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Abstract—This paper presents a self-organized genetic algo-
rithm-hased rule generation (SOGARG) method for fuzzy logic
controllers. Itis a three-stage hierarchical scheme that does not re-
quire any expert knowledge and input-output data, The first stage
selects rules required to control the system in the vicinity of the set
point. The second stage starts with the rules resulted from the first
stage and extends its span of operation to the entire input space.
Thus, the second stage ends up with a rulebase that can bring the
system to its set point from almost all initial states of the input
space. The third stage then refines the rulebase and reduces the
number of rules in the rulebase. The first two stages use the same
fitness function whose aim is only to acquire the controllability,
but the last stage uses a different one, which attempts to optimize
hoth the settling time and number of rules without compromising
the controllability of the system. The mutation operations used in
different stages are chosen to be different to make them consistent
with the goals of different stages. The effectiveness of SOGARG is
demonstrated using two control problems: the inverted pendulum
and the truck back. For the inverted pendulum, rule sets contain
only 16.6 rules on average, which is about 4.8% of all possible rules
and it takes about 35 steps to control the system over the entire
input space with an average integral time absolute error (ITAE)
of L1019, For the truck back, we get on average 23 (6.7%) rules,
and for this the average time steps and the average ITAE are,
respectively, 40 and 71.42. SOGARG is found to be not sensitive to
the changes in the parameters of the genetic algorithms and to the
changes in the system parameters. To demonstrate the superiority
of our method, we compare our results with that of Lim & al,
1996 and Chan e al., 2000,

Index Terms—Controllability, fuzzy controllers, genetic algo-
rithm (G A}, robustness, self-organizing.

L. INTRODUCTION

UZZY LOGIC provides an effective means 1o capture the
F approximate, inexact nature of the real world. As systems
become more and more complex, it becomes more difficult to
descnibe them by precise mathematical models. Fuzey logie can
descnbe such complex systems with lingustic rules [1T-[3].
One of the most imponant applications of fuzzy logic is in con-
troller design [5]-[10]. Fuzey logic controllers (FLCs) convert
the linguistic control srategy into an automatic control strategy.
Experience shows that FLC yields results sometimes superior 1o
those obtamed by conventional control algonthms.

Successful design of a mlebased fuzzy control system de-
pends on several factors such as choice of the rule set, mem-
bership functions, inference mechanism, and the defuzzification
strategy. OF these factors, selection of an appropriate rule set is
more difficult because it is a computationally expensive combi-
natorial optimization problem. Sometimes for fuzzy controllers,
rules are derived from human experts who have acquired ther
knowledge through experience. However, experts may not al-
ways be availlable; even when available extracuon of an appro-
priate set of rules from the experts may be tedious, time con-
suming, and process specific. Thus, extraction of an appropriate
set of rules or selection of an optimal or suboptimal set of rules
from the set of all possible rles is an important and an essential
step toward the design of any successful FLC.

There have been several attempts both under supervised and
self-organized paradigms woward obtaining a good rulebase.
Probably the first attempt to design the self-organizing fuzey
controller 15 due to Mamdam and his coworkers [4], [3]. The
self-organizing controller (SOC) has o perform two tasks
simultaneously: 1) o observe the environment while issuing
the appropriate control actions and 2) to use the results of these
control actions w0 improve them, e, W leam from them. In
order to improve the control strategy, its performance is 1o be
assessed. In Mamdani”s approach, the performance 15 measured
by the deviation of the actual response from the desired ones
{obtained from a control engineer or an expert operator). This is
expressed as a variable whose value gives a rough indication of
the magmtude of the desired comections required at the outpul.
1t is then translated into input corrections or reinforcements Lo
the process. This 1s called credit assignment. Some Knowledge
of the process order and dead times 15 vsed o dentuly which
past control outputs are responsible for the current poor perdor-
mance, and these are used w define the comrection procedure.
This controller can modify a predefined set of rules, or it can
start with no rules at all and leam 1ts control policy as il goes.

Neural networks [12]-[19] and genetic algorithms (GAS)
[26]-[51] have been used by severml researchers for rule
generation. The rukebase tuning has been attempted primanly
in two ways: through tuning of membership funcions of a
given rule set and/or through selection of an “optimal™ subset
of rules from all possible rules. With increase in the number of
input variables, the possible set of fuzzy rules increases rapidly.
For instance, if each variable (both input and ouput) has p
fuzey subsets, then for a fuzey logic controller with o inputs
and one output, the total number of possible rules is p* ' of
these at most a subsel of @4 rules could be consistent. In our
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discussion, a rulebase with p rules will be called an exhaustive
nilebase while a mlebase with rules fewer than 4 will be
called a reduced rulebase. 11 is not an easy sk to determine a
small subset of rules from the set of all possible rulebases that
would be suitable for controlling the process.

In this paper, we propose a method (SOGARG) wo find an “op-
tmal” rule set using genetic algorithms. It is a self-organized
process, Le., it does not require any human expernt or explicit
training data. The fitness function is very simple which tries o
ensure that the controller operates over the entire inpul space
with a good settling time and less number of rules in the rule
sel. There are three stages in the process of finding the optimal
rule set. The first stage (Stage 1) yields a set of rules, which can
control the system from any initial position near the set point and
the second stage (Stage 2) enhances andfor modifies this rule set
with a view Lo ensuring the controllability of the system from
any initial position in the input space. The third stage ( Stage 3)
prunes and tunes the rule set prodoced by the previous stage. To
demonstrate the effectiveness and superionity of SOGARG, we
have implemented the inverted pendulum and truck-back con-
trol problems and compared our results with those of Lim et al.
[34] and Chan er al. [42].

The rest of the paper is organized as follows. Section 11
contains a preliminary  discussion on genetic fuzey sys-
tems. Section 11 gives the philosophy and the architecture
of SOGARG and Section IV describes how o implement
SOGARG. Iis performance evaluation along with sensitivity
analysis 15 done in Section V. Section VI compares it with other
methods. We end our report with conclusions i Section VIIL

II. GENETIC FUZZY SYSTEMS: A BRIEF REVIEW

Genetic algorithms (GAs) [20] are a probabilistic heuristic
search process based on concepts of natural genelic systems.
They are highly parallel and believed to be robust i searching
global optimal solutions of complex optimization problems.
They recombine structural information to locate new points in
the search space with expected improved pedformance.

As fuzey control systems are highly nonlinear with many
input and output variables, GAs [20]-[23] are ofien used to
optimize the control rules. Karr [26] applied GAs for learning
the membership functions of fuzzy controllers. Considering
isosceles tdangles for the membership functions, GA, with
conventional binary coding, was vsed o move and expand or
shrink the base of each triangle. Kar used the fitness function
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where w and & are the linear displace ment of the cart and angular
displacement of the pole, respectively, of acan-pole system; and
iy and ey are constants. Kam used four different inital con-
ditions {case l-case 4) for tuning the membership functions.
Clearly, the performance of the system can be strongly influ-
enced by the choice of the weights ) and s, Moreover, use of
just four initial conditions may not result in a good set of mem-
bership functions to ensure the controllability of the system over
the entire mmput domain.

Thrift [28] described the design of a two input-one output
fuzey controller for centering a can-pole system. The alleles in
the chromosome represented fuzey sets on the output variable.
The length of a chromosome was equal to the wotal number of
combinations of input fuzzy sets. The fitness of an individual
chromosome was measured by 500 7, where °f was the av-
erage lime steps required by the controller to be sufficiently
close to the set point. Thrift used odinary two point crossover
operation. The mutation operation could alter the allele value 1o
its immediate upper level or immediate lower kevel orto a blank
code. A blank code indicated existence of no rule corresponding
to that combination of input fuzzy sets.

Momura ef al. [29] also vsed a GA o determine both the mem-
bership functions and an optimal set of rles for a single-input-
single-output nonlingar system. For a single-input system the
number of possible consistent mles is equal to the number of lin-
guistic values defined on the input linguistic variable. Homaifar
and McCormick [33] pointed out that the method may suffer
from the constraint that the end points of a given fuzey set are
always located at the peaks of adjacent fuzzy sels.

Park et af [31] first showed that a new fuzzy reasoning model
( NFRM) controller can outperform the conventional fuzzy rea-
soning model (FRM) controller. To illustrate an application of
NFRM toa de series motor, they used two expert provided fuzey
relation matrices. Then, they showed that the performance of a
NFRM controller could be enhanced using GA-based leaming
to derive optimal fuzzy relation matrices and fuzzy membership
functions. The evaluation function used in GA was
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where n,; is the acmal speed for cument 4, n,,; is the cor-
responding GA twned NFREM-produced value, and N is the
number of discretization intervals of the speed. They demon-
strated that if domain knowledge is used in the initialization
procedure, it is exploited by the GA leading 1o faster conver-
gence and better rulebase.

Herrera et al. [32] proposed a genetic algonthm-based tuning
method for the parameters of membership functions used to de-
fine fuzzy control rules. This method relied on a set of input-
output raining data and minimized a squared-error function de-
fined in terms of the training data.

Homaifar and McCormick [ 33 ] presented a method for simul-
taneous design of membership functions and the rule set using
genetic algonthms. A GA has been used o determine the conse-
quent fuzey set of each possible rule and to tune the base lengths
of the antecedent fuzey sets. The peaks for the antecedent fuzzy
sets and the definitions of the consequent fuzzy sets were kept
unaltered. The information aboul the rule set and membership
functions were encoded into a single chromosome. The compu-
tation of fimess was divided into two stages, an evolution stage
(which lasted 30 generations) and a refinement stage. In the evo-
lution stage, the GA was used o lind sansfactory controllers.
In the refinement stage, they atempted 10 minimize the time
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needed to bring the system Lo the set point. The fitness com-
putation wias done using a complex algorithm. This method did
not need an expen’s knowledge or trainmg data and the number
of rules in a chromosome was kept fixed o the number of all
possible combinations of the input linguistic values, ie., they
looked for an exhaustive rulebase.

Lim et al. [34] described a GA-based method for learning
fuzzy rules. It required no prior knowledge about the system’s
behavior. Given a set of linguistic values on the input and output
varables, they derived a rle set having » fuzzy control rules
through an adaptive lkeaming, where » is a prespecified number.
To satisfy the constraint that each chromosome must contain ex-
actly v rules they used a special type of lwo-poinl crossover
operator called positioned-aligned crossover (PAX). They also
used a modification of the mutation operator due to r-rule con-
strainl. IF mutation results inos 4+ L rules, the value of a ran-
domly chosen allele will be nullified. Similady, if the mutation
produces a chromosome with n — | rules, a null allele will be
altered. They used the inverted pendulum control problem for
simulation and the fimess function used was
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Here, o denotes the total number of different initial conditions
used for testing the chromosome. For the sth initial condition,
fa; denotes the number of time steps that the pole retains itself
within 1 from the vertical position and T; denotes the number
of time steps elapsed before the pole falls or 75, is equal to a
prespecified value of TV 200, the maximum number of time
steps the controller is allowed to run. The fimess value of all
chromosomes in the population are scaled using the following
linear scaling function to avoid the effect of super individuals
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where f and & are the fitness values before and after scaling,
respectively. Suitable values of &y and ks are chosen so that
Lo = Laveand P = 8¢ 3 8, where [, is the average
fitness before scaling, £, Finees and £l ave, respectively,
the average, maximum and minimum fitness after scaling and
& is the scaling factor.

Renhou et al. [36] proposed a method of optimizing different
control parameters of a multi-input and muli-output fuzey con-
trol system based on GAL They vsed the Takagi—Sugeno model
[11]. [27]
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where r, is the finng strength of the ith rule computed using
the “min™ operation. They employed GA o select the optimal

values of the consequent as well as antecedent membership pa-
rameters. The fitness function used is
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where i, and yi are the output and the desired output (central
point) of the process and & is the number of samples. They
used a double myverted pendulum with six hinguistie variables
each having only two linguistic values. The number of rules in
the rulebase remains the same as only the parameters of the rule
sel are optimized.

Carse et al. [35] presented a GA-based approach o design
fuzey controllers called Pinsburgh-style fuzey classifier system
(P-FCS1) based on the Pittsburgh model of leaming classifier
systems [24], [25]. Each rule #,., for an w-input sn-output
system 15 exprossed as
fo il e is Xyt and g s Aae) .o and (e, is X )
then {4 is ¥in) and (ye 4 Yo ) o0 and (g, 18 Y00
where Ay, and Y5, are symmetric triangular fuzzy sets defined
on .y and gy Xy, is defined by the center and width G, 26,0i0)
and similardy 17 is defined by the center and width (ge:e, Yaie ).
The system leams both fuzzy rules and membership functions
and they are encoded in a chromosome as meal numbers. The
number of mles in each rule set is allowed to vary under the
action of different operators. They introduced a new crossover
operator, which tries to preserve the epistatical linkage between
genes representing rules with overapping fuzzy sets.

Genetic algonthm s also used by Wong and Fan [39] 1o auto-
matically generale the control rules and membership functions
of a fuzzy logic controller. An exhaustive rulebase with v input
varibles and one output variable can be expressed as
Riji..oojnlvifeyis Ay yand oo and e,

15 ;'-l_fu:_..“j. then s {:J_Ir.j_.ll J_:\.'

where «, and 1¢ stand for input and output linguistic variables.
Ay isthe yth fuzezy set of the sth input linguistic variable and
flﬂ - dp ) is an index function that decides a linguistic value
of w. Sl oo it gt + oo 4 ek where {0 denotes
the integer nearest to b, Each chromosome contains the encoded
paramelers v, g, e, £, 2 and 12 The control rulebase 1s
decided by the parameters o;; and the membership functions
are decided by the parameters ;. £, £ and s Here, m;,
I, and s; are the number, length of subdivisions, and width
of fuzzy sets of ¢th input variable, and m and {2 are the number
and length of fuzzy sets of the output vadable. The performance
evaluations (nse ume, overshool, and integral absolule error) are
considered in their fitness function. Modeling of the index of
output linguistic value of a rule using such a linear combination
of the indices of the fuzey sets used in the antecedent clause of
the rule is not meaningful. This makes the leaming sk unnec-
essarily complex and may not result n good solutions.

Wong and Her [38] proposed a method based on GA that can
climinate unnecessary fuzey sets (linguistic values) to obtain a
fuzey system with fewer rules. But they looked for an exhaustive
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rubebase. The rule structure i1s the same as that described in [ 39,
They vsed assymetric triangular membership functions. Each
chromosome contained pammeters o describe both input and
output membership functions. The fitness function considered
the number of rules, as well as the performance of the rulebase.

Bobbin and Yao [4]1] proposed an evolutionary algorithm o
discover good rule structures and also the rule parameters for
controlling a cart-pole system. Unlike conventional approaches
authors here do not start with any expent defined partition of
the state space. A novel degenerate tree rule structure 15 used
which not only allows us o evolve useful rales but also find a
good discrimination of the state space. Each gene here repre-
sents a simple rule. These rules (genes) are combined using a
complex tree-like structure, where each rule to the right refines
the rule to the keft. The rules are linked in such a manner that
each member of the population defines a complete rule system
giving a complete solution to the problem. In addition o simple
mutation operator, which adds or deletes rules, topological mu-
tations, which modify the order in which rules are considered
are also used here.

An optimized fuzzy logic controller (OFLC) is also produced
by Chan et af [42] using GA. They made some modifications
on simple genetic algorithm o improve its performance. The
rulebase may be initialized with an expert specified suboptimal
one o speed up the convergence. They used symmetric rule ta-
bles, so the first half of the sting is mirrored to the other half
after crossover and mutation, which are done only on the first
half. The fitness function is 171 4+ P'I'A K] where ITAE is the
mtegral tme absolute emor.

In this context, itmay be worth mentioning a few other works
on reduction and/or selection of rules by GAS [45-[49] because
Stage 3 of SOGARG also has the same objective. Ishibuchi er al.
[45] formulated a GA-based rule selection method for classifi-
cation problems with two objectuves: o maximize the number of
correc iy classified training patterns and w0 minimize the number
of selected rules. The fitness value of a rule set & is defined as

Fisl= W0l NOPE Wae |5
where Wipp and Wy are constant positive weights assigned
to the two objectives NP, the number of correctly clas-
sifiecd training patterns and |5], the number of the rules in &
They also derived a set of nondominated solutions employing
different values 1o these weights.

In the rule reduction method proposed by Krone er al. [46],
the number of rules and the classification error were consid-
ered in the fitness function. To cope with the problems that have
high dimensional search spaces, a slightly higher classification
error was accepted in favor of a further rule reduction. To pre-
serve the number of covered data sets, the fitness is multiplied
with a penalty factor (related w the data points not covered by
the rule set). Instead of conventional top-down approach they
used bottom-up mitialization, Le., they staned with a popula-
tion having a few rules. In such an approach, the evaluation
15 expected o take less computing tme due w a low average
number of rules in & chromosome. But this approach cannot
be used in place of Stage 3 of SOGARG. Chin and Qim [47]
used GAs 1o search for an optimal subset of rules from a given

rulebase. They showed that the reconstructed controller has a
better performance than the ornginal one. Time-weighted inte-
eral of squared errors was used to measure the performance,
and the overshool and nse time were used o show the com-
bined pedormance index. Cordon and Herrera [48] presented an
evolutionary process for controllers. This method also has three
slages: generation, simplification, and wning. But it requires
mput-output data set making it a supervised one. Our method 1s
an unsupervised one. Roubos and Setnes [49] proposed a four
stage scheme for system modeling: 1) generation of an initial
rulebase by fuzzy clustering of sampled data; 2) rule reduction
by pivoted-QR decomposition); 3) rulebase simplification by
finding similar fuzzy sets; and 4) constrained real coded genetic
optimization Lo exploil redundancy. This method s also asuper-
vised one and 15 not comparable o our scheme.

III. THE PHILOSOPHY AND THE ARCHITECTURE OF SOGARG

The proposed method, SOGARG, selects, in a self-organized
manner, an oplimal subset of rules from all possible rules
for a furzy controller, which can bring the system o its set
point within a short tme keeping i view that the controller
will operate over the entire input space. SOGARG 1s rotally
unsupervised and no input-output data is required. The self-or-
zanizing process attempts o achieve the following: 1) o reduce
the number of mles; 2) o reduce the average time to reach the
sel pomt (setthing ume); 3) to ensure that the controller operates
over the entire input space; and 4) to eliminate the necessity of
training data or expert’s knowledge.

Let us divide the input space mto two regions, the vicimty
of the set point (VS) and the rest. Let us call the entire input
space VB, e, W3 ¢ V. Whatever is the initial condition of
the controller, the system has to pass through VS o reach the set
point. Therefore, it is very important o gel a good set of rules
for controlling the system in VS, In the proposed scheme, we
first try o extract rules for VS and then for VB. A pood set of
rules for VS is expected w expedite appropriate mule generation
for VB, because, when the initial condition of the controller 1s
away from the set point, the system can be brought into VS with
a few steps in many ways. Once it is inside VS, the system will
be controlled by the rules for VS,

The first stage selects rules for VS, We set the initial condi-
tions of the system at different positions in V5. The rule genera-
tion is done by genetic algorithms using a fitness function which
is proportional 1o the number of initial conditions for which the
system 1s controllable. Let us call the rules, thus selected, as VS
rules (VSR). Stage 1 s notinterested in the rules that are respon-
sible for conrolling when the system is outside the area VS,

In the second stage, we consider initial conditions near the
boundary of nput space and attempt o enhance and modily
VSR taking VSR as input and again using GAs in a self-orga-
nized manner so that we can attain a controllable system for
all initial conditions near the boundary. 1f we ke a reasonable
number of initial conditions near the boundary, then the trajec-
tories followed by the controller are expected o span the enbire
mput space, VB, Hence, the rule set, thus oblamed, 15 expected
to have an adequate subset of rules 1o drive the system to the set
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Fig. 1. Schematic descrption of SOGARG.
point from any initial conditions in VB. Let us call this rule set
obtained after the second stage as VBR.

The output of the second stage, the rule set VBR, may contain
some redundant and unnecessary rules. The third stage prunes
and tunes the rule set VBR by screening oul the unnecessary
and redundant rules. 1t also modifies the rules, if necessary, 1o
improve the performance of the system. The rule set pruning
mechanism is designed, again using GAs, in such a manner that
it reduces the number of rules and the settling ime simultane-
ously. This is achieved using a fitness function different from
the one used 1o the previous two stages. Afer the thind stage,
only the relevant rules remain in the rule set, which enables the
controller o provide a better performance. There may be several
rulebases resulting in similar pedformance. SOGARG, being a
stochastic procedure, can lead o different rulebases in different
runs with similar pedformance.

A schematic diagram of the proposed algorithm is shown in
the Fig. 1, where the order of execution of different stages is very
natural and logical. The hierarchical architecture of SOGARG
is easy to interpret. SOGARG allows us to improve and refine
the rulebase stage by stage.

The main advantage of SOGARG lies in its simplicity, close-
ness Lo human common sensefintwition and the fact that it does
nol require any data. Since, it has an imcremental archilecture,
the system design tme (computation tme) is expected w be
much less than other GA-based approaches. This 15 indeed
reflected by our simulation results. Different fitness functions
and mutation operations that are vsed in different stages of
SOGARG are consistent with the goal of the comesponding
stages.

We emphasize on automatic generation of a small rulebase
without compromising the performance. The goodness of
a fuzey rulebased system not only depends on the number
of rules in the rulebase but also on the cooperation between
them. Specially, Stage 3 takes care more in this regard. It
resolves the conflicts, if they exist, among the rules by deleting
and/or changing some rules appropriately. If necessary, it also
inserts rules o improve the pedormance. Moreover, the lower
the number of mles, the more descriptivefinterpretable the
syslem 1s.

IV, IMPLEMENTATION OF SOGARG
A. Chromosome Representation

A chromosome represents a candidate solution of the
problem, ie., a rule set for the fuzzy logic controller. The
number of alleles (containing nteger values) in a chromosome
15 equal o the number of distinguished antecedent clauses
in the rules. Suppose, there are two antecedent variables x
and s and one conseguent variable, say y. Let the number
of term sets corresponding 0wy, xa, and y be e, ow, and £,
respectively. Then, there are w x  alleles in a chromosome,
one for every possible combination of input fuzzy sets associ-
ated with the input variables 3+ and . Each of these . = n
antecedent clavses 1s represented by a unique position in every
chromosome. For each antecedent clause there are ! possible
consequents corresponding 1o { outpul fuzey sets, which make
the total number of possible fuzey rules v 3w x 1 The allele
value at each location in a chromosome contains either the
label of an output linguistic value to be used for a given rule
or zero. In other words, if a; represents the allele at position ¢,
its nonzero value gives the consequent part (ie., the label of
the comesponding fuzey set on the oulput variable ) of the
rule which corresponds o the «th location of the chromosome.
A chromosome containing an allele value zermo at the ith
position (i.e., v; = 1) indicates that the rule set represented
by the chromosome has not selected any rule with the ith
antecedent clavse. Hence, a chromosome can be represented as
c= el =wr =01, dandi= 1.2, ,mexnl.

B. Initial Population

The parameters mequired for the minalization of population
are population size and lower limit (g1 and the upper limit {£})
on the number of rules to be selected imtally in a chromosome.
For each chromosome, a random number 15 generated between
i and £} which gives the initial number of rules in that chromo-
some. Positions of these rules in the chromosome are selected
randomly. The allele value for each of these rules is also selected
randomly from the set {1,2,... 1}, Thus, we are considering
all possible fuzzy rules to get the initial population. The allele
value in other positions are set o zero. Initally, the number of
rules is restricted o 40%-50% of m = .

We do not restnet the GA o dernive a rule set having the
number of rules only between g and €}, 1If we do, ¢ and 2 will be
treated as construnts in the crossover and mutation operations
and will make the process more complex. Instead, we allow the
number of rules in the rule set to vary, such that the variable
length rule set may be able o grow or shonk according 1o the
need of problem.

The population size 3 15 also an important parameter. A
big population provides divessity of the chromosomes, but
the process may take a long tme o converge. On the other
hand, with a wery small population siee all chromosomes
may become identical within a few generations. Therefore,
the population size 15 o be judiciously chosen depending on
the problem at hand. In thes iovestigation, we ecommend
a population size p o= b However, we shall see later that
changing the population siee by 25% on either side does not
alter the performance of the final rulebase. Stage 2 operates on
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the terminal population of Stage 1, while the initial population
for the third stge consists of the 5 best chromosomes in the
termingl population of Stage 2. SOGARG also has a provision
to incorporate prior knowledge, if available, at the time of
initialization of population in Stage 1. This makes the process
faster.

C. Reproduction, Selection, and Crossover

Roulette wheel selection has been vsed o reproduce a mating
pool of size 1.5 times the initial population size p. We increase
the population siee to 1.5 times the ongmal size poin order W in-
crease the diversity of the population. Let the size of the mating
pool be denoted by <. The crossover and mutation operations
are done on this population of size ». We select 272 pairs of
chromosomes randomly from the mating pool and each pair is
then crossed over o generate a new pair of chromosomes. The
random selection of pairsis done with replacement. So, the same
string may involve in crossover operation more than once. One
point crossover operaton 15 done choosing the crossover point
randomly. So, after crossover, & new pool of size & is generated
for mutation operation. After mutation we select the bestp — |
strings from the current pool and the best siring of the previous
population for the next eycle. We bring the best chromosome of
the previous population following the Elitist strategy [20]. So,
the size of the new generation is again p.

D, Mutanon

We have used three mutation schemes for the three stages of
the algorithm, Scheme 1 for Swage 1, Scheme 11 for Stage 2, and
Scheme 11 for Stage 3. The mutation in each chromosome re-
sults in a modified chromosome if and only if the filness is in-
creased due o this operation, otherwise, the previous chromo-
some is restored. This is a kind of induced or divecred mutation
[22], [23].

Scheme It

1) randomly selects a position of zero alkele value and sets it

o a randomly selected value in {12, ..., 1}
2) mandomly selects another position of nonzero allele value
and changes it toa value in [0, 1,..., 1}

Scheme 11:

1y mandomly selects a posinon of allele value zem and

changes to a randomly selected valuein 11,2, .. ..};
2) mndomly selects a position of nonzero allele value and
SELS 1L Lo zero.

Scheme 111:

1) randomly selects a position of nonzero allele value and
SELS 1L Lo zero.

The mutation operation in Scheme | consists of insertion of a
rule [step 1)] and one deletion or modification or no change of
rule [step 2)]. As the probability of deletion of arule (1718 137,
i.e., change from a nonzero value o zero, s very low, minimiza-
tion of the number of rules is not given much importance in this
stage. The sole aim of this stage is 1o obtain a set of rules (may
even be with some redundant rules) that can stabilize the system
from any position near the set point. The major restriction on the

number of rules for this stage is imposed at the time of the ini-
tialization of population.

In Scheme 11 of the mutation operation, the increase in the
number of rules due o insertion of a rule [step 1)] is compen-
sated by the deletion of a rule [step 2)]. Hence, the change in the
number of rules in a chromosome oceurs only during crossover.
Since the nonezero allele values are randomly disinbuted over a
chromosome, the crossover opermtion 15 nol éxpected o change
much the number of rules in a chromosome. This conforms 1o
our expencence also.

The function of the mutation operation in Stage 3, ie.,
Scheme 11 is o remove the redundant rules from the rule set
selected in Stage 2 without disturbing the controllability of
the rule set represented by the chromosomes (we use the e
controllability not inits strict mathematical sense but o indicate
the capability of the system o reach the set point within a short
time from any initial condition over its operating domain). We
emphasize here that the directed mutation proposed does not
disturb the evolutionary characteristic of the GA.

E. Fitness Function

Choosing an appropriate fitness function is the most impor-
tant aspect of applying genetic algorithms o solve any problem.
Genetic algorithms require the problem o be transformed in the
form of optimizing a fitness function or an objective function.
The simplicity of the objective function (finess function) is one
of the most imporant features of our algorithm. As mentioned
carlier we want o minimize the number of rules, as well as the
tme required Lo stabilize.

We run the controller for different initial conditions (1.¢., with
different initial states). If the system attains the set point within
a predetermined number of steps (¥7), we call the comresponding
mitial state as a “controllable state” Suppose we run the con-
troller for & inital conditions. Define a variable oy, such that

ce; =1, if the «th initial condition 15 o
controllable state

N, otherwise.
Our fimess function for Stage | and Stage 2 is then defined as
i

——
E iy

=1

fim

where H s the rule set associated with the chromosome under
consideration.

The fitness increases when the controller can reach the set
point for more initial positions. A higher valoe of the fitness
function of the rule set represents its superiority. For Stage 1,
the initial positions are selected from VS while for Stage 2, we
consider positions near the boundary of VB,

In Stage 1, the proposed scheme does nol pay any atlention Lo
the rules in the area outside the VS, The Stage 2 of the proposed
algorithm modifies and/or enhances VSR to generate VBR. The
third stage refines VBR with a view 1o achieving three things:
L'y the capability of the system o attain the set point with ni-
tial conditions over the entire input domain, 2) reduction of the
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average setlling ume of the system, and 3) minimization of the
number of rules in the rule set. In order to realize this, we pro-
pose the following fitness function:
o Wy
fiR)=denmnn | — | =

L I | R

where 4 1s the number of controllable states, ., is the average
settling time, | 7] is the number of rules in ¥, and g, wr, and
are three nonnegative constants representing the relative impor-
tance of the three components of the fimess function. Usually,
ay should be much greater than wy and @0, as controllability
of the system is more important than settling time and number
of rules. However, the values of the weights can be varied de-
pending on the user’s preferences or as required for a partic-
ular problem. If the designer wants 1o give more importance on
the number of rukes than on the average settling ume, then .
should be greater than ez, In the present case, we have assigned
more importance 1o the average setthing tme and, hence, @, 15
greater than wi, . I there are more than one rule set which can
control the system for the same number of initial positions (the
same value of v ), then the fitness function will prefer the rule
sel with the lowest average settling time. Similarly, if there are
more than one rule set with the same value of »y, and ¢, then
GA will bias the solution toward the rule set with the mmimum
number of rules.

E Choice of Initial States for Computing Fitness

Omne of our critena 1 that the controller must be able o op-
erate over the entire input space. To satisfy this criterion we
should use a sufficient number of initial states to compute the
fitness of an individual chromosome. The more the number of
the initial states, the more the degree of reliability of the ex-
tracted rule set. However, this will increase the design time of
the controller. So, choice of initial states is an important factor
for the proposed approach.

In the proposed method, the number of inital states wo be used
at different stages of the procedure depends on the domains and
the number of fuzzy sels associated with the input variables.
For the first stage, the initial positions should be chosen from a
small domain around the set pont (1.e,VS) becavse our aim 1s
to find rules, which are necessary to balance from positions near
the set point. When the second stage begins, we already have a
zood set of rules, VSR, obtained from Stage 1, which can bring
the system from VS 1o the set point. So, for the second stage,
it is sufficient to consider the inital states from the boundary
of the input space. These two stages together will give a high
confidence in the reliability of the controller to operate over the
enlire mpul space.

The third and the final stage requires initial states distributed
over the entire input space (VB) becaose 1t tunes and prunes the
rule set resulted from the previous stage (Stage 2) with respect
to the number of rules and average settling ume. The number
of initial states in this stage is the sum of those used in the pre-
vious stages and a few more initial states from the inpul space
in between V3 and the boundary. The increase in the number of
initial states hardly changes the run time of the process because
of its very small population size.

V. PERFORMANCE EVALUATION OF SOGARG

The inverted pendulum and truck-back control systems are
used o illustrate the effectiveness of SOGARG. These are two
well-modeled control problems commonly used for demonstra-
tion of fuzzy control algorithms and development tools.

The inverted pendulum [54] s a pole of mass v supported
through a hinge by acan of mass A, where the pole motion is
constrained o be on a vertical plane and the can motion 1s con-
sirained 1o be along a frictionless track in the horizontal X -di-
rection. 10 is assumed that the pendulum mass 15 concentrated at
the end of the rod and the rod is mass less,

In the simulation, the original nonlinear system of equations
[54] is linearized for small pole angle . To simulate the fuzey
controller for the inverted pendulum system, following linear
equation is used in a four-step Runge-kutta method 1o get the
next state of the system. X = AX + DBuw. where X and «
are, respectively, state vector and fuzzy control signal. A and
I} are two constant matrices. For simplicity, we have ignored
the cart positioning part and constramed ourselves only 1o pole
balancing.

The inverted pendulum s an unstable system in that it may
fall over at any dme unless a suitable control force is applied.
Omly when the cart is at rest, the pole 1s balanced in the vertical
position, and the force w on the can is zero, the system is stable.
The objective of the control problem is to apply forces o the
cart until the pole is balanced in the vertical position (i.e., & 1
and § = 0). Here, # is the angular displacement, & is the angular
velocity of the pole, and o is the force applied on the can. & and
il are the mput linguistic vanables and w15 the output linguistic
variable.

The truck-back system [33] consists of a truck located some-
where on a grid Cry-plane) at a given angle & to the horzontal.
Suppose the grid size be 100 x 100, The objective is 1o take the
truck from any inital position (x;, ;. ¢ ) to the location of the
loading dock (= = M, o = M) while making the tuck vertical
to the dock ig
(output) # thatis used tomove the wheels (and in tum the truck)
at every time step. The equations of motion for the truck are

U %3, The controller provides a wrning angle

wf = f
o= | ride and

o= — o

where » is the fixed distance the trock backs at each time sep,
and ¢, wf, and yfoare, respectively, the new truck angle, x-loca-
tion, and y-location. For simplicity, it is assumed that the wuck
is sufficiently far from the loading dock in the i direction so that
the o distance could beignored. Therefore,  and ¢ are the input
linguistic variables and # 1 the output linguistic vanable.

A. Computational Protocols

For both systems, each of the input and output linguistic vari-
ables has seven hinguistic values or fueezy sets: NB, NM, NS,
L, PS5, PM, and PB. We used overdapped isosceles tnangles as
membership functions as shown in Fig. 2. All membership func-
tions have equal base length. This s possibly the most natural
and unbiased choice for the membership functions.
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Fig. 2. Furzy membership functions of the linguistic values associated with
input and output linguistic variables of the inverted pendulum.

TABLE 1
CONSTRAINTS AND RANGES FOR (1) INVERTED PENDULLUM
AND (b TRUCK BACK

Yariahles Walues Ranges
: ; {J.j.n.z. :
o 0Ll Ka
M 2Ry
T 000 see
fi =1%o + ILTH rad
é S LA e b LR rad e
ki —d fo +HIN
{a)
Yarinlles Wanluess Ranpes
i 1.G m
& —i0der fo +Mdeg
I —Gdeg to 4+ 270 eg
T (e bo 10{m
(bl

The control rules are of the form

if {o) is {NB._.. . PB]} and {xsis [NB....,PB]]
then (zis {NB,._..PB}}

where &) and - are the input inguistic variables and z 15 the
output linguistic variable. Hence, the number of all possible
fuzey rules is 313(= 7 7 x V) and thereare 10{= 7 x 7] alleles
in a chromosome. The allele value 15 1 for NB, 2 for NM., and
S0 0.

The valuesof constants and ranges of different linguistic vari-
ables for inverted pendulum and truck-back systems are given
in Table L. For the truck back, the rulebase is not a flat matrix (as
in the case of inverted pendulum), because it is wrapped around
Lo form a eylinder

To simulate the mverted pendulum, we have used 16 mmital
positions for Stage 1 well around the set point (@ = (), 8 = i),
24 ininal positions for Stage 2, selected from near the boundary
of the input space, and 48 positions (16 used in Stage 1 24
used in Stage 2 + 8 new) for Stage 3. These imtal positions
are considered to evaluate the fitness of each chromosome rep-
resenting a rule set. For each of these positions, the controller 1s
simulated for T = 100 time steps. Thus, the maximum fitness
value for Stage 1 could be 16 while that for Stage 2 could be 24,

For the truck-back system, we have taken 11 imtal positions
for Stage 1, 19 for Stage 2, and 42 (11 vsed in Stage 1 + 19

TABLE 11
MITIAL PosITIONS USED 1N [MFFERENT STAGES OF SOGARG
FOR {a) INVERTED PENDULUM AND (b1 TRUCK BACK

Laalial Posizions

Ulagaer 1 C16 pusilioos
o0 0LB, 097 4L -NL0Y.0. )
(000, 0.0)-0.03,- 0 93-5.03,-0.3)
L, 0B TR LG
$0.03,-0.33(0.03,5,31(0.08.0.0]
[ T O D T L
Srage 1 | 21 positions;

018 -LE 008,125 018, DG
(15 - e LS N8, 1
(0,15, 80 018 - LA 0. 18 2.2
0L O T DR LTS
(LTS, LA k- L8
[ ALMH-D AT 0 L -1.K)
(0.12,-1.%70-0.12,1,31(-0,08, 1,83
CL, LIS, TR 12,1 5]

[ poRiciona)
Do, L 0L 0y
I RO R ER ISR AT
‘ [LLI2,-2.200-L2) -+ pusition

=l jn Mtage T oand Staps 2

{a)

Initial Posilions

(11 prsiticus)

(A0 AZ A5 ) 60,43 ) (10,007
(30,900 60,9017 40,135)(50.135)
(B, 1) (7.5 90 ) 2.5,

; (19 positions)

(0,507 25,-907[50,-901(73.-80)
[ 160050 0,0 25,070 50,07
(73000 300,000 0. BE0 25, 180}
{0k 180 73, 1803 100, 130)
(0,90 ] 25, 00 5, %000 110,540
{43 pasitions)
Cl2AA8IT. 5,450 62.5,-45)
{RT.8,-130012.53,2251( 7.5, 223}
(62.5,235) (875,225 12.0,45)
| {125 1E3 ET.6,10)[57.5,150

Stape 1

Stame 2

Stape 3

+ positions uved in Stage 1

| and Sf'age p

{h}

used in Stage 2 + 12 new positions) for Stage 3. For each po-
siion, the controller 15 run for ¥ = 100 ume steps. The mput
positions used for inverted pendulum and truck back are shown
in Table II. The choice of initial positions plays a vital role
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in achieving the controllability of the controller over the input
space. Such choiees are implicit human knowledge incormporated
in the systems.

The constants used in the fitness function are

e = 1wy =00 and . = 0.0

giving more emphasis on the controllability enterion. However,
the weights may be vared depending on vser’s choices or as
required by the system considened.

We used the following parameters for the simulation of GAs:

FPopulation size 40 for Stage |

=30 for Stage 2

=D lor Stage 3,
Mutation rate = | per chmmosome
Crossover rate = 1005

Number of generations 15 — 23 for Stage 1 and Stage 2

=20 for Stage 3.

The number of rmles in the initial population is 15-20) for in-
verted pendulum and 20-25 for truck back.

For the mverted pendulum, the pole 1s considered balanced
if 000 md = # < 0001 rad and (.01 radis = # <
1011 rad/s for five successive steps within 100 time steps. And
for the tuck-back system, the truck is considered controlled if
Mmoo =l Bomoand 3% < i <0 01 for five successive sleps
within 10M) Lime steps.

We generated 13607 = 37 = 37) samples (imtial states) uni-
formly distributed over the product space # % # for the inverted
pendulum and 3636 = 101 x 367 samples (inital states) uni-
formly distributed over the product space » = @ which are used
Lo examine the controllability and performance of the rule sets
extracted by SOGARG.

The simulation terminates if either the maximum number of
generations (For Stage 3) 1s attamed or the Niness attaims a value
close 1o the desired one.

B. Results

Keepmg all computational prowcols the same, we have
implemented SOGARG with several initial populations to find
an optimal rule set. We report here only two typical cases,
Instance-1 and lnstance-2, for inverted pendulum and one case
Instance-3, for the tuck back.

The results are shown in the form of decision tables. Each
table has four subtables: (a) a typical rule set from the initial
population of Stage 1; (b) the rule set obtained by Stage 1;
ic) the rule set obtained by Stage 2; and (d) the final and op-
tmal rule set produced in Stage 3.

1) Results of the Inverted Pendulum: The resuls are shown
in Tables 1 and 1V, each of which has four subtables. The op-
timal rule set obtained finally contains only about 5% of all pos-
sible fuzey rules.

For both Instance-1 and Instance-2, none of the chromosomes
in the inital population of Stage 1 could balance the system
for any of the 16 initial positions. Tables [11ia) and 1V(a) show
two typical mlebases from the initial population of Instance-1

TABLE Il
RULE SETS FOR INSTANCE-1 OF INVERTED PENDULUM. (2] A TYPICAL
RULE SET FrOM THE INITIAL POPULATION OF STAGE 1. {b) RULE SET
OBTANED FROM STAGE 1. {c) RULE SET OBTAINED FROM STAGE 2.
{d) FINAL RULE SET OBTAINED FROM STAGE 3

é
NB | NM N5 | & |PS5|PM|rH
2 |
v [3|oloiofofz2]|0
ST Y T O 2 Y O R A
Ns [o |27 iajolo]|s
g 2 I T A TR 1 O 1 -
P3 Il Il 1 ‘ntn 0 3
PM [0 |1 fo:si0] 4|6
FR | 00 u]n§?|u 206
{a)
i ;
N3 OKM NS |Z|ps|pM | PB
§ :
N [oio|z2|ele]o|o
Ndofe o0 alilojo T
¥ e B[R B Bald
7 (T T B T b |
L T N (S I R S
PM |6t jololol s T
150 I R (I O B O T A
{hi
# v i
| YR NM NS |7 Es ) PM Py
w2 [2{o|2]0 0
NM || laliflo!g |4
M oo talala o ow |
z o2 (0|48 &[0
ps a0t e e v
P 8| 8 pFR: ab e | f
PE |0 |07 07l 0|5
{c)
i
CNBINM NS, 2 | PS|PM|PB
#

N R R R

riod*n wjale|alaqa

. g e | [

O N N N

Pg e o fiio|iie|s
{d)

and Instance-2, respectively, just to illustrate the evolutionary
characteristic of the SOGARG process.
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TABLE IV
RULE SETS FOR INSTANCE-2 OF INVERTED PENDULUM. {a) A TyPICAL
RULE SET FroM THE INITIAL POPULATION OF STAGE 1. (b) RULE SET
OBTAINED FROM STAGE 1. {¢) RULE SET OBTAINED FROM STAGE 2.
{d) FivAL RULE SET OBTAINED FROM STAGE 3
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(d)

In order to determine the effectiveness of the proposed
scheme we have examined each of the 1369 initial conditions

usmg the rule set meported o Table I and Table IV, For
Instance-1, the rule set in Table 11I(a) could balance only in
three cases out of 1369 points. The rule set obtained after
Stage 1 (Table HICh) with 24 rules) can bring the system Lo 1Ls
set point for 1011 cases.

Note that, a proper subset of rules, VSR is capable of bal-
ancmg not only the imibal states i the vicinity of the sel point,
V5, but also a large number of imitial states outside the VS, This
establishes the appropnateness of Stage 1 as a first step of the
proposed method o expedite the whole process.

Stage 2 enhances the rule set resulting in 1369 controllable
states with 25 rules. Comparing the Tables 1I1tb) and HIc), we
find that most of the rules which are responsible for control-
ling the system in VS are present in both the Tables (shown in
bold face), while the rules in Table (k) which are supposed 1o
control the system beyond VS are changed in Table 11Iic). This
observation conforms the objective of Stage 2.

Finally, the refinement phase (Stage 3) further tunes the mle
sel selecting only 18 rukes [Table 1Lid)], which enables the
system 1o reach the set point for all 1369 mital conditions. An
mspection of Table HIic) and HI(d) reveals that Stage 3 deletes
deletesrules. The deleted rules are indicated by asterisks (%) in
Table HId).

Table IV reveals that the case is similar for Instance-2. How-
ever, Table IVic), e, the mule set produced by Stage 2, un-
like the previous case of Instance-1, can bnng the system Lo
its set point for 1341 inital posiions out of 1369, Hence, in
Stage 3, five new rules are added [indicated by double asterisk
i+ 1] besides the deletion [indicated by asterisk (3] of 13 rules
Lo produce the rule set m Table IVid) that can balance for all
1369 points. This demonstrates that SOGARG can evolve o a
small but good set of rules as the process goes through Stage 1,
Stage 2, and Stage 3.

In order to further ascertain the quality of the rules extracted
by SOGARG, we have plotted the forces suggested by the con-
troller afier a fixed number of time steps for each of the 1369
initial positions for the rule sets obtained by different stages of
Instance-1. We call such surfaces as force surfaces. Fig. 3(a) and
(b} depicts the force surfaces for the rule sets (Tables ILib) and
ey, respectively) produced by Stage 1 and Stage 2 alter 50
tme steps. Figs. 4(a), (b), and 5 are the same for the final rule
sel [Table 1I(d)] after 10, 20, and 30 time steps, respectively.

From these fhgures, it s casy o make the following
observations,

1} The rule set obtained from Stage 1 balances the pen-
dulum for the initial positions in the vicinity of the set
point, V5, as well as for some positions outside the VS
in 50 time steps [shown in Fig. 3(a))].

2y The rule sets obtamed from Stage 2 and Stage 3 drive
the pendulum to the equilibrium from all the initial con-
dions spanned over the entire inputl space in 50 and
J0tme steps, respectively (Figs. 3(b) and 5). Although
both rule sets m Tables [I{c) and 1I{d) balance the pen-
dulum from all initial conditions, the number of rules
in the tuned rule set obtamed by Stage 3 18 less than
that obtained by Stage 2. Thus, Stage 3 removes somge
redundant rules from the rule set obtained by Stage 2
without degrading the performance of the controller.
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Fig. 3. Force surfaces after 50 time steps for the mle sets obtained from
{a) Stage 1 and {b) Stage 2.

3y The gradual improvement of the smoothness of force-
surfaces shown in Figs. 4(a), (b), and 5 clearly mndi-
cates that with the passage of time the controller moves
the pendulum gradoally wward the set point and i at-
tains the same only within 30 time steps for all 1369 ini-
tial conditions. Fig. 4(a) shows that for most of the ini-
tial conditions, after 10 sweps, the rulebase in Fig. 30d),
could not brang the system near the sel point, while
Fig. 4ib) indicates that afier 20 time steps the same
rulebase can bnng the pendulum near the equilibrium
for almost all imitial conditions. Finally, Fig. 5 suggests
that for all initial conditions, 30 ume steps are sufficient

for the rulebase o bring the system Lo the set poinl
Table V summarizes the resolts, 1t shows that for Instance-1,
the rule set obtamed after Stage 2 could balance all the 1369
initial positions, whereas, for Instance-2, 1itcan balance for 1341
positions. However, the final rule sets obtamed after Stage 3
can balance the pendulum for all cases. This 1s true for both
Instance-1 and Instance-2. Moreover, the average setthng tme
required with the final rule setis kess than that required by the
rule set obtained after Stage 2. The number of rules in the final
rule set 15 also less than that obtamed after Stage 2. This shows

the importance of the Otness function vsed in Stage 3.

{h)

Fig. 4. Force surface for the rule set obtained from Stage 3 after (a) 10 time
steps (b 2 time steps.
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Fig. 5. Fome surface after 31 time steps with the ruleset obtained from Stage 3,

Studyv of robustness: Now we empincally study the robust-
niess of the controller designed by SOGARG. We applied 25%
perturbation in the system parameter values [, A, and we (rod
length, can mass, and pole mass) of the mverted pendulum. We
compare the response curves of the system without and with
deviation from the orginal value of {, 3 and s in Figs. 6(a),
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TABLE V
PERFORMANCES OF [NFFERENT STAGES OF INSTANCE-1 AND
INSTANCE-2 FOR INVERTED PENDULLUM

Initial | %cage 1 | Stage 2 - Stege 3
e ofrelesl 19 | 2w | um w
A na. of | ’*_._;G...-\. | *‘;_A- .9?. .
Lize stope
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1 M ol i
ladwzemt | 3 1oll [Eine 1305
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arcnanyr 136H
Failore (%31 | 997a | =805 ' o I+
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timae sieps :
A ITAE R Y| PAL | UNAR) a@
& Mr i
bulizoed, o | 13 1341 150
[t
arzaouy 1360 .
Failure (%) %42 | 9520 arH i

XA means ool appliicable

(b}, and (7a), respectively. Fig. 6(a) and (b) reveal that our con-
troller is quite robust with respect to significant changes in £,
A and e, Fig. 7(a) shows that the system can even smooth out
the effect of 530% perturbation in the pole mass nr. We applied
25% and 50% gust loading when the system is being stabled and
near 1o the sel point (6 =000, f 0L002) at time step S0,
The comesponding response curves are shown in Fig. 7(b). To
see the effect of measurement noise we applied Gaussian distur-
bance at every siep of the process. The bandwidth | 3 % o) of
the Gaussian distnbution was taken as 5% and 15% of the total
domain of the respective inpul vanables. The cormesponding re-
sponse curves are shown in Fig. 8(a) and (bl All the curves are
shown only for initial position § = (.18 and § = | & The be-
havior 15 similar for other imibal condinons. Figs. 68 clearly
reveal that the controller for the mverted pendulum problem s
quite robust to the neglected dynamics and noise of the system.

2) Results aof the Truck Back: A typical result of the
truck-back system is shown in Table V1 in the form of a deci-
sion table, having four subtables. The optimal rule set obtained
contains only 20 rules, i.e. about 6% of all possible fuzzy rules.

Table VI{a) shows a typical mle set from the inital popula-
tion of Instance-3 while Table VI(b—(d) are the rulebases, re-
spectively, obtained after the three stages of SOGARG. Ow of
22 rules in Table WIih) 6 rules are deleted, 13 are retained and 3
rukes are modified in Table VI(e). Some (here, ten) new rules, as
expected, are also added in Table V©9ic). Table VIid) retains 19
of the 26 rules, deletes 6 rules [indicated by astensks [““:-[ and
modifies just 1 rule [indicated by bullet (o]].

Table V11 shows the pedomance of rule sets obtamed from
different stages. 1t shows that the rule sets obtained after Stage 2
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Fig. 6. Comparisonof system response curves when (a) mod length{ is changed
by 25% from the oniginal valee and (b)the cart mass AT is changed by 25% from
the original value.

and Stage 3 could balance all 3636 initial positions of the wruck
back. The average settling time required with the final rule set
15 less than that required with the rule set obtaned after Stage 2.
Mote that, the number of mules in the final rule set 15 less than
that obtained after Stage 2.

Study of mbustness: We also studied the robustness of the
controller for the truck-back system. Figo 9a) shows the me-
sponse curves of the truck-back controller for 25% change in
v from the onginal value.

FigsQib) and 10(a) reveal that the system can easily smooth
oul the effect of 25% gust loading applied when the system 15
being stabled at w = 4.9 and ¢ = 57.7¢ at time step 50.
The controller can also stand the changes in & (output) for gust
loading as shown in Fig. 1(b), but Fg. 11a) and (b) shows
that the ruck-back system itseff 15 not so mobust 1© measurement
noise even for just 1.23%. We say this, because around the set
point the oscillabons are almost the same as shownim Fig. 11(a)
and (b) for the rule sets obtained from SOGARG and the stan-
dard one, from which the input-output data were generated. The

initial position considered was ;0 = 15 m and o = —307.
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The behavior for other initial conditions is similar. The response
curves in Figs. 9-11 for the rule set in Table V1Iid) demonstrate
the robustness of the controller to neglected dynamics and noise
of the system.

C. Sensitivity of the Svstem on the Parameters of GA

Let us now see how sensitive 15 the proposed system with
respect o changes in GA parameters: population size, muta-
tion, and crossover rates. We consider these for the inverted pen-
dulum system.

Population Size: I we change the population size by 125%
in Stage 1 and Stage 2, there is no noticeable change in the final
performance. However, the number of generations required (Lo
obtain the maximum fitness) in Stage 1 and Stage 2 vary ac-
cordingly. This s shown in the Table VII. We keep the pop-
ulation size of Stage 3 fixed, because it is comparatively very
small, which is equal to five. If the population size is increased,
the number of generations required in Stage 1 and Stage 2 do
not exceed 20 for any run, and when the population size is de-
creased, seven out of ten runs require more than 20 generations.
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Fig. 8. Comparisons of response curves when bandwidths of measurement

noise are 5% amd 15% of the total domain of (a) & and (b &,

In some cases, the number of rules increased in Stage 1 and
Stage 2, but were compensated in Stage 3. The reason behind
this is that Stage 1 and Stage 2 give importance only on the con-
trollability and noton the number of rules in the rule set. On the
other hand, Stage 3 tries to reduce the number of rules main-
taining the controllability of the system, because the fitness of
Stage 3 depends also on the number of rles.

Crossover: We change the crossover rate from 1005 1o 90%
and 8B0% and the effect on the final results is shown in Table 1X.
In this case, there is also not much change in the performance
of the final rulebase. As expected, a reduction in crossover rate
marginally increases the required number of genembons.

Mutation: Our onginal mutation mle was one per chromo-
some. We change this mutation rate by £20%, i.e., from | to
0.8 and 1.2 per chromosome. The effect of the variation of mu-
Ltation rates on the final results is shown in Table X, Here also,
practically there s no noticeable change in the pedormance of
the final rulebase. There is only a minor change in the required
number of generations in Stage | and Stage 2.

Stopping Criteria: 1n Stage 3 of our proposed method, the
simulation terminates if the maximum number of generations
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TABLE VI
RULE SETS OF INSTANCE-3 oF TRUCK BACK.
(a1 & TYPICAL RULE SET FROM THE INITIAL POPULATION OF STAGE 1.
(b1 RULE SET OBRTAINED FROM STAGE 1. () RULE SET OBTAINED FrOM

TABLE VII
PERFORMANCES OF RULE SETS OBRTANED FROM [NFFERENT STAGES
FOR INSTARCE-3 OF TRUCK BACK

STAGE 2. {d) Final RULE SET OBTAINED FROM STAGE 3
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(d L . . : :
; mitial positions (specified) or the number of generations reaches

a specilied maximum value, For all three stages, we specily a
large value (100) for the maximum number of generations. Inall
our simulations it 15 never attained. Changing the value even by

specified 15 achieved. In Stage 1 and Stage 2, the simulation
stops when the fitness value becomes equal o the number of
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gust loading is applied.

30% does not change the performance as the required number
of generations is always much less than the maximum value.
However, if we reduce the number of generations w a very low
value, the performance is likely to degrade.

V1. CoMPARISONS WITH OTHER METHODS

There have been several atlempts o extract human inter-
pretable rules for the cant-pole system [34], [41]. In Section 11,
we have discussed the methods by Lim et al. [ 34] and by Bobbin
and Yao [41]. Here, we compare the performance of SOGARG
with that of Lim et afl. [ 34] because Lim et al.”s method is mone
similar in spirit with that of SOGARG. In addition, we also
compare our method with the method of Chan et al. [42]. For
a fair comparson, while realizing the methods in [34] and in
[42], we use the same 48 initial positions as used in Stage 3 of
SOGARG [Table 1lia)] for the inverted pendulum. Similady,
the same 42 initial positions shown in Table 1Iib) are used for
the truck-back system.
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Fig. 11, Comparison of system response curves of (a) . and (h) # when 1.25%

measurzment naise is applied both in r and ¢ simultaneous]y,

A. Comparison With the Method of Lim et al {34]

Given fixed domains and symmetric triangular membership
functions for each inpul and output variable, Lim er al. [34]
described a leaming process based on GA o derive I3 fuzey
control rules. We have already described their algorithm briefly
in Section 1. Here are a few more relevant details.

1) The number of rules in the rulebase is Oxed. It can
be viewed as a constraint on the keaming process and
requires at least some knowledge of the underlying
problem complexity, which may not be known a priori.
Modifications of genetic operations such as crossover
and mutation, and other operations such as rule creation
and rule deletion were required in their algorithm to
keep the number of rules in the chromosome fixed.
These modifications may not help the learning process
or improve the quality (with respect to controllability ) of
the rule set.

2) The fitness function of Lim et al. [34] 15

bt — () =L
="
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TABLE VI
EFFECTS OF VARIATIONS 1IN THE POPULATION S1ZE
0N THE SYSTEM PERFORMANCE

pupalistion sie in Stage 1 and 2
cranged b $55 ariginal
increasc | decrease
Mo ofrules | 12 ¢ 183 166
Avg, qs of 3T 4045 35.44
fime shepa ;
Aove, [TAL 0,034 4; 0.1025 0, 1005
Controllabilivy | 1005 | 100% | 100%
Nu. of i
generatinng !
roguired in 13-10 i 15-25 1525
Hlape | wnd 2 _i_ :
TABLE IX

EFFECTS OF VARIATIONS 1N THE CROSSOVER RATE
0N THE SYSTEM PERFORMANCE

CTOSEOVET ol

chianged o | origieal
oo s0% 1005%
N cbaiiles Pirar 183 | l66
Ave mo. of tme steps | 0.7 | 400 | 3544
Ava, TTAE B B XL VR T 11

Cunrailability 15 | 100 wno 10

required in 15-25

|
Mo, ol generaliovos | :

17-30 i 1525
Slape | andd Stage 2 ‘ |

For a test with the ith imital condition, ., denotes the
number of tme steps the pole remains within 1° from the
vertical position and ¥ ; denotes the number of tme steps
elapsed before the pole falls. They used f = 1.6 in their
simulation. We use the same value. For each of these wsts,
the cart-poke system s simulated until the pole falls or the
prespecified value of TP 2000 ime steps is reached.
We implemented Lim et all’s [34] method on our inverted
pendulum. Table XI(a) shows a result of their method having
20 rules, which can only balance 1321 staes among 1369, We
had w relax the balancing conditon mentoned in Section V-A
for Lim et af.’s [34] method, because their rule set 15 not able
Lo drive the cart-pole system o that precision. We considered
the pole balanced, if & < =iL003 for at least five tme steps.
This may be due to the importance of T,; in the fitness func-
tion. Table XIib) shows a comparison of our result with theirs,
averaged over ten runs. We repeated our experiment len Lmes
and the average number of rules found 1 16.6 with an average
ITAE of (.1019, whereas the average ITAE of Lim et al’s [34]
method 15 about 14,52,
We emphasize the fact that Lim et all’s [ 34] algorithm s only
applicable tothe cart-pole system. [ cannot be implemented for
the ruck-back system for comparison purpose.

TABLE X
EFFECTS OF VARIATIONS IN THE MUTATION BATE
0N THE SYSTEM PERFORMANCE

T

metation rale

: clinuged L | origisal
Done o o1a 1
NG ofviles  PivEl 13| WE
Ave ne ol vhoe sieps T 425 © 400 | 35.M
By 14K C0A3 0097 | 00lg

Costrollabitity {57 L0 100 | 100
Mo nf Eengrativngs :

required in SR L

Srage 1 and Stage 2

TABLE X1
{a) A RULE SET ConTamnmg 2 RULES OBTAINED BY THE METHOD
OF Lim er al. [3]. (b) PERFORMANCE COMPARISON OF SOGARG
AND Lim er ol "s METHOD [34], AVERAGED OWER TEN RUNS

ﬁﬂ ! WE|RM O AS[E| PS5 PM. PR
X3 a2l l1]ols| 2 o
__\’_}.I‘ i no| ‘2 fi _.E".h_ﬂﬂ
\[‘1 0 K _.l'!l . * _-l.:ii“ .I}-
7 s ]i]ele]e &
s olo|o|r|o]s o
P 0| o [6|s|o]s o
re a L1 IV TV L R
{a)
| SOGARG | Lim et al.’#4]
A il roles 165 2 [Rxed)
Avg an. of
sime steps 3644 40#
[eonsidering nnly
halanced positiona)
Avg TTAE CI.-.{.E.IIIE? 1452
- -!. . MR
pelanced posicionz 1364 I L31*
aprons 1361
Failiiee (%) 0 ke

T For Limen alls 34] method, Uke balagced
cordition iz taken as & < =0.005 for st leest
I suceessive Licie steps,

(b}

B. Comparivon With the Method of Chan et al. [42]

We brefly discussed Chan er al.”s [42] method in Section 11
The input and outpul fuzey sets are modeled by symmetric and
triangular membership functions. A chromosome looked for an
exhaustive rule set, Le. o ® 1 (= 197 roles in the rule seL
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TABLE XI
(1) A RULE SET GENERATED BY OFLC AFTER 50 GENERATIONS, HAVING
AVERAGE [TALE = (00451 AND AVERAGE TIME STEPS = 45,
{b) PERFORMANCE COMPARISONS OF SOGARG WiTH OFLC,
AVERAGED OVER TEN RUNS FOR INVERTED PENDULLM

T T |
a 1 |
NBE NM | NS |Z|PS|PM|PB
i |
ag | ptta [ elalz bl s
N |1l 22|11 6! 6
ws | 183 |1 l2lsl 23
v | 24 | o lElla Pl §
s | 3 06 |2 lel T 5 7
M | 212 |7 (7|6l 8 ! 7
PRl raE R e e
{1
SOGARG OFLC
Fo. of rules TR

Avg no.of | 3344 | 2352 0 2
tirme sheps

Ave, [IAL

0.10L% | 00535 I 0.0%3

Nu, of
balanced positionz | 1164 1364 1360
anrtirng 1369
Failure (%) i n 1
{hi

The system s assumed o be symmetne and hence the
rulebase is taken as symmetric. So, the second half of a chro-
mosome 15 laken as the mirror image of the first half of that
chromosome with respect o the line of symmetry located at
ilemeth of chromosome — 1772, The mirror image of allele
vitlue NS (3)is PS (3). The index, o, of the fuzzy set representing
the mirror image of a fuzey set with the index 4 is govemed by
the relation, «f  [mwuber of Dy subses (G4 10— 0

Chanetal. [42 ] imtialized the population using arandom gen-
erator andfor used an expert provided rule set. First, a pair of
parents 15 selected, then either the crossover or the mutation op-
eration 15 applied o produce two children. So, 1f the crossover
rate is (1 < ¢x =2 L, then the mutation rate is { L — ). The process
is repeated 1o produce a new population of children of the same
size as that of the ordginal population. To avoid the effect of
super individuals, the maximum fitness of a generation is added
to the fimess value of each chromosome for linearization of fit-
ness values.

Both crossover and mutation are done on the first half of chro-
mosomes. The first hall of a child s then mirrored o the second
hall. Chan et al. [42] used “one step change mutaton scheme,”
which changes a mndomly selected allele value to either its next
or previous value with equal probability. When the allele value
at the site s ong, it will not be decreased, also when itis £, it will
not be mereased further. Although the “one step change muta-
tion scheme™ of Chan et al. [42] can improve local search, itcan
greatly influence the maintenance of population diversity.

TasLe XIII
(1) A RULE SET ConTANING X)) RULES GENERATED BY SOGARG,
Having AVERAGE ITAL = 00232 AND AVERAGE TIME STEPS = 285
FOR INVERTED PENDULLM. {h) A RULE SET GENERATED BY OFLC
AFTER 100 GENERATIONS, HAVING AVERAGE ITAE = 847
AND AVERAGE TME STEPS — 44112 For TRUCK BACK

; NE M*J:Nb‘;z-m IM | B
an |1 [ 1 w220 |0
TR o lo
S I T Y I T
z | w1 s lals| s |0
s o |otalelo]r]e
P |6 | o Talelole |1
re Lo | oo i ."__13 A
{a)
: . .
P\ NB | XM | NS Z|PS|pM PR
. :

NB |64 [alalzl ]
NIRRT
Ns |2 |7 |tizlz 2|2
2 | 6|5 |5i4|3|3 |2
P [ 6| 6 |6 :6; 711 | @
PM 6| 6 [ 7is]lal 51
PR [ 7| 7 |6i5i{514]|32

b}

In the OFLC, steady state without duplicates (SSWOD) [21]
is used 1o select the best fit individuals between the parents and
children for the new generation. If the population size is v,
then the reproduction module will produce & children vsing
mutation and crossover. Next, from the existing population and
their & children. 1.e., from the total 2% individuals, the best fit
population of & individuals is obtained for the next generation.

If none of the new ¥ offspring is selected for the next genera-
tion, then the number of mutations to be done on a chromosome
15 increased by one for the next generation, and the whole pop-
ulation 1s replaced by another randomly generated population,
except for the best stnng, which is kept in the new population.

Inverted Pendulum: A rule sel generated by OFLC afier 50
generations 15 shown in Table X1Ia). Table XI1Ih) compares
the performance of SOGARG and OFLC of Chan er al. [42],
averaged over ten runs. Note that OFLC vsed an exhaustive
rule set, ie., o x w |
take w,. = 001 and 15-20 rules in the initial population as
specified in the Section V-A, the average number of rules in
the rule sets produced by SOGARG 15 only 16.6. In this case
though, the number of rules 15 about 173 of that produced by
OFLC, average ITAE and number of time seps are comparable
to those produced by OFLC. Reducing the weight w, to (L0O7
and mcreasing the number of rules in the mitial population 1o
2025, the average number of rules mn the mule sets produced by
SOGARG 15 increased o 2008, which is stll much less than half

49 rules in every rule set. When we
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TABLE XIV
PERFORMARCE COMPARISON OF SOGARG Witn OFLC,
AVERAGED OWER TEN RUNS FOR TRUCK BACK

[socanc  oFLe
o of rules 23 g9 [fivel)
Avg, o of Cine staps :

[considering only 40 46.7
Laliasscen] pesitione) '

Avg, 'U8E T1.4Y 145

My, wf

balanced positious 6 3636

g AR

beiline [ : 0 Il

of that produced by OFLC. In this case, the average ITAE and
average number of time steps are comparable to those of OFLC.
A typical rule set generated by SOGARG with the changed
values 15 shown in Table XIHICa).

Truck Back:  An exhaustive rule set generated by OFLC after
1O generations 15 shown in Table XIIE). Table X1V shows the
performance comparison of rule sets obtained by SOGARG and
OFLC of Chan et al. [42], averaged over en runs. It reveals that
SOGARG outperforms OFLC in this case.

VI CONCLUSION

We proposed a new method for extraction of a near optimal
rule set for a fuzey logic controller. 1t is a genetic algo-
rithm-based self-organized scheme. This method consists of
three stages. The first stage attempts 0 extract a rule set with
a view o enabling the system to control in the vicinity of the
sel point. In the second stage, this rule set s enhanced and
modified to account for the entire input space. Finally, the last
stage fine tunes the mle set through modification of existing
rukes andfor deletion of redundant rules and/or additon of new
rules. We have used different objective functions and different
mutation schemes for different stages which are consistent
with the objectives of different stages. The effectiveness of the
proposed scheme is demonstrated using two examples: inverted
pendulum and wuck back. We compared our method with the
methods of Lim ef af. [34] and Chan ef af [42]. Our method
performed better according 1o our results. We have also em-
pincally demonstrated that our method 1s gquite robust against
neglected dynamics and noise (gust loading and measurement
noise). Our system is also robust against significant changes
in the parameters of GAs. We emphasize that, with a proper
choice of membership functions, the number of rules may be
reduced further.

Investigation needs be done in order w formulate a guideline
for selection of the three weights wy,, wy, and i, used in the fit-
ness function of Stage 3. The choice of these weight values has
a significant effect on the final solution, especially on rule se-
lection. So, one simple method may be to employ various values
of weights and the final solution could be selected from a set of
solutions by the user depending on his/her preference. For this
purpose, coevolutionary GAs using a second population, which

evolves the weights [52] may be used. Further work also needs
to be done 1o test SOGARG on a wide range of different prob-
lems in addition to the two wsed in this paper, so that a better
understanding of its strength and weakness can be obtained.
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