M⊥ and
the difference of the left and right sides lies in M.)

Thus, for all n > 0,

UϕTI(f, n) = (1− |a|2)1/2ϕ(T )Φ(f, n) = ϕ(T )UϕI(f, n)

so that 4.2 holds.
To prove ϕ→ Uϕ is continuous from the uniform topology to the strong topol-

ogy, suppose ϕk(z) converges uniformly to ϕ(z) ( in |z| ≤ 1). We need to show

Uϕk
f → Uϕf for f ∈M⊥. (4.5)

Write
f =

∑
n6=0

I(fn, n),
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where
−1∑
−∞

‖(I − CC∗)1/2fn‖2 +
∞∑
1

‖fn‖2 <∞.

Given ε > 0, choose N so that∑
N≤|n|

‖I(fn, n)‖2 < ε2/8.

For each n, it is clear that

(1− |ak|2)1/2Φk(fn, n) → (1− |a|2)1/2Φ(fn, n)

in M⊥, where ak is the zero of ϕk and a is the zero of ϕ. Therefore, there is a
positive integer K such that

‖(1− |ak|2)1/2Φk(fn, n)− (1− |a|2)1/2Φ(fn, n)‖ < ε/(2N)

for 0 < |n| < N and k > K. Therefore, if k > K,

‖Uϕk
f − Uϕf‖

= ‖(1− |ak|2)1/2
∑
n6=0

Φk(fn, n)− (1− |a|2)1/2
∑
n6=0

Φ(fn, n)‖

≤
∑

0<|n|<N
‖(1− |ak|2)1/2Φk(fn, n)− (1− |a|2)1/2Φ(fn, n)‖

+ 2[
∑
N≤|n|

‖I(fn, n)‖2]1/2 < ε,

which proves 4.5.
To prove the last assertion of the theorem, let

ϕ(z) = e2iθ(z − a)(1− āz)−1, ψ(z) = e2iη(z − b)(1− b̄z)−1,

where, |a|, |b| < 1, θ, η ∈ [0, π). Then

ϕ ◦ ψ(z) = e2i(θ+η)(1 + b̄ae−2iη)(1 + bāe2iη)−1(z − d)(1− d̄z)−1,

where, d = (e2iηb+ a)(e2iη + b̄a)−1. We have

1− |d|2 = (1− |a|2)(1− |b|2)|e2iη + b̄a|−2
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and so

UψUϕ(f(z), g(eit))

= (1− |a|2)1/2(1− |b|2)1/2(1− āψ)−1(1− b̄eit)−1.(f ◦ ϕ ◦ ψ, g ◦ ϕ ◦ ψ)

= (1− |a|2)1/2(1− |b|2)1/2(1 + ābe2iη)−1(1− d̄eit)−1.(f ◦ ϕ ◦ ψ, g ◦ ϕ ◦ ψ)

= |e2iη + b̄a|(1 + ābe2iη)−1Uϕ◦ψ.

This completes the proof of the theorem.
For the Möbius transformation ϕ = ϕ2θ,a of the theorem, let

f(ϕ) = eiθ.

Then we have
U∗ϕU

∗
ψUϕ◦ψ = f(ϕ)f(ψ)/f(ϕ ◦ ψ).

Indeed, if we write ψ(z) = ψ2η,b(z) = e2iη(z − b)(1− b̄z)−1 and ϕ is as above, then

ϕ ◦ ψ(z) = e2i(θ+η)(1 + b̄ae−2iη)(1 + bāe2iη)−1(z − d)(1− d̄z)−1,

and so f(ϕ ◦ ψ) = ei(θ+η)[(1 + b̄ae−2iη)(1 + bāe2iη)−1]1/2, and

f(ϕ)f(ψ)/f(ϕ ◦ ψ) = eiθeiηe−i(θ+η)[(1 + bāe2iη)(1 + b̄ae−2iη)−1]1/2

= [(1 + bāe2iη)2|1 + bāe2iη|−2]1/2

= (1 + bāe2iη)|1 + bāe2iη|−1

= U∗ϕU
∗
ψUϕ◦ψ.

by the last step in the proof of the theorem. The function f is not continuous
on the group Möb(ID) and we cannot infer that that the map ϕ → f(ϕ)−1Uϕ is a
linear representation.

However, the map V : SU(1, 1) → U(M⊥) defined by

V (g) = V (eiθ, a) = eiθU ◦ q(eiθ, a) = eiθUϕ2θ,a
,

where q is the quotient map (see 1.1); is a linear (anti)representation of SU(1, 1).
Note that

V (g) = j(g, ·)Rg, where Rgf = f ◦ ϕg,

see 1.2.
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How does the representation V decompose in terms of the known irreducible
representations of SU(1, 1)? When both the defect indices of the operator T are
one, we can show that the associated representation V is unitarily equivalent to
the direct sum of two copies of the discrete series representation of SU(1, 1) corre-
sponding to the Hardy space.
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