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ABSTRACT

Classification of certain linearly nonseparab le  pa tte rn  classes with nonconvex deci
sion regions is a p roblem  that cannot be  efficiently handled  by the  Bayes’ classifier for 
normal distributions or o ther m etric-based m ethods. An a ttem pt is m ade here  to 
demonstrate the  ability of fuzzy versions o f  K ohonen 's net and the  multilayer percep- 
tron for classification of such patterns. In these models, the uncertain ties involved in 
the input description and ou tpu t decision have been taken care o f  by the concept of 
fuzzy sets w hereas the neural net theory  helps to generate  the requ ired  concave a n d /o r  
disconnected decision regions. Superiority  o f  these fuzzy m odels (over the respective 
conventional versions, the Bayes’ classifier and seven o ther existing neural algorithms) 
has been adequate ly  established when they are  im plem ented  on different sets of linearly 
nonseparable p a tte rn  classes. The effect o f  fuzzification at the input has been investi
gated for both  models. The con tribu tion  o f  the a priori probabilities of the pattern  
classes in the  back-propagation  p rocedure  fo r weight updating has also been  studied.

1. INTRODUCTION

Artificial neural networks [1]—[3] are massively parallel interconnections 
of simple neurons that function as a collective system. An advantage of 
neural nets lies in their high computation rates provided by massive 
parallelism, so that real-time processing of huge data sets becomes feasible



with proper hardware. Information is encoded among the various connec
tion weights in a distributed manner.

The utility of fuzzy sets [4]-[8] lies in their capability, to a reasonable 
extent, to model uncertain or ambiguous data so often encountered in real 
life. Besides, human reasoning is somewhat fuzzy in nature. Hence, to 
enable a system to tackle ambiguous (ill-defined) data in an effective 
manner, one may incorporate the concept of fuzzy sets into the neural 
network.

There have been several attempts recently [9]-[12] to make a fusion of 
fuzzy logic and neural networks for better performance in decisionmaking 
systems. The concept of fuzzy sets takes care of the uncertainties involved 
in the input description and also in the output decision whereas the neural 
net model helps to generate the appropriate class boundaries (which may 
be disconnected and concave). The development of fuzzy versions of 
Kohonen’s self-organizing network [13] and the multilayer perceptron 
(MLP) [14] for pattern recognition recently has been reported. Their 
suitability for classification of speech patterns has also been demonstrated.

During self-organization, the input vector of the fuzzy extension to 
Kohonen’s model [13] includes some contextual information (with lower 
weightage) regarding the class membership of the pattern (in addition to 
the input feature information). This may, therefore, be termed a partially 
supervised, fuzzy classifier. The training samples are presented to the 
network in cycles until the output space is ordered, as measured by an 
index o f disorder. Next the neurons in the output space are calibrated 
(labeled) by using only the class information parts of these input vectors. 
The self-organization and calibration together constitute the training phase 
for the fuzzy model.

The fuzzy multilayer perceptron (MLP) [14], on the other hand, func
tions as a fully supervised classifier. In the learning phase the training 
samples are presented to the network in cycles until it finally converges to 
a minimum error solution. A  heuristic for gradually decreasing the learn
ing rate and momentum is used to help prevent oscillations of the mean 
square error in the process of convergence.

Both proposed fuzzy neural models [13], [14] are capable of handling 
input features in quantitative a n d /o r  linguistic form and can take care of 
uncertainty an d /o r  impreciseness, to a reasonable extent, in the input 
specifications as well as in the output decision. The components of the 
input vector consist or the membership values to the overlapping partitions 
of linguistic properties low, medium, and high corresponding to each input 
feature. Thereby an ^-dimensional feature space is decomposed into 3" 
overlapping subregions corresponding to the three primary properties [15]. 
iflis enables the models to utilize more local information of the feature



space and is found to be more suitable in handling linearly nonseparable 
pattern classes having nonconvex decision regions. Output is provided in 
terms of membership functions. One also can obtain hard decisions (as a 
special case).

In this work we concentrate on the problem of handling pattern classes 
that have concave and disconnected decision regions. Such patterns cannot 
be properly classified by the parametric Bayesian method for normal 
distributions or other metric-based algorithms. Three sets of such linearly 
nonseparable pattern classes (artificially generated) are depicted in Fig
ures 1-3. There are two pattern classes (1 and 2) in each case. The region 
of no pattern points is modeled as the class none {no class). In two cases, 
the decision region of class 2 is disjoint and its a priori probability is much 
lower as compared to that of the other classes. It is to be noted that the 
Gaussian classifier makes strong assumptions concerning underlying distri
butions and is more appropriate when the class distributions are known 
and match the Gaussian assumptions [1], Nonparametric classifiers gener
ally construct a measure of performance over the training set and adjust 
the variables of the classifier to optimize this measure [16]. Neural net
works belong to this category of classifiers and possess the ability to also 
perform nonlinear classification involving nonconvex and disjoint decision

i i i i i i l i i i i i i i i i i i i i i i i i i i i i n
l i i i i i i i i i i i i i i i i i i i i i i i i i i i i n i

l i i i i i i i i i i i l i i i i i i i i i i i i i i i i i i n i
l i i i i i i i i i i i i i i l i i i i i i i i i i i i i i i i n i i

l i i i i i i i i n i m i i i i i i
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 22 2 2 2 2 2 2 2 2 1 1 1 1 1 1
1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
1 1 1 1 1 1 22 2 2 2 2 2 2 2 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

300 
SCO

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  i l l  

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  I

F, 2.150

Fig. 1. Pattern Set A  in the  F l-F2 plane.
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Fig. 2. Pattern Set B  in the  F r F2 plane.
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regions. It may be mentioned in this connection that the nonparametric 
single layer perceptrons are incapable of classifying linearly nonseparable 
patterns [17].

In this paper, an attempt is made to demonstrate the ability of the fuzzy 
versions of Kohonen’s self-organizing network [13] and the multilayer 
perceptron [14] for classification of the aforesaid linearly nonseparable 
patterns. The effect of fuzzification at the input has been investigated for 
both models. Their performance is adequately compared with those of the 
Baves' classifier, the nonfuzzy versions of the two neural models, other 
existing neural algorithms of Rumelhart and McClelland [2], McClelland 
(reported in [18]), Franzini [18], Chan and Fallside [19], Tollenaere [20], 
Silverman [21], and networks using second-order weight correction [2], The 
contribution of the a priori probabilities of the pattern classes in the error 
derivative of the back-propagation procedure for weight updating has also 
been studied.

2. KOHONEN’S SELF-O RG A NIZIN G  NEURAL M O D EL

Let us consider the self-organizing Kohonen network [3]. Let M  input 
signals be simultaneously incident on each of an N X N  array of neurons. 
The output of the / th neuron is defined as

77/(0 m M l 7 * c o £  wkiVk(t-
tC<ES:

■A t) (1)

where x is the M-dimensional input vector incident on the neuron along 
the connection weight vector m ;, k  belongs to the subset St of neurons 
having interconnections with the /th  neuron, wki denotes the fixed feed
back coupling between the £th and i th neurons, crl ] is a suitable, sig
moidal output function, t denotes a discrete time index, and T  stands for 

the transpose.
If the best match between vectors m, and x occurs at neuron c, then we 

have

• = mm x - m, z = 0 , 1 ,. . . , N (2)

where ||-|| indicates the Euclidean norm.



The weight updating is given by [3] as

l m l( t ) + a ( t ) ( x ( t ) - m , ( t ) ) ,  for ieNc, 

m ' ( '  +  1 ) "  otherwise, (3)

where a( t )  is a positive constant that decays with time and Nc defines a 
topological neighborhood around the maximally responding neuron c, such 
that it also decreases with time. After a num ber of sweeps through the 
training data during self-organization, with weight updating at each itera
tion obeying Eq. (3), the asymptotic values of m, cause the output space to 
attain proper topological ordering.

3. KOHONEN’S N ET AS A  FUZZY  CLASSIFIER

In this section we describe, in brief, a fuzzy version of Kohonen’s model 
(reported in [13]) that is capable of representing input in linguistic and /o r 
quantitative form and providing output decision in terms of membership 
values. We consider a single-layer two-dimensional rectangular array of 
neurons with short-range lateral feedback interconnections between neigh
boring units. In the first stage a set of training data is used by the network 
to initially self-organize the connection weights and finally calibrate the 
output space. After a number of sweeps through the training set, the 
output space becomes appropriately ordered. An index o f  disorder is 
computed to evaluate a measure of this ordering. The network is now 
supposed to encode the input space information among its connection 
weights.

A . TH E  IN P U T  V EC TO R

The input to the proposed neural network model consists of two 
portions. In addition to the input feature representation in linguistic form, 
there is some contextual information regarding the fuzzy class membership 
of each pattern (used as training data) during self-organization of the 
network.

1. Feature Information

Let X  = { X 1, X 2, . . X L} be a set of L  pattern points in an rc-dimen- 
sional feature space. In  the model under consideration, each input feature



F. (in quantitative a n d /o r  linguistic form) can be expressed in terms of 
membership values indicating a measure of belongingness to each of the 
linguistic properties low, medium, and high [15]. Therefore, an «-dimen-
sional pattern X, = F, = [F:i, Fj2.......Fjn] may be represented as a 3/j-dimen-
sional vector

~~ [ A/oh ( / ., )( ^  / ) ' t^nu'diiinii 1 P^high( Fn ) ( / )  ’ ‘ ■ * ’ fihiglli :: /] ’ ( ‘̂’)

where the jx value indicates the membership of X to the corresponding 
linguistic set along each feature axis.

It is to be noted here than an n -dimensional feature space is decom
posed into 3" overlapping subregions corresponding to the three primary 
properties [15], This enables the model to utilize more local information of 
the feature space and it seems to be more effective in handling the linearly 
nonseparable pattern classes (shown in Figures 1-3) that have nonconvex 
decision regions.

For numeric feature value F, (along the ; th  axis), the tt function (in the 
one-dimensional form) lying in the range [0 , 1] is given as

where A > 0 is the radius of the tt function with c as the central point at 
which tt(c\ c. A) =  I. The values of the As and c s for each of the three 
linguistic properties low, medium , and high are given by Eqs. (7)-(9).

When the input feature F- is linguistic, its membership values for the it 
sets low, medium, and high in Eq. (4) may be quantified as

otherwise,

0.95 0.6 0.02
L  ’ M  ’ H

high =
0.02 0.6 0.95

L  ’ M  ’ H

Let Fj and /•', denote the upper and lower bounds of the dynamic 
range of feature F( in all L  pattern points, considering numerical values



only. Then for the three linguistic property sets we define

^ m e d i u m ( F j ) (7)

(8)

^high(Fj) fdenom

■highiFj)’ (9)

where 0.5 ^fdenom  <  1.0 is a parameter that controls the extent of over
lapping.

2. Class Information in Contextual Form

In many real-life problems, the data are generally ill-defined with 
overlapping or fuzzy class boundaries. Each pattern  used in training may 
possess finite belongingness to more than one class. To model such data, it 
often becomes necessary to incorporate some contextual information re
garding class membership as part of the input vector [13]. However, during 
self-organization this part of the input vector is assigned a lower weightage 
so that the linguistic feature properties dominate in determining the 
ordering of the output space. During calibration we use the contextual 
class membership information part of the input vector only for determin
ing the hard labeling of the output space.

The pattern X, is considered to be a concatenation of the linguistic 
properties in Eq. (4) and the contextual information regarding class 
membership. Let the input vector be expressed as

where x contains the linguistic information in the 3 n-dimensional space of 
Eq. (4) and x" covers the class membership information in an /-dimen
sional space for an /-class problem domain. So the input vector x lies in a

x =  [x ',x " ]r  = [x ',0 ]r + [0 ,x " ] r , (10)



(3/2 + /)-dimensional space. Both x' and x" are expressed as membership 
values.

The membership of the /th pattern to class Ck is defined as

where : lk is the weighted distance between the /th pattern and the k th 
class. ( ) < ^ ( X , ) <  1 and the positive constants Fd and Fe are the denomi
national and exponential fuzzy generators that control the amount of 
fuzziness in this class-membership set.

In this connection, note that the particular problem of modeling the 
decision surfaces for classifying the linearly nonseparable patterns of 
Figures 1-3 might also be eased by incorporating the contextual class 
information in the input vector. However, in such eases, z ik of Eq. (11) 
mav be set to 0  for a particular class and to infinity for the remaining 
classes, so that ^ .(X ,)  = {0 , 1}.

For the /th input pattern we define

where ( X  .s s c l  is the scaling factor. To ensure that the norm of the 
linguistic part x' predominates over that of the class membership part x 
in Eq. (10) during self-organization, we choose 5 <0.5.

3. Modification o f Input during Calibration

During calibration of the output space the input vector chosen is 
x jll.x"]. where x" is given by Eq. (12), such that

for k(£{ l , . . . , l )  and 5 = 1. The N 2 neuron outputs 17, are calibrated w.r.t. 
the / classes. Here the class information of the training patterns is given 
full weightage while the input feature information is suppressed. T e 
primary objective of this stage is to label each neuron by the partition or 
which it elicits the maximum response. The resulting hard, (labe e ) 
partitioning of the output space may be used to qualitatively assess t e

x =s * (12)

(13)



topological ordering of the pattern classes w.r.t. the input feature space. 
We also generate a fuzzy  partitioning of the output space.

B. TH E A L G O R IT H M

Consider an N x N  array of neurons such that the output of the /th 
neuron is given by Eq. (1), with the subset S, of neurons being defined as 
its r-neighborhood Nr, where 0 ^ r < 3 .  We use

Here b is the mutual interaction weight for the lateral coupling wki.

1. Weight Updating

Initially the components of the m s are set to  small random values lying 
in the range [0,0.5]. Let the best match between vectors m, and x, selected 
using Eq. (2), occur at neuron c. Using Eq. (3), the weight updating 
expression may be stated as

where Nr describes a r-neighborhood around neuron c such that r 
decreases with time. H ere the gain factor h ci is considered to be bell-shaped 
like the tt function, such that \hci\ is the largest when i = c  and gradually 
decreases to zero with increasing distance from c. Besides, |/?c,| also decays 
with time.

We define

b.  for r =  1 ,

- , for r =  2 ,

0 , otherwise.

( 1 4 )

for / c ;V,, r 0 . 1 .......3.

otherwise*

( 15)



where nt is the number of sweeps already made through the entire set of 
training samples at any point of time, cdenom is a positive constant 
suitably chosen and 0 < / ,  a ' < 1. The decay of \hci\ with time is controlled 
by nt. The slowly decreasing radius of the bell-shaped function h ci and the 
corresponding change in \hcj\ are controlled by the parameters r and / .  
Due to the process of self-organization, the randomly chosen initial m,s 
gradually attain new values according to Eqs. (2) and (15) such that the 
output space acquires appropriate topological ordering.

2. Index o f  Disorder

An index of disorder D may be defined to provide a measure of this 
ordering. Let m sd  denote the m ean square distance between the input 
vector and the weight vectors in the r-neighborhood of neuron c. We 
define

msd =
1

\trainset\ 1 ^ 7  £
r=0 I \ 1 rl iE/V,

* ( 1  — r  * / )

where \trainset\ refers to the num ber of input pattern vectors in the 
training set. This definition ensures that neurons nearer c (smaller r) 
contribute more to msd  than those farther away. Also

0 <  r <  3, for ncnl = 1, 

0 < r < 2 , for ncnt = 2, 

0 < r < l ,  otherwise.

(18)

Here \Nr\ denotes the number of neurons in the r-neighborhood of neuron 
c such that l A ^  8 , |/V2|< 1 6 , and \N3\< 2 4  depending upon the position 
of c in the two-dimensional array. Note that N () implies the neuron c 
itself.

The expression for the index of disorder is given as

D = m s d ( n t - k n ) - m s d ( n t ) ,  (19)

where m sd(nt) denotes the mean square distance by Eq. (17) at the end of 
the «/th sweep through the training set and kn  is a suitable positive 
integer. Further, D  is sampled at intervals of kn sweeps. Initially ncnt is



set to 1. Then

nrnt= f » c* t + 1. i i D < 8, (2())
ncnt \ n c n t , otherwise, v

where 0.001. The process is terminated when ncnt>  3, so that
always v y  1 in Eq. (18). For good self-organization, the value of msd and, 
therefore, D should gradually decrease. It is to be noted that r and /  of 
Eqs. (15) and (16), that control \hc,l obey Eq. (18). The parameter ncnt of 
Eq. (20) depending on D  of Eq. (19), controls r and /  of Eq. (18).

3. Partitioning during Calibration

During calibration the input vector x = [0,x"] of Eq. (10) is applied to 
the neural network. Let the O 'l^th neuron generate the highest output 17, 
for class Ck. We define a membership value for the output of neuron i 
when calibrated for class Ck simply as

Vk(%) = -zr*  for i = I , . .. ,  N 2 and k = \ . J , (21)
%

such that 0 < fik{77,)  < 1 and ixk(r};) =  1 for i — ( i l ) k.
Each neuron i may be marked by the output class ( \ , among all / 

classes, that elicits the maximal response 77,■ This generates a hard 
partitioning of the output space. On the o ther hand, each neuron 1 has a 
finite belonging or output membership /i4( 17,) to class Ck by Eq. (21). We 
may generate crisp boundaries for the fuzzy partitioning of the output 
space by considering for each of the / classes the alpha-cut set {/| ixk(ri,)> 
a '}, 0 < a' < 1, where a ' is a suitably chosen value. An ordered map of the 
output space indicates good self-organization and hence grouping of the 
patterns according to similarity.

4. Testing Phase

After self-organization, the proposed model encodes all input data 
information, along with the corresponding contextual class membership 
values, distributed among its connection weights. During calibration, the 
neurons are labeled by the pattern classes and the corresponding member
ship values also are assigned. I his is the desired fuzzy classifier. In the 
final stage, a separate set of test patterns is supplied as input to the neural 
network model and its performance is evaluated.



During this phase the input test vector x = [x',()]r, consisting of only the 
linguistic information in the 3/z-dimensional space defined by Eq. (4), is 
applied to the network. Let the p i th  and p2th neurons generate the 
highest and second highest outputs r)f- and 7/ , respectively, for test 
pattern p. We define

M i  ( V =  V - k i i V p t ) ,

! . ( 22) 
P * X % J  = ^ - ^ 2 ( ^ 2 ) * % ,

and k ^ k \ , k z = k2,  if %•  Otherwise,

M -U , .) ~  1 ^ - ri ,
lf" (23)

M . ( V - . , . . . )  =  ^ k i ( V p i ) ,

such that k x= k 2  and k 2 = k 1. Here k t  and k l  refer to the output classes 
(hard partitions) Q ,  and Ck2 that elicited maximal strength responses at 
the p ith  and p2th  neurons, respectively, during calibration. On the oiher 
hand, Ck and Q ,  are dependent both on the actual output responses 
during testing and the membership values evaluated during calibration 
w.r.t. classes C*, and Ck2. The membership values on the right-hand side 
of Eqs. (22) and (23) are defined as

N 1H 1) ^ 7  ( *

from Eq. (21), where V/u and V(pl)u are obtained during calibration for 
class CY,. Hence pattern p may be classified as belonging to class Ck> with 
membership puk (rjf ) lying in the interval [0,1], using the first choice and 
to class Ck with membership (17SpJ  using the second choice. It is to e 
noted that classes Cki and Ck are determined from classes CkX and C , 2 

by Eqs. (22) and (23).

4. MULTILAYER PERCEPTRON

Let us next consider the MLP [2] network. After a lowermost input 
layer there are usually nay number of intermediate or hidden layers 
followed by an output layer at the top. There exist no interconnections



within a layer whereas all neurons in a layer are fully connected to 
neurons in adjacent layers. The total input x f  + 1 received by neuron j  in 
layer h + 1 is defined as

where y f  is the state of the z'th neuron in the preceding /;th layer, wj- is 
the weight of the connection from the /th neuron in layer h to the j  th 
neuron in layer h + 1 and 0 /!+ 1 is the threshold of the j th  neuron in layer 
h + l. Threshold 9h+1 may be eliminated by giving the unit j  in layer h + 1 
an extra input line with a fixed activity level of 1 and a weight of -  dj1 ~ ‘.

The output of a neuron in any layer other than the input layer (h > 0) is 
a monotonic nonlinear function of its total input and is given as

For nodes in the input layer, we have y °  =x f ,  where x°  is the j th 
component of the input vector clamped at the input layer.

The least mean square (LMS) error in output vectors, for a given 
network weight vector w, is defined as

where y^c(w) is the state obtained for output node j  in layer H  in 
input-output case c and dj c is its desired state specified by the teacher. 
One method for minimization of E(w) is to apply the method of gradient 
descent by starting with any set of weights and repeatedly updating each 
weight by an amount

(25)

(27)

(28)

where the positive constant e controls the descent, 0  <  «  <  1 is the damp
ing coefficient or momentum, and t denotes the num ber of the iteration 
currently in progress.



Using Eqs. (25)- -(27). we have

(29)

where

y '1 (/,, for h = H ,

(30)

such that units j  and k lie in layers h  and h +  1, respectively. The central 
idea is to first use a forward pass for each input-output case e, starting at 
the input neurons, to compute the activity levels of all the neurons in the 
network. Then a backward pass, starting at the output neurons, is used to 
compute the error derivative d E / dy] and back-propagate to enable weight 
updating until the input layer is reached.

After a number of sweeps through the training data, the error E(w) in 
Eq. (27) may be minimized. In the testing phase the neural net is expected 
to be able to utilize the information encoded in its connection weights to 
assign the correct output labels for the test vectors that are now clamped 

only at the input layer.

5. FUZZY EXTENSION TO T H E  MLP M O DEL

We now discuss, in brief, the fuzzy version of the M LP (reported in 
[14]), which is capable of representing input in linguistic a n d /o r  quantita
tive form and providing output decision in terms of membership values. 
The components of the input vector consist of the membership values to 
the overlapping partitions of linguistic properties low, medium, and high 
corresponding to each input feature. T his provides scope for incorporating 
linguistic information in both the training and testing phases of the said 
model and increases its robustness in tackling imprecise o r uncertain input 
specifications. During training, supervised learning is used to assign output 
membership values lying in the range [0,1] to the training vectors. T  e 
back-propagated error has inherently more weightage in case of no es 
with higher membership values such that the contribution of ambiguous or 
uncertain vectors to the weight correction is automatically reduce . < - 
heuristic for gradually decreasing the learning rate and the  momentum is 
used to help avoid spurious local minima and usually prevent oscil ations



of the mean square error in the weight space, in the process of conver
gence to a minimum error solution.

The details regarding the input feature representation in this model (for 
quantitative a n d /o r  linguistic input) is the same as explained earlier in 
Section 3A with reference to the fuzzy self-organizing model. The input 
vector x is represented in the 3/?-dimensional space of Eq. (4).

A . O U TP U T V EC TO R  R E P R E S E N T A T IO N

For an /-class problem domain, the membership of the /th pattern to 
class Ck, lying in the range [0,1] is given as in Eq. (11). Then for the /th 
input pattern we define the desired output of the j  th output node as

where dj = [Q, 1]. During testing, the output of the yth output neuron 
denotes the inferred membership value of a test pattern to the j  th class.

Note that in the special case of classifying the linearly nonseparable 
patterns of Figures 1-3, the weighted distance z ik of Eq. (11) between the 
/th pattern and the kt\\  class is set to 0 for one class and to infinity for the 
remaining classes. Therefore, ds■ = jtt/X,) =  {0,1} in such cases.

B. W E IG H T U P D A TIN G

The e of Eq. (28) is gradually decreased in discrete steps, taking values 
from the chosen set {2,1,0.5,0.3,0.1,0.05,0.01,0.005,0.001}, while the mo
mentum factor a  is also decreased. Let the various values of e be 
indicated by e0 = 2 , el = 1 , . . eq =  0.001  such that e; indicates the (/ + 1 )th 
value of e. Let a 0 = 0.9 and a I = a 2 = ••• = a c/=0.5.  Note that a  close to 
/^ero is avoided because small values of a  are unable to prevent unwanted 
oscillations. We use

where / 0 initially, |e | q + 1 , and 0 < 5 < 0 .0 0 0 1 .  Flere mse(nt) is the 
mean square error at the end of the ///th sweep through the training set 
and kn is a positive integer such that mse is sampled at intervals of kn 
sweeps. The process is terminated when / > q  and e =0.001. At this stage 
the network is said to have converged to a good  minimum error solution

^  = AfeCX(), (31)

(32)



and the corresponding value of nt indicates the number of sweeps re
quired in the process.

We use two measures of percent correct classification for the training 
set. The output, after a number of updating steps, is considered a perfect 
match if the value of each output neuron y j1 is within a margin of 0.1 of 
the desired membership value djt This is a stricter criterion than the best 
match, where we test whether the j  th neuron output y f  has the maximum 
activation when the jth  component d. of the desired output vector also 
has the highest value, provided v " > 0 .5 .

6 , OTHER NEURAL ALGORITHM S FOR COMPARISON

In this section we briefly describe the salient features of the other 
neural algorithms in the comparison. These models are based on the MLP 
or its variations and use different techniques for adapting the learning rate 
e of Eq. (28).

a . McC l e l l a n d  s  n e w  e r r o r  m e a s u r e

In this method [18], the total error of Eq. (27) is redefined as

^ ( w )  =  - L l n [ l - ( . v // / ( w ) - c ? y c ) '  ( 33 )

J**

such that

fJL  = -------- I------------------ 1---------- - (34)
1 ; (,/ v " )  1 (d. y " )

for h = H  in Eq. (30). This error derivative is expected to speed up the 
movement of weights that had previously moved slowly because of small 
sigmoid derivatives. Hence in case of output units whose output is at the 
wrong end of the sigmoid (and close to 0 or 1), the weight change increases 
and thereby the learning time is reduced.

B. LE A R N IN G  R A T E  A D A P T E D  B Y  A N G L E S

In this scheme proposed by Chan and Fallside [19], useful information 
about the shape of the energy contour can be learned from the directions



of the local gradient vector VE(f) and the weight updates Aw(f 1) and 
Aw(/) using the vector version of Eq. (28). The angle l)(i). giving an 
indication of the nature of the energy surface during training, is defined as

V E( /) • Aw( / 1) . „
cos 9{ t ) IIVE(f)II ||Aw(f -  1)|| '

The learning rate is adapted as

e ( t )  = e ( t -  1)(1 + Icos 0 ( f ) )  (36)

such that eO) decreases near the ravine walls when s / 2  -s: 0(f) < 3tt/ 2  
and increases at the plateaus when 0(f) —>0 or 2 tt. The damping coeffi
cient is modified as

a ( t )  =  A( f ) e ( f ),

where

A m  AfO) l iVE(oli  
A< 0  j|Aw(f -  1}II

and 0 <  A(0)<1. This scheme is supposed to reduce oscillations at the 
walls of the ravine.

C. A D A P T IV E  A C C E L E R A T IO N  S T R A T E G Y  S S A B

This is a modification of the strategy reported by Jacobs [22]. In this 
approach by Tollenaere [20], (i) every weight w:] has its own individual 
(adaptive) step size etj, (ii) each step size e;; is allowed to vary over time, 
(iii) for each wtj, as long as the w}j derivative does not change sign, the 
corresponding etj is increased, and (iv) when a change in the sign of the 
Wif derivative is detected, (a) the previous weight update is undone and 
then ignored in the momentum term of the following step and (b) the 
corresponding e; ■ is decreased.

Therefore, as long as the weight derivative keeps changing sign, the step 
size is decreased until a step can be done without causing the weight 
derivative to change sign. I his method requires a number of local compu
tations and is supposed to be easier to implement on parallel architecture 
computers. However, it also involves an increase in the total computational 
overhead in its attempt at increasing the speed of convergence.



D. S E C O N D -O R D E R  W E IG H T C O R R E C T IO N  FO R S IG M A -P I U N ITS

Considering two element conjuncts [2], the output of the y th neuron in 
layer h [of Eqs. (25) and (26)] is given as

( 37)
i , k '

where /■(•) is the sigmoidal function. The error derivative corresponding to 
the jth neuron in layer h of Eq. (29) becomes

dE dE h- \
d w jkl d X j y t xy l ~ l ( 3 8 )

such that

dE  -r-* h h +1

w r 1;1 j , k  k

Such nets are expected to result in better performance due to the higher 
order connection weight interactions. However, it should be noted that 
each sweep through the training set involves a much larger number oi 
weight updates and leads to a resultant increase in the computational 

overhead.

E. L E A R N IN G  R A T E  A D A P T E D  B Y  E R R O R

The total error E  of Eq. (27) is used to determine the learning rate e in 
the method reported by Silverman and Noetzel [21]. When JSO) <E(t  — 1), 
e is increased additively. On the other hand, when E ( t)> E ( t  — 1), e is 
decreased multiplicatively. This scheme ensures that the decrease is faster 

than the increase.
There is a potential pitfall in such methods if, in some dimension, the 

energy landscape is such that the gradient never changes [20]. In such 
cases the learning rate may keep growing and the weights may become 

infinitely large.

F. H E U R ISTIC  SC A L IN G  OF L E A R N IN G  R A T E

This technique by Franzini [18] aims to maintain a maximum value of 
learning rate e such that the direction of weight change remains near y



constant. The angle between the error derivative vector component = 
d E / d w ^  at cycles t and t 1 is defined as

E j j d j  ( t — l ) d ij( t )  
cos 0 = — ------  — ■ ------ — ---- . (39)

I ' U '  1 ) j — I ' f  ( ? ) ]

The epsilon-scaling rule is given as

. e ( t  -  I) /3+ cos 9, i f c o s $ > 0 ,
e ( , ) - i s ( , _ 1 ) r . othenvlse, HO)

with f i+— 1.005 and _ — 0.8. This rule is supposed to significantly reduce 
the learning time and avoid local minima (which fixed higher values of e 
are likely to reach).

G. F IX E D  L E A R N IN G  R A T E

The conventional MLP uses fixed learning rate e [2], However, it has 
oeen pointed out in [2 0 ] that there is an optimal step size region (osr) with 
the interval [eopt -  8„ eopt +  S,.] for eveiy problem. For all e lying in this 
region, the learning converges reasonably fast and remains stable. How
ever, one does not know a priori where the osr is located for a particular 
problem. The width of the osr scales with the absolute value of e , [20], 
The network size and training set seem to influence the osr.

To overcome these problems, various techniques are currently being 
used for heuristically adapting the learning rate e. A  few of these schemes 
are discussed in this section.

H. M IN IM IZ A T IO N  O F C R O S S  E N T R O P Y

This is a modification of the fuzzy MLP using the more standard mean 
square error criterion. In  this approach [14], the cross-entropy 5 is mini
mized during training. We define

■5 -  E  [ - d ,  In y ?  -  (1  -  ^ ) l n ( l  - J f  )]
j , C



such that the weight updating of Eq. (28) is given as

^ 0  = ~ ^ + * K ( r - l ) .  (42)

N o te  t h a t

J ) ^ = dS_dyL SxL

dWjj dyj d.Xj dWji '  '

from Eq. (29), where

d s  y f ^ ds

:,y  v " n  v '7 )

for h = H. Given a set of training cases, the likelihood of producing exactly 
the desired vectors is maximized when we minimize the cross entropy [23]. 
The use of cross entropy also helps to speed up the learning in cases of 
output units that are close to 0  when they should be close to 1 and vice 
versa. Note that here § S / d x J= y f  ^ d j . This technique also enables the 
network to attain high values of perfect match.

7. IMPLEMENTATION PRO CED U RE: RESULTS AND 
COMPARATIVE STUDY

The two fuzzy neural network models [13], [14] have been used io 
classify three sets ( A . B , C ) of artificially generated linearly nonseparable 
pattern classes involving nonconvex decision regions. I hese are depicted in 
Figures 1-3 in the two-dimensional space F ,-/•’_•. each set consisting of 880 
pattern points. The training set consists of the pattern vectors in the 
nine-dimensional (for Kohonen’s net) and six-dimensional (for MLP) forms. 
The classification decision regarding the test set is inferred by each trained 
neural network. The neural models were trained on the three sets of 
linearly nonseparable pattern classes in succession, using different network 
as well as training set sizes. Two linearly nonseparable pattern classes 1 
and 2 were considered in each case. The region of no pattern points was 
modeled as the class none (no class).

The effect of fuzzification at the input, by varying the radius of the 
7T-function corresponding to the linguistic set medium was demonstrated 
for both the models. In the cases of Pattern Sets A  and C, the decision



region of class 2 was disjoint and the a priori probability of this class was 
much lower than that o f the other classes. For this region, the contribution 
of the a priori probabilities in the error derivatives of the back-propagation 
procedure for weight updating was also investigated.

In order to demonstrate the superiority of the fuzzy neural models, an 
extensive comparison of their performance was made with other models. 
Performance of the fuzzy MLP has been compared with those of the 
conventional MLP, the Bayes’ classifier, and seven other neural algo
rithms. Because the self-organizing, fuzzy K ohonen’s model has been used 
as a classifier, its performance has been com pared only with its conven
tional version (used as a classifier) and the Bayes' model.

A . U SIN G  F U Z Z Y  S E L F -O R G A N IZ A T IO N

Tables 1-3 are used to compare the perform ance on test set (both 
classwise and overall) of different sizes of the fuzzy self-organizing neural

T A B L E  1

C om parison betw een recognition  scores for various sizes o f  p ro p o sed  self-organizing 
neural net array with s =  0.2, the  nonfuzzy version o f  th e  m odel, and the Bayes' 

classifier, using perc = 50 on  Pattern Set A .

Pro p o sed  Fuzzy_________________  Nonfuzzy

Class 1 0X 10 14 X 14 1 0 X 2 0 20 X 10 1 6 X 1 6 1 4 X 1 4 Bayes

1 33.0 77.4 72.1 68.2 65.6 96.9 100.0

2 44.9 67.3 79.6 87.7 69.3 0.0 20.4

N one 72.2 55.5 40.7 44.4 53.7 4.3 24.0

Overall 48.8 68.3 59.0 61.7 61.2 52.1 63.2

T A B L E  2

Com parison betw een recognition  scores for various sizes o f  p ro p o se d  self-organizing 
neural net array with s  =  0.2, th e  nonfuzzy version  o f  th e  m odel, and the  Bayes’ 

classifier, using  d ifferent values o f  perc  on  Pattern Set B.

P ro p o sed  Fuzzy

14 X 14 1 6 X 1 6
1 8 X 1 8

Nonfuzzy
1 6 X 1 6

Bayes

Class \  perc 50 10 50 10 50 50 50 10

1 63.4 58.7 83.0 64.1 51.7 10.7 38.4 27.3
2 50.5 30.8 55.6 30.2 40.2 6.1 34.0 50.8

N one 50.4 78.1 55.6 63.5 56.0 94.4 72.8 71.9

Overall 53.7 62.8 62.6 56.4 51.5 53.7 55.5 55.9



Comparison betw een recognition scores fo r  various sizes o f  p ro p o sed  self-organizing 
neural net array  with .v =  0.2, the  nonfuzzy  version of the  m odel, an d  the  Bayes’ 

classifier, using d ifferen t va lues o f  perc  on Pattern Set C.

Pro p o sed  Fuzzy

Class \  perc
It) x  111 

10

14 x  14 16 X 16
18X 18 

50

rvonruzzy 
16 X 16 

50

Bayes

50 10 50 10 50 10

1 43.3 77.3 50.6 82.7 51.7 72.7 53.4 100.0 79.4
2 39.1 53.8 58.7 19.2 84.7 65.3 0.0 0.0 0.0

None 81.7 44.5 51.6 55.4 35.8 53.5 72.9 0.0 28.6

Overall 56.6 64.4 51.5 69.4 48.0 65.5 57.1 58.9 57.0

net [13] on the three sets of linearly nonseparable patterns A , B, and C, 
respectively. Various training set sizes were used by randomly choosing 
perc% samples from each representative pattern class. The remaining 
(1 00-perc)%  samples from the original data set were used as the test set 
in each case. We selected fdenom  = 0.8 in Eqs. (8 ) and (9), b =  0.02 in Eq.
(14), cdenom = 100 and a ' = 0.9 in Eq. (16), kn = 10 in Eq. (19), and 
6 = 0.0001 in Eq. (20) after several experiments.

Comparison was made with the performance of the Bayes’ classifier and 
the nonfuzzy version of the network. The standard Bayes’ classifier for 
multivariate normal patterns was used with the a priori probabilities 
p, = |C,|//V, where |CJ indicates the num ber of patterns in the /th class and 
N is the total number of pattern points. The covariance matrices were 
different for each pattern class. The proposed fuzzy models were found to 
result in better performances in all the three cases, considering individual 
classwise behavior. It is to be noted  that here an ^-dimensional feature 
space was decomposed into 3 " overlapping subregions corresponding to 
the three linguistic properties. This enabled the model to utilize more local 
information about the feature space [15] and was, therefore, better 
equipped to classify the given linearly nonseparable patterns. This is 
particularly evident on observing the classification efficiency of the non
fuzzy neural model for class 2  (whose recognition score is very poor] in the 
case of all three pattern sets.

In addition, Table 4 shows a comparison in the classification perfor
mance of the fuzzy neural model on Pattern Set A  using different values of 
the scale factor s of Eq. (12) (during self-organization). H ere s = 0.2 is 
found to yield the best results. It may be noted that large values o f  s result 
in a greater dependency on the contextual class information part of the 
input vector during self-organization. Hence during testing (when s =  0)



Comparison between recognition  scores for various values o f  scale factor s using 
14 x  14 self-organizing neural net array with perc =  50 on Pattern Set A .

Class

Scale F ac to r  s

0.1 0.2 0.3 0.5 1.0

1 70.0 77.4 66.0 39.1 40.0

2 69.3 67.3 73.4 73.4 93.8

None 58.0 55.5 62.3 51.2 44.4

Overall 65.5 68.3 65.5 47.4 47.6

the input vector becomes less complete, thereby leading to a poorer 
recognition score on the test set consisting of the input feature informa
tion part only. It may be noted that 0 < s < 0 . 5  appears suitable in this 
context.

The fuzzy partitioning for the pattern classes along with the hard 
partitioning of the output space are also depicted for each set of patterns. 
Figures 4 -6  illustrate the output maps generated for the three pattern sets
A , B, and C, respectively, using 50% of the samples from each representa
tive class during self-organization. In each case, parts (a) and (b) show the 
fuzzy partitioning for classes 1 and 2 separately (for the sake of clarity), 
whereas part (c) gives the hard partitioning of the output space (consider
ing all classes). Note that along the horizontal axes each pair of numerals 
denotes the location of a single neuron whereas along the vertical axis one 
numeral corresponds to a single neuronal location. This is done to com
pensate for the difference in resolution along the two perpendicular axes. 
A  comparison of these output maps with the corresponding original 
pattern sets in Figures 1-3 brings forth the utility of the fuzzy neural net 
in modeling the given linearly nonseparable pattern sets.

B. U SIN G  TH E F U Z Z Y  M L P

A detailed study was made with the fuzzy MLP [14] in the batch mode 
of updating. Various numbers of hidden nodes m  were used in conjunction 
with, different training set sizes perc% (chosen as explained in Section 6 A). 
We selected fdenom  =  0.8 in Eqs. (8 ) and (9) and kn = 10 and 8 = 0.0001 in 
Eq. (32) after several experiments. The effect of using a different number 
of hidden layers was investigated. The performance of a modified version 
of the proposed fuzzy MLP that minimizes cross-entropy (model H) 
(reported in [14]) instead of the more standard mean square error measure 
(model O) has also been demonstrated (in the case of Pattern Set A).
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Fig. 4. O utput map generated by 14 X  14 self-organizing neurai net array  with perc  = 50 
and i  = 0.2 for Pattern Set A . (a) Fuzzy parti t ion ing  for class 1; (b) fuzzy partitioning > or 

class 2; (c) hard partitioning of the ou tp u t space.

Tables 5 and 6 demonstrate the effect of using three and more layeis 
(having m  nodes in each hidden layer) and different training set sizes on 
the proposed neural net (model O) for the three pattern sets (A , B, C). In 
Table 5 an additional comparison is provided with the model H  for Pattern
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O utput m ap g en era ted  by 16 X 16 self-organizing neural ne t array with perc = 50

, T u J P attem Set B ' (a) Fuzzy Partitioning fo r class 1; (b) fuzzy partitioning for 
(c) hard partitioning o f  th e  ou tpu t space.
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Fig. 6. O u tp u t  m ap  genera ted  by 16 X 16 self-organizing neural ne t array  with perc 
and s =  0.2 for Pattern Set C. (a) Fuzzy partition ing  for class 1; (b) fuzzy partitioning tor 

class 2; (c) ha rd  partitioning of the o u tpu t space.



Com parison in o u tpu t pe rfo rm ance  for various sizes o f  the proposed neural net model, 
having m  nodes p e r  h id d en  layer and using d ifferen t values of perc, with model H

for pattern Set A .

Layers

M odel O Model H

3 3 4 4 4 4 5 5 3 4 4 4

perc to 50 10 10 10 50 10 50 10 10 10 50

N odes m 16 16 17 18 19 19 11 11 16 18 19 19

Best b (% ) 100. 87.7 100. 100. 100. 98. 100. 95.7 98.9 98.9 100. 98.

Perfect p  (% ) 16.1 18.7 69. 77. 81.6 53.6 73.6 70. 66.7 98.9 95.4 84.1

mse .008 .046 .005 .003 .002 .016 .004 .023 .016 .003 .0007 .011

Test
m se , .066 .075 .112 .065 .067 .028 .086 .042 .071 .124 .06 .03

Class 1 (% ) 90.5 91.7 88.1 91.3 93.2 95.6 96.1 94.3 91.8 92. 93.7 95.6

Class 2 (%) 86.3 46.9 67. 69.3 71.6 91.8 59.1 83.6 84.1 68.2 76.1 87.7
N o n e (%) 85.2 86.4 73.5 84.2 82.4 90.7 76.3 90.7 78.7 61.5 83.5 91.3

Overall t (%) 88.1 84.8 80.4 86.2 86.9 93.4 84.7 91.8 86.1 78.2 88. 93.2

TA B L E  6

O utpu t perform ance for various sizes of the  p ro p o se d  neural net model, having m  
nodes per h idden layer and  using different va lues o f  perc, on Pattern Sets B  and C.

Layers

Pattern Set B Pattern Set C

3 3 4 4 5 5 3 3 4 4 5 5

perc 10 50 10 .50 10 50 10 50 10 50 10 50
Nodes in 11 11 14 14 14 14 13 13 12 12 13 13
Best b (%) 100. 86.6 100. 99.3 100. 99.6 100. 67.9 100. 97.3 100. 96.6
Perfect p (%) 62.1 12.1 65.5 69.1 87.4 80. 32.2 0 . 73.6 37.6 7ft,3 60.4
mse 0.007 0.086 0.004 0.008 0.005 0.005 0.008 0.159 0.003 0.024 0.005 0.026

Test

mst, 0.088 0.09 0.09 0.041 0.095 0.037 0.143 0.168 0.162 0.042 0.097 0.036
Class 1 (% ) 78.6 93.7 88.5 96.4 87. 97.3 83.9 100. 79.7 95.7 82. 95.
Class 2 (% ) 84. 68. 77.7 91.7 89.7 94.8 84.8 0 . 28.2 84.6 71.7 92.3
N one (% ) 84.9 84.9 83.9 88.3 78.6 91.8 59.5 0. 62.7 87.1 81. 89.6

Overall 1 (% ) 83.1 83.4 83.7 91.1 83.2 93.8 75.4 58.9 70.7 92, 81.1 92.9

Set A . The peifect match p , best match b, and mean square error mse 
correspond to the training set, whereas the remaining measures refer to 
the test set. Table 5 demonstrates using Pattern Set A  that model H always 
converged to an appreciably better perfect match as compared to the 
corresponding version of model O.



C. F U Z Z IF IC A T IO N  A T  TH E IN P U T

The effect of varying the amount of fuzziness of the input vector was 
investigated for both fuzzy models [13], [14]. The input feature information 
is given in the 3 /i-dimensional space of Eq. (4) in terms of the linguistic 
property sets low, medium, and high. The 7r-functions that represent these 
properties are defined by the radius A and center c values given by Eqs. 

(7M9).
Varying Anu.dlUm while keeping \ , OK and \ hlgh fixed [by Eqs. (8) and 

(||], one can alter the overlapping among the three 7r-functions. Let 
A , = fnos * A where fnos = I for the value of k medium given by

m e di um  J m e d i u m 7 j  a A
Eq. (7). As we decrease fnos, the radius Amedim decreases around cmedium 
such that ultimately there is in s ign if ican t overlapping between the T-func- 

tions medium and low or medium  and high. This implies that certain 
regions along the feature axis Fj go underrepresented such that 

( X  ) a  (X ) and i x , , v  >(X,) attain small values. Note
f&mnhumiF,,)' I ’ rJ ,ughi,Flj) ; pnturp

that the particular choice of values of the As and cs by Eqs. (7) (9) ensu 
that for any pattern point X, along Fj} at least one of ;.<>.>•

b , ' dlu« F j X , ) ’ and if. greater * a n  0.5 *14] Ow thepother
hand, as we increase fnos the radius \ medlum increases around cmednim 
such that the amount of overlapping between the 77-functions increases.  ̂

Tables 7 and 8 demonstrate the performance of the fuzzy kohonen s 
net and the fuzzy MLP, respectively, with different values of fnos on 
Pattern Set A . Kohonen’s model was implemented on a 1 4 X 14 array using 
perc = 50 whereas the MLP used one hidden layer that had 17 nodes with 
perc = 10 This was done to maintain uniformity with the results of Tab es
1 and s! respectively. It was observed that for the Kohonen s model 
0 8 < fnos < 1.2 gave good results whereas the MLP generated good perfor
mance for 0.7 < fnos < 1.2. This implies that the amount of overlapping 
signified by Eqs. (7)-(9) [14] indicated the most suitable choice of

T A B L E  7

Effect o f  varying fuzziness of in p u t  fea tu res  for fuzzy K o b o n en ’s m o d e l  using 
14 x  14 array with perc  =  50 on Pattern Set A . _____________

Class

1
2
None 

Overall t

fnos

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

67.8
55.1
45.6

70.0
53.0 
42.6

67.8
59.1
53.7

80.8
77.5
53.7

77.4 
67.3
55.5

60.0
63.2
58.0

58.7 
81.6
53.7

43.9
91.8
58.0

58.2 58.0 61.6 70.5 68.3 59.6 59.4 54.4



Effect of varying fuzziness of input featu res  fo r th ree-layered  fuzzy MLP model 
using m  = 17 h idden  nodes with perc = 10 on Pattern Set A.

fnos

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3  1.4 1.5

Best b (%) 94.3 98.9 100. 100. 100. 100. 100. 100. 100. 100.
Perfect p  (%) 21.9 0.0 54.1 18.4 34.5 36.8 17.3 46.0 21.9 19.6
mse 0.039 0.019 0.006 0.008 0.006 0.006 0.007 0.005 0.008 0.012

Test
m se, 0.113 0.092 0.068 0.073 0.076 0.077 0.099 0.094 0.128 0.131
Class 1 (% ) 85.0 90.5 90.8 88.4 89.3 86.7 87.9 86.0 78.9 86.4
Class 2 (% ) 75.0 69.3 60.2 67.0 75.0 73.8 57.9 64.7 57.9 54.5
N o n e (% ) 69.7 75.9 89.0 86.6 84.5 91.0 83.8 81.7 78.3 69.4

Overall t (%) 78.3 82.8 86.7 85.3 86.0 86.8 83.1 82.1 76.4 76.6

values of the As and cs. Very large or very small amounts of overlapping 
among the linguistic properties of the input feature are found to be 
undesirable.

D. C O M P A RISO N  O F  O T H E R  N E U R A L  A L G O R IT H M S

A  comparison was made among several layered neural net models 
(variations of MLP) mentioned in the following text, using the same 
number of hidden nodes as well as the same set of initial random weights 
as in the corresponding proposed fuzzy model O [14]. This enabled a more 
appropriate comparison in performance of the various models. It was 
observed that the overall performance of the fuzzy model was better, 
especially considering the fewer number of sweeps (through the training 
set) required in the process of convergence. The other models compared 
here use (i) McClelland’s new error measure reported in [18] (model M), 
(ii) learning rate adapted by angles [19] (model C), (iii) adaptive accelera
tion strategy SSAB [20] (model A), which is a modification over the 
strategy reported in [2 2 ], (iv) second-order weight correction for sigma-pi 
units [2] (model S), (v) learning rate adapted by error [21] (model P), (vi) 
heuristic scaling of learning rate [18] (model F), and (vii) the conventional 
fixed learning rate [2] (model R).

The above-mentioned models were modified to incorporate fuzzy lin
guistic values in the 3n -dimensional input space of Eq. (4) to facilitate a 
more authentic comparison with the proposed fuzzy model O. The objec
tive was mainly to demonstrate the utility of the heuristic adaptation of the



learning rate e by Eq. (32). However, model M (using a different error 
measure) and model S (using a different network architecture) were 
compared incorporating the same scheme (as model O) for adapting e. 
The performance of the traditional nonfuzzy version of the MLP (model 
O'), using the same learning rate variation scheme as model O, was also 
studied.

Tables 9-11 compare the performance of the fuzzy neural network on 
the three pattern sets ( A , B , C )  with the various other models previously

T A B L E  9

C omparison between output pe rfo rm ance  o f  various three-layered  neural models 
on Pattern Set A  using m  =  17 h idden nodes with perc = 10.

Model

o

oII e =  1.0

R

6 =  0.5 e =  0.3 6 =  0.1 P c M F A S O'

Best b ( 7 c ) 100. 70.2 100. 98.9 96.6 78.2 100. 100. 100. 50.6 77. 93.1 73.6

Perfect p  ( c/c) 34.5 0. 9.2 2.3 1.2 10.4 4.6 15. 5.8 0. 11.5; 11.5 3.5

mse 0.006 0.064 0.013 0.015 0.023 0.081 0.023 0.018 0.008 0.162 0.109 0.06 0.096

Test

mse, 0.076 0.13 0.084 0.087 0.087 0.1.32 0.09 0.088 0.119 0.161 0.169 0.12 0.119

Class 1 ( r/ r ) 89,3 94.7 ■86.4 89.1 90.3 84.3 95.9 88.6 86.2 99. 53.8 87.2 97,8

Class 2 ( r/r) 75. 4.5 76.1 81.8 45.4 31.8 76.1 64.7 50. 7.9 21.6 82.9 0.0

None (rA ) 84.5 78.7 81.1 77.3 84.2 69.4 70.1 81.4 76.3 46. 79.7 64.2 72.1

Net t <cZr ) 86. 78.8 83.3 84. 83.1 73. 84.2 83.3 78.5 69.5 59.7 78.3 77.5

T A B L E  10

Com parison between ou tpu t pe rfo rm an ce  o f  various three-layered  neural models 
on Pattern Set B  using m  =  l l  h idden nodes with perc  =  10.

M odel

o p c M F A S O '

Best b (% ) 100. 97.7 94.3 100. 61. 60.9 100. 87.4

Perfect p  {%) 62.1 35.7 18.4 28.8 0. 2.3 47.2 1.2

mse 0.007 0.018 0.039 0.007 0.133 0.113 0.007 0.078

Test
mset 0.088 0.105 0.121 0.099 0.174 0.142 0.076 0.152

Class 1 (% ) 78.6 83.1 85. 83.6 55.7 65.6 82.1 47.7

Class 2 (%) 84. 78.8 64.5 74.3 36. 32. 89.7 72.0

N o n e (% ) 84.9 81. 79.3 84.4 78.1 88.9 84.6 82.0

Overall t (% ) 83.1 81.1 77.5 81.9 63.1 70.5 85.1 71.1



C om parison betw een o u tp u t  p e rfo rm ance  o f  various th ree-layered  neural models 
on  Pattern Set C  using m  = 13 h idden  n o d es  with perc = 10.

M odel

o p C M F A S O'

Best b (% ) 100. 93.1 93.1 100. 70.1 82.8 100. 77.1

Perfect p  (% ) 32.2 19.6 0. 33.4 10.4 9.2 10.4 8.1

mse 0.008 0.049 0.041 0.009 0.116 0.096 0.011 0.104

Test
m se, 0.143 0.139 0.14 0.149 0.162 0.163 0.131 0.16

Class 1 (%) 83.9 85.4 84.8 79.7 85. 92.9 90.1 87.1

Class 2 (% ) 84.8 0. 0. 91.3 0. 0. 67.4 0.
N o n e (% ) 59.5 70.9 69.9 61.6 50.1 27.9 45.8 51.6

Overall t  (% ) 75.4 75.4 74.6 74. 67.8 64.7 73.2 69.6

mentioned, choosing m  nodes in the single hidden layer and 10 ' < of 
training samples from each representative class. The choice of m  was 
made after several runs with different num ber of hidden nodes. Best 
results were obtained with m  ~  17, 11, and 13 for pattern  sets A, B.  and C, 
respectively. In all three cases the nonfuzzy m odel O' gave poorer results. 
This is particularly evident on observing the very poor recognition score 
for class 2 in the case of Pattern Sets A  and C. It may be noted that the use 
of fuzzy linguistic inputs caused the ^-dimensional feature space (as in 
model O ') to be decomposed into 3" overlapping subregions corresponding 
to the three primary properties. As mentioned before, this enabled the 
fuzzy model to utilize more local information about the feature space and 
was, therefore, better equipped to handle the linearly nonseparable pat
tern classes that have concave decision regions.

All models [except M and S that terminated by the criterion proposed in 
Eq. (32)] were run for the same number of sweeps as required by the 
corresponding model O before convergence. This allowed us to assess the 
status oi the other models at the time when model O converged after 
having started bom  the same set of initial connection weights and then 
having been trained with the same set of pattern  points. In this connection, 
it is worth mentioning that the recognition score depends on the terminat
ing point of the algorithm as well as on the heuristic used for learning rate 
variation. However, when a neural algorithm converges to a reasonably 
good solution over a smaller number of sweeps through the training set, 
this is indicative of its efficiency. Hence, the com parison provided with the 
other algorithms in Tables 9—11 (using the same terminating point and



uniform input representation), with different heuristics for adapting the 
learning rates, helps to bring out the utility of the scheme proposed in [14] 
for model O. Further, it is to be noted that model S involves a larger 
number of connection weights (second-order connections) as compared to 
all other models used here. Therefore, a certain num ber of sweeps in case 
of model S entail a much larger num ber of weight updates (increased 
computational overhead) as com pared to the other models. Note that 
investigations regarding model R have been reported in detail with respect 
to Pattern Set A  only (in Table 9 and Figure 8 ) because it uses a constant 
learning rate that is very much problem  dependent.

On the whole, the performance of model O over Pattern Set C was 
observed to be poorer than that of its performance over the other two 
pattern sets. This is perhaps an indicator of the more difficult nature of the 
problem in the case of Pattern Set C. Comparing the results from Tables 
9-11. we conclude that model O gave consistently good performances over 
all three of the linearly nonseparable pattern sets. On the other hand, the 
behavior of the other models varied over the same three cases.

Figures 7-10 illustrate the variation of the mean square error of the 
various layered neural net models during training with the number of 
sweeps, using perc — 10, over the three linearly nonseparable pattern sets 
(A.B.C) .  All models (except S) were assessed by their status up to the 
sweep number when the corresponding three-layered model O converged. 
Figure 7 shows the results of using variations of three-layered nets with 
m = 17 over Pattern Set A. We observe that in the case of model S (e) the 
mse decreased very rapidly in the initial stages, but stabilized to 0.06 after 
around 60 sweeps. On the other hand, models O (a), C (c), and P (d) 
exhibited similar behavior in the early stages with the mse of model O 
falling more rapidly after around 125 sweeps to an ultimate low value of 
0.006. Model S terminated at around 190 sweeps, as indicated by the arrow 
along the abscissa. Note that this corresponds to a larger num ber of weight 
updates as compared to the corresponding stage in the other models. The 
mse for model M (b) decreased rapidly from an initial high value to a 
satisfactory final value that was lower than those obtained by models C 
and P, which incidentally behaved be tter initially. Oscillations were evident 
for models P and A (f) in the process of convergence. M odels A (f) and F 
(g) behaved rather poorly.

Figure 8 demonstrates the results of using three-layered models R  with 
e = 2 (f), 1 (c), 0.5 (d), 0.3 (e), 0.1 (g), and model O (b) with m  = 17 nodes 
on Pattern Set A . It is seen that model O (b) had the best overali behavior, 
although (c), (d), and (e) also exhibited satisfactory performance. However, 
a four-layered version of model O (a) with m = 19 converged to a lower 
final value of mse over a fewer num ber of sweeps through the training set.



Fig. 7. Com parison of the  variation of m ean sq u a re  e r ro r  with the num ber of sweeps 
for the various th ree-layered  neural net m odels (using m  = 17 and perc = 10) over 
Pattern Set A .  (a) M odel O ; (b) m odel M; (c) m odel C; (d) m odel P; (e) m odel S: (f) 
m odel A; (g) model F.

However this entailed a larger number of weight updates. The results of 
Figures 7 and 8 may be compared with those of Table 9 for a better 
understanding of the behavior of the various neural models. Note that as 
reported in [20], the choice of the appropriate value of e is very much 
problem dependent. H ere lies the advantage of choosing adaptive algo
rithms for varying the learning rate.

In Figure 9 we depict the results of using variations of the layered 
neural network models on Pattern Set B. The four-layered version of model
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Fig. 8. C om parison o f  the variation o f  m ean  square e rro r with the n u m b er of sweeps 
with perc = 10 over Pattern Set A  be tw een  three-layered (m  = 17 h idden  nodes) models 
R with e = 1.0 (c), 0.5 (d). 0.3 (e), 0.2 (f), 0.1 (g) and (b) model O. A  four-layered version 
of O with m  = 19 is given (a).

O (a) with m = 14 did not give superior results as compared to its 
three-layered counterpart (c) with m — 11. This may also be verified from 
Table 6 . All other models used three layers with m = 11 hidden nodes. The 
mse for model S(b) initially decreased rather rapidly and finally stabilized 
to a low value at around 100 sweeps. The arrow along the abscissa marks 
the point of termination of this algorithm. Model P (d) had a satisfactory
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Fig. 9. Com parison of the  variation of m ean square  e rro r  with the num ber o f  sweeps 
for various layered n eu ra l ne t models with perc  =  10 over Pattern Set B A a )  Four-layered 
version o f  model O with m  =  14. Three-lavared  ne tw orks with m  =  11 for (b) model S. 
(c) m odel O, (d) m odel P. (e) m odel M, (f) m odel C. (g) m odel A. and (h) model F.

overall performance. However, models C (f) and M (e) resulted in a final 
larger value of mse at termination. Oscillations were evident for model A 
(g) whereas model F (h) fared the worst. These results may be compared 
with those of Table 10.

Figure 10 illustrates the results of using different layered neural net
work variations on Pattern Set C. The four-layered version of model O (a) 
with m = 12 gave the lowest final value of mse. All other models used 
three layers with m  = 13 hidden nodes. The three-layered version of model 
O (b) had a good overall performance. Models P (e), C (d), and M (c) had
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Fiiz. 10. C om parison of the  varia tion  o f  m ean  square e rro r  with the  num ber of sweeps 
for various layered neural net m odels with perc  =  10 over pattern Set C. (a) Four-layered 
version of model O with m  =  12. T hree -layered  networks with m  m  13 for (b) model O, 
(c ) model M, (d) m odel C. (e) m odel P, (f) m odel A, and (g) m odel F.

similar final mse values (at termination) that were higher than that 
model O. Models M (c) and A (f) exhibited a lot of oscillations in the 
process of convergence. The mse value for model M was initially rather 
high, but finally decreased somewhat after around 350 sweeps. Both 
models A (f) and F (g) behaved rather poorly. All results of this figure may 

be compared with those of Table 11.

E. C O N T R IB U T IO N  OF A  P R IO R I C L A S S  IN F O R M A T IO N  F O R  

BA CK-PROPA GA TIO N

It may be noted from Figures 1 and 3 that the a priori probability for 
class 2 in the case of Pattern Sets A  and C is very low as compare to a



of the other two classes. Therefore, the contribution of class 2 pattern 
vectors toward weight correction of the MLP (positioning of the decision 
surface) by Eqs. (28)—(30) is much smaller relative to the contribution of 
the other cases. This makes the nonfuzzy model O', with its /?-dimensional 
input space, unable to recognize test patterns from class 2 in case of 
Pattern Sets A  and C (as observed from Tables 9 and 11).

In order to take into account this fact, an error correction term is 
introduced in Eq. (30). The modified equation becomes

j y ^ = ( y]H - dj ) * l ( l - P j ) ,  for h  = I I , (44)

where pj = \Cj\ /N is the a priori probability of class C  and / indicates the 
number of pattern classes. The correction term ensures that the lower the 
value of pj, the higher is its contribution in positioning the decision 
surface.

Table 12 demonstrates the effect of Eq. (44) to the back-propagation 
procedure of the MLP in improving the performance of the model in the 
case of Pattern Sets A  and C. Note that this modification is effective in the 
case of pattern classes that have widely varying a priori probabilities. The 
use of the multiplicative factor serves to counteract the insignificant

T A B L E  12

Com parison between the  o u tp u t  perform ance of th ree -layered  nonfuzzy (O ')  and 
fuzzy (O) neural models with the ir  corresponding extensions (using a priori probability 

contributions) 0'p an d  Op on  Pattern Sets A  a n d  C, using m  h idden 
nodes and perc = 10.

Pattern Set A i m  = 17) Pattern Set C  (m  ■ 13)
O' % O O ' ° ; O o P

Best b (% ) 
Perfect p  (% ) 
mse

73.6
3.5

0.096

72.5
0.0

0.094

100.
34.5

0.006

100.
1.2

0.008

77.1
8.1 

0.104

86.2
5.8

0.06

100.
32.2

0.008

100.
41.4

0.006
Test

m se,
Class 1 (% ) 
Class 2 (% ) 
N o n e (%)

0.119
97.8
0.0

72.1

0.125
95.9
45.4
57.0

0.076
89.3
75.0
84.5

0.08
87.4
73.8
88.3

0.16
87.1
0.0

51.6

0.145
89.1
40.9
59.8

0.143
83.9
84.8
59.5

0.135
80.9 
76.0
69.9

Overall t (%) 77.5 76.0 86.0 86.2 69.6 73.0 75.4 76.8



contribution (to weight correction and hence to the positioning of the, 
decision surface) of a pattern class that has very few samples.

Models O', and 0 ;1 refer, respectively, to the variations of the three- 
layered models O' (nonfuzzy) and O (fuzzy) using the contribution of the 
a prior probabilities. Each network used m  hidden nodes with perc = 10 
training samples chosen from each pattern class. Note that the recognition 
score of class 2 patterns improved radically for both Pattern Sets A  and C 
in case of model O',. The performance on the whole was superior in the 
case of both models Ô , and Op (relative to models O' and O, respectively) 
in the case of Pattern Set C (involving more complicated decision regions). 
The relative improvement was always more noticeable in the case of model 
O', (the nonfuzzy version).

8 . CONCLUSIONS AND DISCUSSION

The effectiveness of using fuzzy versions of the Kohonen’s net [13] and 
the MLP [14] in classifying certain linearly nonseparable pattern classes 
with nonconvex decision regions has been demonstrated. It may be noted 
that such patterns cannot be properly classified by the Bayes’ classifier for 
normal distributions or other metric-based methods. The components of 
the input vector of these fuzzy models [13], [14] consist of the membership 
values to the overlapping partitions of linguistic properties low, medium, 
and high corresponding to each input feature. The use of linguistic inputs 
enables an /!-dimensional feature space to be decomposed in 3" overlap
ping subregions such that more local information of the feature space can 
be used. On the other hand, the neural models help in generating the 
required concave a n d /o r  disconnected decision regions. The fusion of 
these concepts, therefore, enabled the fuzzy neural models to provide a 
superior performance in classifying the given linearly nonseparable pattern 
sets of Figures 1-3. The effect o f fuzzification at the input, by varying the 
radius of the 7r-function corresponding to the linguistic set medium, was 
demonstrated for both models. The contribution of the a priori probabili
ties of the pattern classes in the back-propagation procedure for weight 
updating was seen to be effective in classifying patterns from classes with a 
low a priori probabilities.

Performance of the fuzzy MLP was compared with those of the conven
tional MLP, the Bayes’ classifier, and seven other neural algorithms. 
Because the self-organizing fuzzy Kohonen’s model was used as a classi
fier, its performance was compared only with its conventional version 
(used as a classifier) and the Bayes’ model. Similar work has also been 
done on Indian Telugu vowel data, but has not been reported here due to



.space limitations. It may be noted that the fuzzy' self-organizing model 
used partial supervision, with 5 > 0, during self-organization. On the other 
hand, the fuzzy MLP was fully supervised during training. This accounts 
for the comparatively better performance of the fuzzy MLP as compared 
to that of the fuzzy self-organizing network (with both models being used 
as classifiers). This may also be verified by comparing Tables 5 and 6 (fuzzy 
MLP) with Tables 1-3 (fuzzy self-organizing network).
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