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Abstract — Improvement & deterioration for a repairable 
system are studied, in particular in terms of the effect of ageing 
on the distribution of the time to first failure under a non- 
homogeneous Poisson process. For a repairable system undergo
ing minimal repair, the optimal replacement time under the age 
replacement policy is discussed.

1. INTRODUCTION

The performance of a repairable system can be better or 
worse with the passage of time. A repairable system improves 
(deteriorates) with time if the times between two successive 
repairs tend to get larger (smaller) in some sense. Ascher & 
Feingold [1] defined system improvement (deterioration) in 
terms of orderings between interarrival times (times between 
successive failures). However, their definition is valid only 
under the assumption of 5-independence of these interarrival 
times. Ebrahimi [8] and Deshpande & Singh [7] defined system 
improvement (deterioration) by considering the entire history 
of the system. They compared the conditional inter-arrival times 
through several known partial and complete orderings [6,7] be
tween probability distributions.

We consider a system with minimal repair, ie, the failed 
system is restored to a condition which is the statistically the 
same as its condition just prior to failure. Most repairs involve 
the replacement of only a very small fraction of a system’s parts. 
A system subject to minimal repair can be modeled by an NHPP 
[1, 111-

Section 2 defines improvement (deterioration) of the system 
by comparing inter-arrival times through a few partial and com
plete orderings between probability distributions; then it derives 
some results and connections thereof. Section 3 determines the 
optimal replacement time under age-replacement policy

(wherein items are replaced at failure or at prefixed time) for 
a system subject to minimal repair.

Notation (Statistics)

S(n)  arrival time of failure n; n =  1,2,...
X{n)  interarrival time between failures n — 1 & n; n =  

1,2,...
N(t)  number of failures in [0,/]
f x {x ) ,Fx (x),rx (x) [pdf, Sf, failure rate] of X
gY(x ) ,GY( x ) l p d f , S f l o f Y
ex (x) mean residual life of X: [J“ F ^ (« ) du]/Fx {x) 
o\{x)  Var{X—x \X>x} ,  the variance of residual life of X. 
sk ordered real numbers; if there is only 1 number, then 

* i= X (l)
X(n;s„_1,...,si) X(n) ,  given S(k) = sk, for k =  n —1,...,1.

Acronyms1 & Nomenclature

MRL mean residual-life
NHPP non-homogeneous Poisson process
MRLF mean residual-life function
DLR, ILR [decreasing, increasing] likelihood ratio: 

f x (x + t ) / f x (t) is [non-increasing, non-decreasing] in 
t for all x  >  0 

DFR, IFR [decreasing, increasing] failure rate: r(x)  is [non
increasing, non-decreasing] in x  for all x  >  0 

DMRL, IMRL [decreasing, increasing] mean residual life: 
e(x)  is [non-increasing, non-decreasing] in x  for all 
x  >  0

DVRL, IVRL [decreasing, increasing] variance of residual 
life: a2(x) is [non-increasing, non-decreasing] in x 
for all x  >  0

NDVRL, NIVRL net [decreasing, increasing] variance of 
residual life: a2(x) [ > ,  < ]  <r2(0) for all x >  0 

NWU, NBU new [worse, better] than used: F  (*+>>) [ < ,  > ] 
F (x) •F  (y ) for all *,;y >  0 

NWUE, NBUE new [worse, better} than used in 5-expecta
tion: ex (x) [ > ,  < ]  ex (0) for all x  5: 0 

NWUFR, NBUFR new [worse, better] than used in failure 
rate: r(x)  [ < ,  > ]  r(0 ) for all x  >  0 

SS, XSS g(x)  is [star-shaped, anti-star-shaped] if g( x ) / x  
is [increasing, decreasing] for all x  >  0.

Notation (Logic)
LRX > Y X is larger than Y in likelihood ratio ordering: 

f x (x ) /8r(x ) is non-decreasing in x  for all x  ^  0

jThe singular & plural of an acronym are always spelled the same.



X > Y X  is larger than Y  in failure rate ordering: rx (x) < 
rY(x) for all x >  0

ST —
X  >  Y X  is larger than Y in stochastic ordering: F x (x) > 

Gy(x ) for all x  >  0 
X  > Y X is larger than Y in mean residual life ordering: 

ex (x) >  eY(x) for all x  >  0
E

X  > Y X  is larger than Y  in s-expectation ordering: E {X} > 
E{y}

VR .
X  >  Y X  is larger than Y  in variance of residual life order

ing: ax (x) >  oy(x) for all x  >  0y
X  >  Y X  is larger than Y in variance ordering: <rx (Q) > 

4 ( 0 )
X  >  Y X  is larger than Y in initial failure rate ordering: 

rx(0) <  r r (0).

Other, standard notation is given in “ Information for Readers 
& Authors”  at the rear of each issue.

Assumptions

1. Repair times are negligible.
2. S(0) =  X(0) =  0.
3. The repair function does exactly what it is assumed to 

do — neither better nor worse. In particular, repair never 
damages anything. M

Definitions

1. Minimal repair: The failed system is restored to a con
dition which is the statistically the same as its condition just 
prior to failure; ie, if the system fails at time t and undergoes 
minimal repair, then the Sf of the repaired system is F Xm  
( t + x ) / F X(ly(t), and the system is modelled by an NHPP.

2. Age Replacement Policy: A unit is replaced (with a like- 
new unit) upon failure or at a specified age, whichever comes first.

3. [2 = LR, FR, ST, MR, E, VR, V, r(0 )] 2 -Improving 
(Deteriorating): A point process {N(t): t >  0} consisting of 
interarrival times X (l) ,  X(2) ,  ... is 2 -improving (2- 
deteriorating) ifX{j;sJ_ 1,.. .,s1) > s  ( <  H) X(i;si_ l, . . .,sl ) for 
every j  >  / >  1 and every 0 <  < . . .<  Sj_u with strict 
inequality for at least one pairing of interarrival times.5

2.1 General Case

The effect of ageing of X(  1) on improvement (deteriora
tion) of the system undergoing minimal repairs at failure is 
discussed in theorem 1.

Theorem 1. The stochastic process {jV(/); t >  0} generated 
by a minimal repair policy, ie, by an NHPP, is improving 
(deteriorating) —

a. in the VR sense iff_FX(1) (*) is IVRL (DVRL).
b. in the V sense iff F ;q_i) (■*) is IVRL (DVRL).
c. in the r(0 ) sense iff F X(1) (x) is DFR (IFR). ■<

Thus for a system undergoing only minimal repair —

• improvement (deterioration) in the VR or V sense is the same.
• improvement (deterioration) in the r(0 ) or FR or ST sense 

is the same [5],

In some situations, a system undergoing minimal repair 
might not be improving (deteriorating) monotonically, but the 
‘time after every repair up to the next failure’ can be compared 
with the ‘time up to the first failure’. We show that improve
ment (deterioration) defined by such a comparison is equivalent 
to certain properties of the distribution of X (l) .

Theorem 2. The stochastic process {N(t): t >  0} generated 
by a minimal repair policy is improving (deteriorating):

X(n + 1; s,,....^!) >  ( < )  X ( l ) ,  for all n >  1 and for all 0

<  Si < .. .  < sn —

a. in the LR sense iff f ^ n t ^ )  is DLR (ILR).
b. in the FR sense iff F X(i) W  is DFR (IFR).
c. in the ST sense iff F X(i) (jc) is NWU (NBU) [5].
d. in the MR sense iff is IMRL (DMRL).
e. in the E sense iff F X(1)(x) is NWUE (NBUE) [5].
f. in the VR sense iff F x o jM  is IVRL (DVRL).
g. in the V sense iff -FX(1)(;t) is NIVRL (NDVRL).
h. in the r(0 ) sense iff F X(1)(x) is NWUFR (NBUFR).

2. IMPROVEMENT & DETERIORATION

Ebrahimi [8] and Deshpande & Singh [5] defined system 
improvement (deterioration) by comparing the conditional in
terarrival times through ST, LR, FR, MR, E orderings between 
probability distributions. Other partial orderings of distributions 
and their corresponding relationships are available in the 
literature [6,7]. Definition 3 covers improvement (deteriora
tion) of a repairable system through other partial orderings.

2Most repairs involve the replacement of only a very small fraction 
of a system’s constituent parts.
■’The equality will hold in each case for a homogeneous Poisson pro
cess (HPP), because it is neither improving nor deteriorating.

In the comparisons of theorem 2, different orderings lead 
to different properties of the distribution of X( 1). Comparisons 
based on weaker orderings lead to successively weaker ageing 
properties of the distribution of X (l) .

2.2 Special Case 

Notation

\ ( t )  intensity of NHPP 
A (t) mean of NHPP: Jo \ ( y )  dy 
AA(x; t) A ( t + x ) —A(t).

{N(t): t >  0} is a NHPP with intensity \ ( t )  and mean A(t).  
The improvement (deterioration) of the corresponding repairable 
system is discussed in terms of \ ( t ) .



Theorem 3. The NHPP {N(t): t >  0} with intensity function 
X (0 is improving (deteriorating) —

a. in the LR sense iff X (x + 0  -exp[—AA(x;0] is non
decreasing (non-increasing) in t for all x, t  >  0.

b. in the FR sense iff \ ( f )  is non-increasing (non
decreasing) in t for all t >  0.

c. in the r(0 ) sense iff X(t) is non-increasing (non
decreasing) in t for all ?> 0.

d. in the stochastic sense iff AA(t2 — tt ) >  (< )  
AA(t2—tx; rj+jc) for 0 <  ti <  t2, and x > 0 [8].

e. in the MR sense iff exp[A(jc+f)] • exp[-A(;y)] dy 
is non-decreasing (non-increasing) in t for all x,t >  0.

f. in the E  sense iff exp[A(0] • J“exp[-A (y)] dy is non
decreasing (non-increasing) in t for all t >  0. •<

Theorem 4. Let {N(t): t >  0 } be a NHPP with intensity func
tion X(r). Then,

X(n +  1; >  (< )  X ( l) ,  for 0 <  Si < . . .<  s„, —

a. in the LR sense iff X(jc+0 -exp[-AA(;t; /)] >  (< )  
\ ( x )  -exp[—AA(*; 0)], for all t,x >  0.

b. in the FR sense iff X (;t+ 0  <  ( > )  X(jc), for all t,x
>  0, ie, A(f) is concave (convex) for all t >  0.

c. in the r(0 ) sense iff X(0 <  ( s )  X(0), for all / >  0.
d. in the stochastic sense iff A (0  is sub-additive (super

additive) for all t >  0.4
e. in the MR sense iff exp[A (*+f)]-\f+x exp[-A(>')] dy

>  ( < )  exp[A(jc)]-J"exp[—A(y)] dy, for all x,t >  0.
f. in the E  sense iff exp[A(0] ^ “expf—A(y)] dy >  (< )  

exp[—A(y)] dy, for all t >  0.
Proposition 1. Let A(t )  be XSS (SS), then,

X ( n + 1; sn>. ..,«!) >  (< )  X (l) ,  for every n >  1 and 

0 < < . . . <  sn.

3. OPTIMAL REPLACEMENT TIME UNDER 
AGE REPLACEMENT POLICY WITH MINIMAL REPAIR

Notation

R(t )  operational cost of a unit operating during [0,f), R  (0) 
=  0

f  age at which there is: a) unplanned replacement, or 
b) a major unrepairable breakdown, a r.v., f  >  0. 

Ci cost of the repair/replacement at f  
T  age at which there is a planned replacement 
c2 cost of the planned replacement at T 
V min(f,7’)
Cq(jc) cost of minimal repair i at age x 
F  (x) Sf of a new unit

M(t)  an NHPP with mean function \q-F  _1(y) dF(y)
Sj arrival-time j  of M(t)
' implies ordinary derivative
<t>(t) continuously differentiable functions on [0,oo);

<̂ (0) =  ^(0) =  0; <t>' (0  >  0, ' ( 0  >  0 on [0,oo)
DU) r w / w  
T(r )  D{t)-4>(t) -  H t ) .

Savits [9] considered a model with an underlying stochastic 
process { /? (f),0 <  f<  f}, Under the age replacement policy, 
a planned replacement occurs whenever a functioning unit 
reaches age T.

Assumptions (Additional)

4. If an operating unit fails at age x, it is replaced by a 
new unit with probability p,  or minimally repaired with prob
ability g = l  —p.

5. M(t)  and f  are ^-independent. ■<

Then [4,10],

Sf{f} = G{t) = expf  p - F ~ l (y) dF(y) = F p{t),

M ( t ~ )

* ( 0  =  E  4 ( s , ) .  o <  t <  f.
/=i

The long-run average cost-rate for such a system under age 
replacement policy is:

7 (7 ) =  lim {C(t)/ t}  =  A(T)/E{r,},f—> oo

E M  = |  G(y) dy,

A(T)  m cv Fp( D  +  c y F J T )  +  q - h ( y ) - F - l (y)

4A  function A(r) is sub-additive (super-additive) iff A(t+x)  < (> ) 
A(f) + A(.x) for all t,x > 0.

■Fp(y) dF(y),

h(y)  m E{c0MW + 1(y)}.

We determine the T that minimizes J(T)  by using an op
timization lemma [9].

Lemma 1. C(f) =  [/? +  \j/(t)]l<j>{t), t >  0, R  >  0, D(t)  is 
non-decreasing (non-increasing) over [0,oo). Then,

i. r(t) is non-decreasing (non-increasing) over [0,oo).
ii. If D(t)  is non-decreasing and lim,-oc{r(f)}  >  R,

(4-1)

there exists at least one point to <  °° which is a global 
minimum of C(t).  Such points are the only solution of:

n o  =  r . (4-2)



The minimum of C{t) subject to (4-1) is C(t0) = D(t0), t0 
is any solution of (4-2). The global minimum and hence the solu
tion of (4-2) is unique if D(t)  is strictly increasing.

iii. If D(t)  is non-decreasing and lim<_ 00{r(f)}  = R, 
then C(t)  is a non-increasing function of t, so that a 
minimum of C(f) occurs at t =  oo. However, C(f) 
can assume the minimum value at all points t €  [u, oo) 
for some finite w.

iv. For the remaining cases, such as: a) the limit in (4-1) 
is less than R, or b) D(t)  is non-increasing over [0,oo), 
then C(t)  is a non-increasing function of t and the 
minimum of C(f) occurs only at t =  oo. <

3.1 Constant Probability for Replacement 

Assumption: Co(;y) =  c0.

A{T) = ca-Fp(T) +  cr F p(T)

E(V) = j  F p(y) dy,

J(T)  = A { T ) /  E{r?}

ca = (q/p)-c0 +  q

Compare J(T)  & C(T)  using lemma 1.

R = c2, T) = cb-Fp( D

0 ( D  =  &

Cb =  (q/p)-ca + cx- c 2

Hence the conditions of lemma 1 are satisfied.

D(T) = rF{T)-[Co +  p - ( c x -  c0 -  c2)].

If rF( T) is a non-decreasing (non-increasing) function of T  and 
Cj >  c0 +  c2, then D(T)  is increasing (decreasing) over 
[0,oo).

l im j^ o jr  ( T)} =  cfc-[p-lim7-_00{rF(r)}-E{r;} -  1] >  c2, 
when rF(T) — oo. Therefore from lemma 1, the optimal 
replacement time T0 is finite and is the solution of:

i T _
F p(z) dz + F P(T) = ca/cb

%(*)  =  p-rF(T).

Example

Let F  be Weibull with:

rF(f )  =  fc-X- X > 0 ,  k > l .

The optimal replacement time T0 is finite and is the solution of:

?T
exp(-p(X -y)*) dy +  exp( - p ( \ - T ) k)

= Ca/Cf).

The l.h.s. can be evaluated as an incomplete Gamma integral 
whose values are readily available in the tables.

Remark: If F  is DFR and c0 >  ct + c2, then the optimal 
replacement time T0 = oo; ie, there should be no replacement.

3.2 No Unplanned Replacements (p = 0)

The model, considered by Block et al [4], is a generaliza
tion of the minimal repair model [2,3]. Then [10],

T h ( y ) - F - l (y) dF(y),  
o

JT
r(y) dy.

o

h ( y ) =  E{c^w  + 1(>’)} =  Zx Cq + 1()') •poim(x;A(y))

=  c0(;y)-exp[—AOO-CoOO].

I T
Co(y) 'expi—Aiy )  -c o(y)]-rF(y) dy,

E{,} =  T.

The long run average cost-rate is:

J(T)  = A ( D / T .

Compare J (T)  with C(T)  in lemma 1.

R = c2,

S T
CoOO-expt-AOO-c 0( ) ') ] t f ( ) ')  dy,

<HT) = T.

Hence the conditions of lemma 1 are satisfied.

D(T) = c0{ T ) - e x v [ - A ( T ) - c 0{T)]-rF{T)

= exp[ -A (T)  -c 0(T)]-[ci(T) -rF(T) + c0(T)-r^(T)  

+ c0(T)-rF(D - [A ( D - c6 ( T )  -  A ' ( T ) - c 0( m -  

Example
Let the operational cost be constant: c0(t) =  c0.

D(T) = c0[rj?{T) +  (c0- l ) - 4 ( D ] - e x p [ - A ( T ) - c 0]

A(T)  =  c2 +



H r )  =  exp[—A (7) ■c0]*[c0-7’*rf (7’) +  c0/ c 0] -  c0/ c 0

lim {r(J)} >  c2, for c0 >  1T—<x>

Thus if F  is IFR, then D  ( T) is non-decreasing over [0,oo) and 
hence, from lemma 1, the optimal replacement time T0 is finite 
and is given by a solution of:

exp [-A (7 ’) - c 0H c 0-7,-'>(7’) +  cQ/c  0]

=  [ c 2 -  C 0 - ( c 2 - l ) ] / c 0.

If D(T) is non-increasing over [0,oo), then T0 = oo. 

F o rO < c0< l ,  lim {r(F)} = - c 0/ c 0 <  0 <  c2r—oo

Hence for any F, the optimal choice is J0 =  oo. Thus in all 
cases, the best policy is never to replace a unit but to minimally- 
repair it on failure. ■<

r(0) r(0)
c. ....n (j) >  ( <  ) x s._h_ iH(i)

APPENDIX

r% n.... ,!(■ + !) (0) > ( < ) / > * ( 0)

for all 0 <  $1 <  ... <  s„;

A .l Proof of Theorem 1

,  .. VR .VR.
a. xs._l....0 )  S  ( ^ )  xs._v ,„,si ( i )

~  ....„<"+■’ w  *  , s )  °% „ _t....„<* M

for all x  >  0 and for all 0 <  <  ... <  s„;

* *  °FX(l)(X + Sn) S: ( ^ )  4 * (1) (* +  ■*„-1) 

for all x > 0 and for all 0 <  s„_i <  sn; 

o  (*) is a non-decreasing (non-increasing) function

of x;

FX(1) is IVRL (DVRL).

b. X ,_ ,..... ,( /)  a  <*>■*,_,....= ,(0

• *  ° K ....2  <s > ° K _ , .........................„ w <0)

for all 0 <  Sj <  ... <  s„;

-  ( - )  a fjr(i) ( sn - l)  fo ra ll°  <  ^ - 1  <

<*=* Fx w  is IVRL (DVRL).

* *  rFX(l)(sn) ^  rFx(i)(sn- l )  for all 0 <  Sn^  < Sn\

^  Fx(\)  is DFR (IFR).

A.2 Proof of Theorem 2 

Observe that

P r{ X (n + l) >  x  | S(n) =sn, . . . ,S ( l )  =Si}

= P r{ 5 (« + 1) >  | S ( n ) = s n, . . . , S ( l ) = s l}

= Pr{S(«-l-l) >  *+ s„ | S(n)=s„}

= Pr{X (l) >  | X (l)  >  s„} for all sn > s„-x > ...

The proof of the theorem follows by further observing that

K ....., ,( ! .+ !) is siven by
f X ( l ) ( x  +  S„)

^X(l) (sn)

^(1)

epXSn.....*,(n+l)  ^  epX ( \ ) ( X  +  Sn^ ’

aF XSn..... j j ( n + l )  ^  a p X ( \ ) ( X +  S"

A. 3 Proof of Theorem 3

Observe that for 0 <  Si < . . .<  s„_2 <  t

P r{X(n) > x  | 5(n — 1) =  t, S ( n - 2) = 5„_2,...,5 ( 1)

=  ^i}

=  Pr{X(n) >  * | S ( n - l )  = t}

P x + t

= exp] X(y) dy

=  exp{-A (*  +  ») +  A (0} .

Hence

fxUn_2....M (»>(*) =  X(jc+0 expj -  I My )  dyl .



a. By definition, NHPP is improving (deteriorating) in the LR 
sense iff for ^  >  t2, the ratio of

M x + t i )  e x p ^ - j  M y)  dyjand X(*+f2)

CXP[ - |  dy\  iS 

non-decreasing (non-increasing) in x  >  0,

^  exP {-A (* -H i)}
X (*+f2) exp{_ A (x+?2)}

is non-decreasing (non-increasing)

in x  >  0,

X/ (jc+?j) ( x+t2)
X(jc+?j) X(jr+f2)

— X (x+/2) for all x >  0 

assuming that X' (x ) exists,

>  ( < )  M x + t ^

for all x >  0,

xcjc+rj) r r ^ 1 ^+'2 
--------- > (< )  exPjJ M y)4y-J My ) d yX(x+t2) 

for all x  >  0

M x + t ^  e x p ^ -  j  ' x (y )  rfyj

X(jc+f!> exp^— J  *\(y) dyj

X (*+/2) exp} — |  2X(>) dy

ex p j^ -j* +\ ( y )  dy

for all jc >  0 and tx > t2,

<=>■ X (x+fj) <  ( > )  X(jc+?2) f°r all x  >  0 and ^  >  t2, 

X(r) is non-increasing (non-decreasing) in t for all t >  0.

c. NHPP is improving (deteriorating) in the r(0 ) sense

r F y  t ^ ^ (0 )  ^ ( ^ )  rF„ , ^ ,,(0 )

for all tx > t2,

* *  r* * < i) ^  rFX{X)(h) for all >  t2,

X(rt ) < ( s )  X(/2) for all ti >  t2,

X(f) is non-increasing (non-decreasing) in t for all t >  0.

d. By definition, NHPP is improving (deteriorating) in MR sense 
iff for all t\ > t2 and Jt >  0,

u
exp} — |  X(y) dy\du

>: ( < )  X (*+f2) expj^~ j  2̂ (y) 

for all x  S  0,

<=» \ ( x + f )  exp^—|  \ ( y )  rfyj

is non-decreasing (non-increasing) 

in t for all x  ^  0.

This means that the conditional density function of X(n)  is non
decreasing (non-increasing) in t, the time of (n — 1)* failure.

b. NHPP is improving (deteriorating) in the FR sense

e x p ] - j  M y)  dy

j ”  e x p j - j “+* My)  dy^du

eXP[ _ J

exp[-A(M +f!)] du 

e x p [ - A ( x + t t)]

e x p t-A (u+t2)] du

exp[-A (jc+ r2)]



<=► exp{A(jc+f)} I exp[—A(«)] du is non-decreasing
J x+t

(non-increasing) in t for all x, t £  0.

e- E[*Jn....n (n +  l) ]  =  |  j  M y)  dyj  dx

r
-  [1 -  exp{-A (f))}] exp[-(;yA (f))/*] dy

My )  . . ■ ,  A •  ̂ ■since -------  is non-increasing (non-decreasing) in y,
y

= o.

=  exp[A(r)] |  exp[-A (z)] dz

Hence from the definition, the result follows.

Proof of Theorem 4

We shall prove d. The proofs of the remaining parts follow 
on similar lines as those for theorem 3.

ST ST
d. XJb....^ ( / i +  l )  >  ( s )  X (l)  for every n >. 1 and for

0 <  ^  <  ... <  .sn

exp{-A (r+ s„) +  A(j„)} > ( < )  exp{-X (f)}

for all t >  0,

A( 0  is sub-additive (super-additive).

Proof of Proposition 1 

Consider for t > 0

ex p { -A (0 }  exp[-A(y)] dy -  I exp[-A(;y)] dy
- r

=  ex p { -A (0 }  |  exp[—A(y)] dy

-  [1 —exp{—A(/)}] |  exp[-A ();)] dy

< ( > )  exp{-A (r)}  | ex p [-(y A (f))/r]  dy
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