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A nonlinear wave equation is derived in a magnetized plasma, comprising dust charged grains, to
study the existence and propagation of solitary wave. The Sagdeev pseudopotential technique is
applied to obtain the nonlinear wave equation in the dusty plasma. In contrast to the usual technique,
the tanh-method, or to say the hyperbolic-method, to the nonlinear wave equation is used to derive
the formation of soliton and its shock-like nature, as well. The nonlinear waves in dusty plasma,
which could be of a greater interest in astrophysical plasmas, are also presented here to reflect

significant advanced information on solitons.

I. INTRODUCTION

The plasma coexisting with finite micron-sized massive
dust charged particles is quite common in the universe. Dur-
ing the last few years, the small amplitude wave propagation
in the dusty plasma has received much attention to discover
the salient features. The dusty plasma exists in astrophysical
bodies and space environments, such as cometary tails, plan-
etary ring systems, interstellar and circumstellar clouds, and
asteroid zones,l_7 as well as in laboratory plasmas, e.g., in
tokamak and low-temperature glow discharges. The ubiqui-
tous nature of the dusty plasma and its importance in the
plasma environment have spurred many researchers to study
the new features arising due to the addition of dust-charged
grains. Enormous interest has been shown in the nonlinear
waves, which have been studied extensively in various dusty
plasma environments, and many of these problems are ex-
pected to be related with satellite observations. Normally the
low-temperature plasma sustains negatively charged dust
formed by the attachment of the electrons to the dust grains,
while radiation, photoionization and field emission might
yield the positive dust charged grains. The dust charges fluc-
tuate for two reasons, one of which is turbulence and other is
the temporal variation in the surrounding plasma properties.
The phenomena can be significant when the plasma fluctua-
tions are large and more rapid than the charging time of the
dust grain, which is generally found in astrophysical plas-
mas. The dust charging phenomena could be modeled as a
capacitor charging process and, accordingly, one can esti-
mate the dust charging time scale (7.) and the maximum
charged (g4) on it, which are given by 7.~ w,,(Ap/a) and

qqa~Ceyy where w,; is the ion plasma frequency, A is the
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Debye length, “‘a’’ is the size of the dust grains, C is the
capacitance of the dust surface and ¢y is the equilibrium
floating potential of the dust surface. If we estimate the rela-
tive scaling of the wave time scale (7,) and the dust charg-
ing time scale for a given plasma, we find

To ( a ) 1
Te P Npil kNp;’
where p=[(m,/m,)(n;y/n40Z,)(1/Z,)]"* and \p; is de-
fined as the ion Debye length. It is to be noted that the above
scaling has been derived for the dust acoustic wave (DAW),
which is a natural normal sound wave in plasma consisting
of dust charged grains. From the general linear charging
equation one can see that for 7, 7. (which requires p>1)
the effect of the dust charge fluctuation could be nominal
within the quasineutrality limit of plasma fluctuations, i.e.,
(n,/n,g~n;/n;); because of which a constant dust charge
model could be justified.> So under certain approximations,
the plasma consisting of dust charged grains can be regarded
as a multicomponent plasma. In the last few decades various
aspects of linear and nonlinear waves have been studied ex-
tensively in generalized multicomponent plasmas.'®~'> How-
ever, interest in the nonlinear wave phenomena, augmented
through the Korteweg—de Vries (KdV) and Sagdeev poten-
tial equations, has grown in parallel to relate the acoustic
wave in laboratory and space plasmas. Das and Tagare'
have studied the generalized multicomponent plasma, and
the simplified plasma model with negative ions have been
extensively studied by many authors,'>'® which could have
direct impact in dusty plasma.'” Rao er al.'” concluded by
saying that the dust grains, in an acoustic wave, can be
treated as similar to the multicomponent plasma with nega-
tive ions. In fact, the theoretical observations of Rao et al.!”
encouraged the experimental observations'® in dusty plasma
and confirmed the theoretical observations of the DAW.
Later, Verheest,19 Mamun et al.,20 Ma and Liu,21 and

for kz)\f)l<l,
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Ma et al.* have extended the dusty plasma model with the
dust charge fluctuation to show the characteristic behavior of
dust acoustic wave and found the rarefactive soliton features
similar to those observed in multicomponent plasmas. Fur-
ther extensions have been made to show the propagation of
dust-acoustic waves in magnetized plasma.’>** Mamun and
his collaborators>>*® also investigated the formation of dust
acoustic solitary waves in magnetized dusty plasma by using
the reductive perturbation technique. Now if one considers
the constituents of electrons and ions to be Boltzmannian,
playing a neutrality background to the dusty plasma, then the
dynamics of the dust-acoustic mode might reveal some new
features. Based on this intuition, we considered an ideal
plasma in space environments with the dust charged grains,
and aimed to revisit the soliton features in dusty plasma em-
bedded in an applied magnetic field. First of all, we derive
the multidimensional nonlinear wave equation in a plasma in
the presence of a homogeneous magnetic field with a view to
study the various forms of the nonlinear wave. Further, the
derivation is extended to the higher-order nonlinear effects
wherein, in each case, the wave equation has been solved by
employing a proposed method, called tanh-method®’~* or
hyperbolic-method to yield the new findings on solitons.

Il. BASIC EQUATIONS AND DERIVATION OF
NONLINEAR WAVE EQUATION

To study the nonlinear wave phenomena, we have con-
sidered a homogeneous magnetized dusty plasma consisting
of electrons, singly charged positive ions, and negatively
charged micron-sized massive dust grains. The basic equa-
tions governing the plasma dynamics are the equations of
continuity and motion. The electrons and ions are taken to be
Boltzmannian defined through their densities as

qrd
T, )’

NE="nNp, exp( - 2)
with k=e,i, respectively, for the electrons and ions and ¢,
=—e and ¢;=e. The equations governing the dust dynam-
ics, under the fluid descriptions, are written in the following
normalized equations:**3!

a9 0 3
() =0, ()
v, z9vv 1 d¢p v,sinf

+o _ 7@ Y,
ot U ox @ ox a “
Jdv,, Jdv v v,cos 6
—L+y,—==—"sing— — , (5)
ot ox o a
du, N Jdv, v, cos 0 ¢
ot Ux ax a (©)

The applied magnetic field is at an angle 6 with the x
axis. ¢ is the normalized electrostatic potential linked to the
charges through the Poisson equation, given as

A2 P

?Wan-i-ﬁzne—&lni, (7)
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where n, is the density of dust particle moving with the
velocity v (v, ,v,,v.) normalized by c¢,. The space, x and
time, ¢ are, respectively, normalized by p(=c,/w,) and
(aw,)” ! with ¢,=\T,/m; being the ion-acoustic speed,
and wy,=eH,/cm, is the gyrofrequency. Following nota-
tions a’=(8,—8)/(yd+8,) with 8 =n;,/ng,,5
=Ney/Ngy,01— 6,=1,y=T,/T; are also used in the basic
equations. In order to use the quasipotential analysis,*>** the
dependent variables are made to be the functions of a single
independent variable &= B(x— Mt); where M defines the
Mach number, and because of which, the basic Egs. (3)—(7)
are then reduced to the following form:

dny

—BM —— T +B g(ndvv) 0, (8)
dv, dvv ,Bdgb v, sin ¢
dv,, Uy . v, cos b

—BM —= § +Bv “d§ —Zsmﬁ— PR (10)
dv. dv, vycosﬂ
df ﬁvr dg o > (11)

and
\Jd*
2?d—‘§2=nd+52ne—5ln,». (12)

After some straightforward mathematical manipulation
with Egs. (8), (9), and (12) we get

1
v =M(1—a), (13)
a*M dn,)d
v= B 3 _d_d)) (14)
Y asinég ny; de¢|dé
iy 61 . cotd (¢ 4 s
v.=M cot Py 7 | nad e, (15)

and Eq. (10) finally derives

d do| nycos” 6
B~ 1z a1~ _nd_Wf ngdep,  (16)

where A(n,)=1 +(a2M2/n63,)(dnd/d¢).
Further, Eq. (16) can be expressed as

A(ng) =%

1 d do|?
2dd BA(ng) —¢ T
20 (¢ dv
=A(nd>{1—nd—%f0 ndd¢}5— d(j).
(17)

Now integrating Eq. (17), we derive
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(18)
where
deo\? 20
(4. -5
F( </>)=f nqde. (20)

Equation (12) with

f(fb):f (5zne—51ﬂf)d¢=(52@"""%6""5) 21)

derives

Ccp?
— P=E()+/(9), (22)

where C=\2/p? is used. P can be eliminated from Eqs. (18)
and (22) and the process derives the differential equation in
F(¢) and the pseudopotential ¥( ¢), (= — P) can be derived
from Eq. (22). Now, since the differential equation for F(¢)
is nonlinear, an analytic solution would be difficult to obtain.
Nevertheless, one can expand F(¢) in a power series up to
any order along with the coefficients of the series obtainable
from Egs. (18) and (22).

We now presume the expression for pseudopotential as

P=C,$*+Crp>+ Cy0*, (23)
with
F(¢)=b p+bydp*+b3*+by’. (24)

Substituting (23) and (24) into (22) the values of b,
C,, C,, C; are obtained as follows:

blzl
and

2 (6, +yd))

CIZCB2 b2+ 2 ) (25)
2 (8,—9*6)

szCﬂz bs+ 3 , (26)
2 1 3

C3:C_B2 b4+ﬁ(52+7 o) |- (27)

Equation (18), after using Egs. (25)—(27), appears as

A_2 +(52+751)
c\7? 2

(14+2a’M?b,)=0,
(28)

. B
+| b+ =
)
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A? 1 (8,—y*6
a- b3+—( 2= Y 01)
c 6 2
_ 2_ 2142 ﬁ —
+b3+Bby—2(4b3=3b3)a*M?| by + B—| =0, (29)
A 1 (8,+7°8) b
2 29 3 2
+a’M?| 63— 36b3b3+8b,b,
—7Bb2b3—3b4—4b§—40b‘2‘}=0. (30)

First one has to solve Egs. (28)—(30) for b,,b5,b, and
then by using them in Egs. (25)-(27), C,,C,,C; can be
evaluated explicitly. In deriving the above results, we have
used the boundary conditions, as ¢—0,(p)=0,d/dd
=0. The expand of #(¢) up to the terms ¢ writes

d*¢ B

ae&r
with D1=C,,D,=—3C,/2.

This is the mathematical technique to derive the pseudo-

potential without using the quasineutrality condition in the
plasma and, under the assumption ¢<<1, it derives as

dZ
ﬁzAd—§=A1¢—A2¢2. (32)

DIQS_DZd)zﬂ (31)

Where the coefficients are derived as

cos? 6
A1=(y61+8,) = —572(6,+ 5,),

a’*M
Ay=(y6,=6))— % (’}’51'*'52)—1(7251“‘52) ,
a*M 2
and
A=1-M".

Now Eq. (32) expects the solution in the form of sech
(&), tanh (&) or any other hyperbolic function and hence we
introduce a transformation (&)= W(z) with z=sech ¢ into
Eq. (32). As a result of which Eq. (32) reduces to a Fuchsian-
like nonlinear ordinary differential equation as

242 2 a*w 2, AW 2

BAZ(1 =27+ Bz ——— A W+ A, WP =0.

(33)
The regular singularities at z=0 demands that Eq. (33)
could be solved by the Frobenius series solution method and

to employ it the solution W(z) is expanded as a power series
inz as

W(z)=§0: a,z’*", (34)

The problem then reduces to finding the values of @, and
p, which in turn would reveal the nature of the solutions. We
modify the earlier procedure®®*’ by truncating the series into
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a finite series along with p=0. Thence the substitution of
series (34) into the Eq. (33) determines the coefficients of the
series. The leading order analysis determines the number of
the terms in the series, which equals to 3, and enables us to
write W(z) as

W(z)=ay+a,z+a,z>. (35)

Again the symmetry of Eq. (33) finds @;=0, and the
solution of Eq. (35) is then substituted into the differential
equation. The collection of different orders from the recur-
rence relation finally finds the solution as

4, x—Mt\ 44
d(x,t)= R sech? 5 with 6= R (36)
2 1

along with a shock-wave solution

4,
(x,0)= 5 (37)

24,

x—Mt
)

1 +tanh? (

We see that the solution depends on the coefficients 4
and 4, , which are functions of plasma parameters, as well as
of #; where 6 appears due to the applied magnetic field in the
dynamical system. For the typical values of 7 related to the
laboratory plasmas along with a reasonable value of the
Mach number M, the variation of the nonlinear coefficients,
A; and 4, are shown in Fig. 1(a), with the dust-charged
concentrations where the value of # is taken to be small. The
variation always maintains 4,>A4, even with the variation
of temperature ratio, y [Fig. 1(b)]. But with increase of dust
concentrations, the nonlinear effect increases while it de-
creases with the temperature ratio. So it is essential to control
the plasma parameters in the laboratory to get the desired
features of the solitons in plasma-acoustic wave. The nature
of soliton variation not only depends on different plasma
configurations but also depends on 6. But the nature, for
large 0 [Fig. 1(c)], is quite different from that for small 6 as
shown in Fig. 1(b). For small 6, the dust-concentration varia-
tion shows three regions [Fig. 2(a)] having either compres-
sive or rarefactive solitons. The amplitude of the solitary
wave is positive, resulting in the existence of a compressive
solitary wave (¢>0) and the solitary wave turns over to be
a rarefactive solitary wave (¢$<<0) as and when the ampli-
tude is negative.”’ In the presence of a small percentage of
dust concentrations, the compressive soliton with decreasing
amplitude becomes a rarefactive soliton at a certain critical
concentration. Again, for a higher percentage of dust, there
will be always compressive solitons in the plasma-acoustic
waves. However, in the case of higher field strength, there
exist two regions. In the region of a small percentage of
dust-concentrations, the rarefactive soliton yields, which fi-
nally turns to the compressive soliton due to the higher dust-
concentrations. Again the nature does not change apprecia-
bly with the variation of temperature-ratio, y [Fig. 2(b)]. The
overall observations, in the presence of applied magnetic
field, lead to the conclusion that the controlling of the plasma
parameters is required to obtain the desired solitons in labo-
ratory plasmas. For a very small percentage of the dust-
grains, both 4, and 4, are of the same sign and a compres-
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FIG. 1. Variation of nonlinearities with different plasma parameters: (a)
with dust concentrations; (b) with temperature ratio; (c) with temperature
ratio vy and oblique magnetic field.

sive solitary wave solution resulted. Further, with the addi-
tion of more dust concentration, the nonlinearities vary to
opposite signs, the amplitude becomes negative and a profile
of rarefactive wave propagation is exhibited. But for a
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FIG. 2. Variation of amplitude with dust concentration and temperature
ratio with oblique magnetic field.

higher percentage of dust grain, the nonlinearities again be-
come positive and a compressive solitary wave is yielded.
However, for much higher 6, such features vanish, and the
signs of 4, and 4, remain different from each other. Thus,
both compressive and rarefactive modes are possible in mag-
netized plasma, in contrast to the case of unmagnetized
plasma, wherein only the compressive mode is possible.
Thus, here the magnetic field plays the role to show the
compressive and rarefactive solitary waves in the plasma.
The acoustic modes are also controlled by the variation of
the temperature ratio y and these are shown in Fig. 1(b). For
6=10°, we see that there is a critical concentration of dust-
charged grain for which A4, vanishes and 4, is nonzero. At
this critical concentration of the dust-charged grains, the soli-
ton solution shows large amplitude dispersive waves and the
nonlinearity fails to form the soliton features in the dusty
plasma. Again, at the neighborhood of the critical density,
the soliton could be of explosive nature and this, in turn,
depends on the conservation of the energy within the wave
profile in the plasma. Otherwise, a bursting soliton is ex-
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pected, as and when the energy grows with the growth of
amplitude. It indicates the breaking of the double layer soli-
ton solution and the reductive perturbation technique®*3
might not be applicable as a whole. However, it was men-
tioned earlier that the possibility of having a large amplitude
wave is not permissible, as the Sagdeev potential equation in
unmagnetized plasma suggests that there is a barrier intro-
duced by the positive ions from which the acoustic mode
gets reflected before it grows to a high amplitude acoustic
wave. Thus, we should find alternate arguments for finding
the solitary wave propagation at this critical density. To ex-
tend the study at the critical concentration, we include next
higher order term in the expansion of the Sagdeev potential
and derive the wave equation as
2
BZA%:A1¢_A2¢2+A3¢3, (38)

with  A3=§(8; 7+ 8,) + (cos” 0/ M) 3(¥* 6 — &) = 5(¥6)
+8)—§(¥' 8~ &),

Equation (38), with a suitable linear transformation F'
=wvy+p with v=1 and u=4,/345, reduces to a Duffing
equation as

2 d’F 3

where B=4,—2A4,u+3A4;u> and B,=A4; along with a
restriction imposed on the coefficients given by 4, —A4,u
+A;u*=0.

This equation has special characteristic features, espe-
cially at B,=0, at which the Duffing equation yields a stable
or unstable soliton solutions depending, respectively, on B,
>0 or B;<0. If the higher-order effect is taken off through
B,=0, the Duffing equation reduces to a linear wave equa-
tion. Now all the coefficients are plotted in Fig. 3(a). to sup-
port the analytical results as predicted. It is seen that the
direction of the applied magnetic field plays an important
role in exhibiting the stable soliton solution in the plasma
acoustic wave. For small typical values of 8(=10°,15°) the
coefficients B, and B, are of opposite signs (with B;<0)
due to which the soliton solution is supposed to be unstable
[Figs. 3(a) and 3(b)]. Same feature appears in the case of
large 6 too showing [Figs. 3(c) and 3(d)] that both the cases
have unstable soliton solutions. This case lies beyond the
scope of the present study. However, for 6=45° [see Fig.
3(c)], B is positive and one thus expects the stable soliton
solution. Again it has been shown that the temperature effect
does play a role in exhibiting the different features of the
acoustic modes whereas magnetic field explains their coex-
istence of different nature in the plasma [Fig. 3(e)]. So the
present study finds that the applied magnetic field is the root
cause of showing a stable or a unstable soliton propagation
in the dusty plasma studied through the Duffing equation.
Moreover, this appears because of the higher order nonlin-
earity in the dynamics too. Now to solve the Duffing equa-
tion, we employ the tanh-method?’ ?° for a stable soliton
solution. Use of the tanh & transformation reduces the Duf-
fing Eq. (39) to a standard Fuchsian-like ordinary nonlinear
differential equation as
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FIG. 3. Variation of higher-order nonlinearities with different plasma parameters as described in Fig. 1.

5 by 2 ) , dF 5 expansion as prescribed earlier derives a trivial solution.
Ap(1-z27) dz2 —24p7z(1~-z )d_Z_BIF+BzF =0. Thus, in this case it requires the consideration of an infinite
(40) series, which enables one to find the solution in the form

The Frobenius series solution method with finite series F(z)=ay(1—z%)"2, (41)
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and ultimately the final solution turns out to be

4 (28 12 £
¢(§)—E_ 5, sech| <. (42)

This solution represents the profile of solitary wave or
shock-like structure in dusty plasma depending fully on the
plasma parameter variation. Now to find the other mode of
the wave propagation, we integrate the wave Eq. (38) along
with the boundary condition d¢/dé=¢p=0 at £&—o0, and
find

dé
which admits the soliton solution®”

A (A AN AT
347 7\94, 24, A ’

1 (do\? 1 , 1 o1 A
514( ) —§A1¢ _§A2¢ +ZA3¢ ) (43)

$(&)=

with a suitable transformation, the soliton solution is now
reducible to a well-known form

4 sech? k¢
¢(6)= a~+a. tanh’® k&’

with  a.=*+(44%/94—44,4,/24*)"?—(24,/4)  and
k=+A,/24.

Again Eq. (43) is reduced to a Sagdeev potential equa-
tion in the following form:

1(d¢

2\dé

The required condition for the existence of a double
layer from Eq. (46) is d¢p/déE=V(¢p)=0 at ¢=0 and ¢
=¢,,, and we then transfer the equation as

d¢
B g =kd(bn=¢). (47)

The new parameters are defined k=+\A3/44 and ¢,,
=44,/34; along with the double layer condition 9444
=8A§. By applying the proposed tanh-method, the wave
equation derives the double layer solution

(45)

2
+V(¢)=0. (46)

LI PO
HO=5 9, 1_tanh(3) ,

where 6=3 \/A_A3/A2 .

Now because of the singularity at certain concentration
one might need the inclusion of further higher-order terms in
the Sagdeev potential. However, one has to be cautious here
as, due to the inclusion of higher-order effect, the viscosity
or the collisional effects might play a comparable effect. But
to know the ordering effect in isolation one can take any
number of terms in the expansion of pseudopotential. Thence
it could be solved by the tanh-method?’ to get different kinds
of nonlinear ion acoustic wave propagation in plasma.

(48)

lll. CONCLUSION

The present study describes the formation of various
nonlinear phenomena of dust acoustic waves in relation to
the space and astrophysical environments. The Sagdeev
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pseudopotential technique is applied to derive the nonlinear
wave equations to study the different acoustic waves in a
magnetized dusty plasma, without assuming the quasineutral
condition. The pseudopotential could not be obtained in the
usual way, but a mechanism was found by which one can
obtain a power series in ¢ for the pseudopotential. It has
been seen that the different ordering gives rise to different
types of nonlinear wave phenomena, which could be of in-
terest in laboratory and space plasma. The parameter 6, the
angle between the direction of wave propagation and mag-
netic field, and the temperature ratio v, play important roles
in determining the nature of various solitary waves. For dif-
ferent angles of applied magnetic field, the stable or unstable
structure of the nonlinear wave in dusty plasma has been
observed. For #=45°, both compressive and rarefactive soli-
tons are possible and a shock-like wave structure exists un-
der certain conditions, controlled by the plasma parameter,
as well. The new approach of employing the tanh-method
helps to one successfully obtain, the profiles of different soli-
tary waves. The observations, predicting compressive and
rarefactive soliton through the wave equation, could be re-
lated to those made by Freja scientific satellite’® and by other
spacecraft.37 However, the additional observations made in
this paper might motivate one to seek new findings in space
plasmas through the satellite observations. Moreover, there
are other various modes, which are yet known by satellite
observations in astrophysical problems and, thus, the present
results lead to significant advance in understanding on
plasma acoustic mode for space plasma. The stability of the
soliton has been also analyzed through the derivation of a
Duffing equation, showing explicitly the dependence of the
plasma variation arising owing to the variation of nonlinear-
ity. Finally, the proposed mathematical technique has the
merit that it finds successfully all kinds of soliton features in
a magnetized dusty plasma.
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