Common Due-Date Assignment and Scheduling on Single Machine with Exponential Processing Times

D. K. Manna
SQC \& OR Unit
Indian Statistical Institute
Madras 600 029, INDIA

Abstract

This aticle deals with the problem of common due-date assignment and scheduling on single machine with exponential processing times. The objective is to minimize the expected total cost associated with the due-date and eartinesshardiness of jobs. For large due-date cost, we have derived a.closedform solution, which is applicable to the general processing times as well. In the other case, it is shown that an optimal sequence lies among the V -shaped sequences, and an algonthm is developed for the derivation of optimal solution.

Key words

Stochastic Scheduling, Due-date Assignment, Early/tardy.

1. Introduction

Consider a single machine with n independent jobs, all available for processing (non-preemptively) at time zero. All the jobs have common due-date which is unknown. The problem is to find an optimal value of the due-date and an optimal sequence which minimize the total cost based on due-date value and the earliness/ tardiness of each job.

Traditionally, the due-date has been assumed to be externally determined (beyond the control of the decision-maker). Under such situation, the decision problem is essentially scheduling the jobs subject to their prescribed due-dates. Conway [6] was the first to introduce the notion of attainable due-date which is internally determined. With this orientation, the decision problem is both assigning due-dates to jobs and scheduling them.

Recently, the issue of due-date assignemt has received considereable attention of the researchers in the field of scheduling. For instance, refer to De et al. [7, 8], Cheng and Gupta [5], Baker [4] etc., Analytical studies of the problem were initiated by Seidmann et al. [13] and Panwalkar et al. [12].

The present study is motivated by Panwalkar et al. [12]. They have given elegant solution to the problem wherein job processing time are known constants, However, in many real-life sitations, the processig times are likely to be random and this calls for scheduling analysis under uncertainty (refer to Frost [9], Al-Turki et al. [2, 3]). In such cases a common modelling assumption has been the use of exponentially distributed processing time. For example, see Glazebrook [10], Weiss and Pinedo [14], Agrawala et al. [1], Kampke [11] and so on.

In this paper, we study the common due-date (fixed) determination and sequencing problem on single machine, when the job processing times are exponentially distributed.

We first formulate the problem in Section 2 as the minimization of expected total cost. In Section 3, we present the preliminary results that are used later to derive the properties of optimal due-date and sequence. In this section, we derive the distribution of the sum of independent and distinct exponential variables. The main results are presented in Section 4. For large due-date cost, a closed form solution is provided. In the other case, it is shown that an optimal sequence can be found in the set of V-shaped sequences. An algorithm is also developed for this case.

2. Problem Formulation

The processing time X_{i} of job $i(1 \leq i \leq n)$ is assumed to be random having exponential distribution with parameter λ_{i}. We assume that X_{i} 's are independent, and distinct (i.e., λ_{i} 's are distinct). Let us denote the pdf (probability density function) and cdf (cumulative distribution function) of X_{i} by $f_{i}($.$) and F_{i}($.$) respectively, so$ that

$$
f_{i}(x)=\lambda_{i} e^{-\lambda_{i} x} \text { and } F_{i}(x)=1-e^{-\lambda_{i} x} \text { when } x \geq 0, \text { for } i=1, \ldots, n
$$

For a sequence $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of n jobs, let $C_{i}(\pi)$ be the completion time of π_{i} (the i-th job in π)

It is also assumed that all the jobs have common due-date δ which is fixed but unknown. Next, let us denote the earliness and tradiness of the job π_{i} by
$E(\delta, \pi)$ and $T(\delta, \pi)$ respectively.
Therefore, for any fixed sequence π and given due-date δ,
$C_{1}(\pi)=\sum_{j=1}^{1} x_{\pi_{j}}$
$E_{1}(\delta, \pi)=\max \left\{0, j-C_{1}(\pi)\right\}$
and $T_{,}(\delta, \pi)=\max \left(0, C_{i}(\pi)-\delta\right\}$
for $i=1, \ldots, n$.
We denote the cost rate (per unit of time) for (i) due-date, (il) earliness and (iii) tardiness by $P_{;}, P_{2}$ and P_{3} respectively, and they are assumed to be fixed and known.

Then, the total cost, denoted by $Z(\delta, \pi)$, associated with a specified value of due-date δ and a given sequence π, is
$Z(\delta, \pi)=\sum_{i}^{n}\left[P_{i} \delta+P_{2} E_{i}(\delta, \pi)+P_{3} T_{i}(\delta, \pi)\right]$.
It must be noted that $E_{1}(\delta, \pi)$ and $T_{i}(\delta, \pi)$ are random, and consequently $Z(\delta, \pi)$ is also random. Let us use the notation $\varepsilon(W)$ to represent the expectation of any random variable W.

The problem under consideration is to minimize the expected total cost, i.e.,
Find δ^{*} and π^{*} such that
$\varepsilon\left[Z\left(\delta^{*}, \pi^{*}\right)\right]=\min _{\delta, \pi} \varepsilon[Z(\delta, \pi)]$.

3. Preliminary Results

In this section, we present some preliminary results that are required to derive the optimal due-date and optimal sequence obtained in the next section.

Lemma 1 : For any $r(r \geq 2)$ distinct numbers - $a_{i}(i=1,2 \ldots, r)$,
(a) $\sum_{i=1}^{r} \frac{1}{\prod_{\substack{j=1 \\ \neq i}}^{r}\left(a_{j}-a_{i}\right)}=0$,
(b) $\quad \sum_{i=1}^{r} \frac{\prod_{\substack{j=1 \\ \neq i}}^{r} a_{j}}{\prod_{\substack{r}}^{r}\left(a_{j}-a_{i}\right)}=1$,

Proof : The proof is given in the Appendix.
The following lemma gives the density function of the sum of exponential random variables having distinct parameters.

Lemma 2 : Lex $X_{i} \cap \exp \left(\lambda_{i}\right)$ for $i=1,2, \ldots, r(r>2)$ be distinct and mutually independent. Then the pdf of $\sum_{i=1}^{r} X_{i}$, denoted by $g_{r}(t)$, is given by

$$
\begin{equation*}
g_{r}(t)=\left(\Pi_{j=1}^{r} \lambda_{j}\right) \sum_{i=1}^{r} \frac{e^{-\lambda_{i} t}}{\prod_{\substack{j=1 \\ \nexists i}}\left(\lambda_{j}-\lambda_{i}\right)} \tag{5}
\end{equation*}
$$

Proof : The proof is based on Lemma 1(a) and is given in the Appendix.
Corollary 1 : The cdf of $\sum_{i=1}^{r} x_{i}$ (as defined in Lemma 2) is given by

$$
\begin{aligned}
\mathrm{G}_{\mathrm{r}}(\mathrm{t}) & =P\left[\sum_{i=1}^{r} X_{i}<t\right] \\
& \left.=1-\sum_{i=1}^{r} \frac{\prod_{\substack{j=1 \\
\neq i}}^{r} \lambda_{j}}{\not \lambda_{j}\left(\lambda_{j}\right.}-\lambda_{i}\right)
\end{aligned} e^{-\lambda_{i} t}
$$

Proof : It is obvious from Lemma 2.
Lemma 3 : For a specified value of due-date δ and a given sequence π, the expected total cost is

$$
\begin{align*}
\varepsilon[Z(\delta, \pi)]=n\left(P_{1}+P_{2}\right) \delta & +P_{3} \sum_{i=1}^{n}(n-i+1) \mu_{\pi_{j}} \\
& -\left(P_{2}+P_{3}\right) \sum_{i=1}^{n} \int_{t=0}^{\delta} \bar{G}_{i}(t / \pi) d t \tag{6}
\end{align*}
$$

where $\bar{G}_{i}(1 / \pi)=P\left[C_{i}(\pi)>t\right]$
and $\mu_{\pi_{1}}=\varepsilon\left[X_{\pi_{1}}\right]$.
Proof: We have, for any $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{n})$,

$$
\begin{aligned}
E_{1}(\delta, \pi) & =\max \left\{0, \delta-C_{i}(\pi)\right\} \\
& =\delta-\min \left\{C_{i}(\pi), \delta\right\} \\
\text { and } T_{1}(\delta, \pi) & =\max \left\{0, C_{i}(\pi)-\delta\right\} \\
& =C_{1}(\pi)-\min \left\{C_{i}(\pi), \delta\right\} .
\end{aligned}
$$

This implies that
$\varepsilon[E(\delta, \pi)]=\delta-\varepsilon\left[\min \left\{C_{i}(\pi), \delta\right\}\right]$
and $\varepsilon[T,(\delta, \pi)]=\sum_{j=1}^{i} \mu_{\pi_{j}}-\varepsilon\left[\min \left\{C_{i}(\pi), \delta\right\}\right]$ (8)

Now,

$$
\begin{align*}
\varepsilon\left[\min \left(C_{i}(\pi), \delta \jmath\right]\right. & =\int_{t=0}^{\infty} P\left[\min \left\{C_{i}(\pi), \delta\right\}>t\right] d t \\
& =\int_{t=0}^{\delta} P\left[C_{i}(\pi)>t\right] d t \\
& =\int_{t=0}^{\delta} \bar{G}_{i}(t / \pi) d t \tag{9}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\varepsilon[Z(\delta, \pi)] & =n P_{1} \delta+P_{2} \sum_{i=1}^{n} \varepsilon\left[E_{i}(\delta, \pi)\right]+P_{3} \sum_{i=1}^{n} \varepsilon\left[T_{i}(\delta, \pi)\right. \\
& =n\left(P_{1}+P_{2}\right) \delta+P_{3} \sum_{i=1}^{n} \sum_{j=1}^{i} \mu_{\pi_{j}}-\left(P_{2}+P_{3}\right) \sum_{i=1}^{n} \int_{t=0}^{\delta} \bar{G}_{i}(t / \pi) d t
\end{aligned}
$$

Hence the result follows.
Lemma 4 : Let $\delta(\geq 0)$ be a constant. Let U and V be two non- negative continuous random variables which are independent. Denote the pdf and inverse cdf of $U(V)$ by $h_{U}(\cdot)\left(h_{V}(\cdot)\right)$ and $\bar{H}_{U}(\cdot)\left(\bar{H}_{V}(\cdot)\right)$ respectively. Then
$E[\min \{U+V, \delta\}]=\int_{t=0}^{\delta}\left[\int_{u=0}^{t} \bar{H}_{v}(t-u) h_{U}(u) d u+\bar{H}_{U}(t)\right] d t$.
Proof : We know that

$$
\begin{aligned}
& E[\min \{U+V, \delta\}] \\
& =\int_{t=0}^{\infty} P[\min \{U+V, \delta\}>t] d t \\
& =\int_{t=0}^{\delta} P[U+V>t] d t \\
& =\int_{t=0}^{\delta}\left[\int_{u=0}^{\infty} P[V>t-u] h_{U}(u) d u\right] d t \\
& =\int_{t=0}^{\delta}\left[\int_{U=0}^{t} \bar{H}_{v}(t-u] h_{U}(u) d u+\bar{H}_{U}(t)\right] d t
\end{aligned}
$$

Hence the lemma holds.

4 Main Results

This section deals with the determination of optimal due-date and optimal sequence of the jobs in order to minimize the expected total cost.

The following lemma describes the behaviour of the expected total cost function.
Lemma 5 : For a given sequence π,
(a) $\frac{d \varepsilon[Z(\delta, \pi)]}{d \delta}=n\left(P_{1}-P_{3}\right)+\left(P_{2}+P_{3}\right) \sum_{i=1}^{n} G_{i}(\delta / \pi)$,
(b) $\varepsilon[Z(\delta, \pi)]$ is a convex function of δ.

Proof : Using Lemma 3, it is easy to note that
$\frac{d[Z(S, \pi)]}{\alpha}=n\left(P_{1} \cdot P_{2}\right) \quad\left(P_{2}+P_{3}\right) \sum_{i,}^{n} \bar{G}_{i}(\delta / \pi)$
and $\frac{\sigma^{2} t[Z(5,-\cdots)]}{\alpha i^{2}}=\left(P_{2} \cdot P_{3}\right) \sum_{11}^{n} g_{1}(t / \pi)$,
Where $g_{i}(\mid \pi)$ is the pot of $C,(\pi)$.
Hence the result follows
We present below a theorem that gives solution to the problem if the cost rate for due-date is large enough.

Theorem 1 : $\| P_{1}: P_{3}$, then optimal due-date $\delta^{*}=0$, and optimal sequence $\pi^{\prime}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is such that $\mu_{\pi_{1}}<\mu_{\pi_{2}}<\ldots<\mu_{\pi_{n}}$.

Proof: For a given sequence π, we get from Lemma 5 that
$\frac{d[Z(\delta, \pi)]}{d \delta}=n\left(P_{1}-P_{3}\right)+\left(P_{2}+P_{3}\right) \sum_{i=1}^{n} G_{i}(\delta / \pi)$

$$
\geq 0\left(\text { since } P, \geq P_{3}\right)
$$

i.e., $\varepsilon[Z(\delta, \pi)]$ is an increasing function of δ. Therefore, $\delta^{*}=0$ minimizes $\varepsilon[Z(\delta, \pi)]$ for any given π.

Next, with $\delta^{\circ}=0$, we get from Lemma 3,
$\varepsilon\left[Z\left(\delta^{\cdot}, \pi\right)\right]=P_{3} \sum_{i=1}^{n}(n-i+1) \mu_{\pi_{i}}$
It is known that the sum on the right-hand-side of the equation (10) is minimized by $\pi^{\dot{ }}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ when $\mu_{\pi_{1}}<\mu_{\pi_{2}}<\ldots<\mu_{\pi_{n}}$.

This completes the proof.
Remark 1 : The π^{*} in Theorem 1 is called SEPT (Shortest Expected Processing Time) sequence, and the result is same as that of Panwalkar et al. [12] for the deterministic case.

When $P_{1} \geq P_{3}$, the Theorem 1 provides the solution of the problem under consideration. We assume that $P_{3}>P_{1}$ throughout the remaining part of this section.

Theorem 2 : For a given sequence $\pi, \varepsilon[Z(\delta, \pi)]$ has unique minimum at $\delta=\delta_{0}$ where δ_{o} is solution of

$$
\begin{equation*}
\sum_{i=1}^{n} G_{i}(\delta / \pi)=\frac{n\left(P_{3}-P_{1}\right)}{P_{2}+P_{3}} \tag{11}
\end{equation*}
$$

Proof : The proof follows from Lemma 5.
Remark 2 : Using Corollary 1, we can solve the equation (11) for δ by numerical method.

Remark 3 : Notice that the Theorems 1 and 2 hold for arbitrary random job processing times.

The following lemma evaluates the effect on the expected total cost when two adjacent jobs are interchanged in a sequence.

Lemma 6 : Let $\pi\left(\pi_{1}, \ldots, \pi_{n}\right)$ be any sequence of the jobs. The sequence π^{\prime} is obtained from π by interchanging the jobs π_{r} and π_{r+1} only ($1 \leq r \leq n-1$), i.e. $\pi^{\prime}=\left(\pi_{J^{\prime}} \ldots, \pi_{r-1,} \pi_{r+1,} \pi_{r}, \pi_{r+2, \ldots} \pi_{n}\right)$. For any fixed δ, the difference in expected total cost between π and π^{\prime} is given by
$\varepsilon\left[Z(\delta, \pi)-Z\left(\delta, \pi^{\prime}\right)\right]=\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right)\left[P_{3}-\left(P_{2}+P_{3}\right) G_{r+1}(\delta / \pi)\right]$.
Proof : Observe that $C_{i}(\pi)$ and $C_{i}\left(\pi^{\prime}\right)$ are identical except for $i=r$. Therefore, the result can easily be verified for $r=1$.

Assume that $r \geq 2$. Then $C_{r}(\pi)=C_{r-1}(\pi)+X_{\pi_{r}}$ and $C_{r}\left(\pi^{\prime}\right)=C_{r-1}(\pi)+$ $X_{\pi_{t+1}}$. Consequently, using Lemma 3 , we have

$$
\begin{aligned}
& \varepsilon\left[Z(\delta, \pi)-Z\left(\delta, \pi^{\prime}\right)\right] \\
& \begin{aligned}
&= P_{3}\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right)-\left(P_{2}+P_{3}\right) \varepsilon\left[\min \left\{C_{r-1}(\pi)+X_{\pi_{r}} \delta\right\}\right. \\
&\left.-\min \left\{C_{r-1}(\pi)+X_{\pi_{r+1}} \delta\right\}\right] \\
&= P_{3}\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right)-\left(P_{2}+P_{3}\right) \int_{t=0}^{\delta} \int_{y=0}^{t}\left[\bar{F}_{r}(t-y)-\bar{F}_{r+1}(t-y)\right] g_{r-1}(y \mid \pi) d y d t \\
& \text { (by Lemma 4) } \\
&= P_{3}\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right)-\left(P_{2}+P_{3}\right) \cdot K \quad \text { (say). }
\end{aligned} l
\end{aligned}
$$

For the sake of simplicity in notation, we denote $\lambda_{\pi_{i}}$ by λ_{i} for $i=1, \ldots r$, in the following part of the proof only.

Now, with the help of Lemma 2, we can write

$$
=\frac{\left(\lambda_{r+1}-\lambda_{r}\right)}{\lambda_{r} \lambda_{r+1}}\left[-\sum_{i=1}^{r-1} \frac{\prod_{\substack{j=1 \\ \neq i}}^{r+1} \lambda_{j}}{\left(\lambda_{j}-\lambda_{i}\right)}\left\{e^{-\lambda_{i} \delta}-1\right\}\right.
$$

$$
+\frac{\lambda_{r+1} \cdot \Pi_{j=1}^{r-1} \lambda_{j}}{\left(\lambda_{r+1}-\lambda_{r}\right)} \sum_{i=1}^{r-1} \frac{1}{\left(\lambda_{r}-\lambda_{i}\right) \Pi_{\substack{j=1 \\ \neq i}}^{r-1}\left(\lambda_{j}-\lambda_{i}\right)}\left\{e^{-\lambda_{r} \delta}-1\right\}
$$

$$
\left.-\frac{\lambda_{r} \cdot \Pi_{j=1}^{r-1} \lambda_{j}}{\left(\lambda_{r+1}-\lambda_{r}\right)} \sum_{i=1}^{r-1} \frac{1}{\left(\lambda_{r+1}-\lambda_{i}\right) \prod_{\substack{j=1 \\ \neq i}}^{r-1}\left(\lambda_{j}-\lambda_{i}\right)}\left\{e^{-\lambda_{r+1} \delta}-1\right\}\right]
$$

$$
=\frac{\left(\lambda_{r+1}-\lambda_{r}\right)}{\lambda_{r} \lambda_{r+1}}\left[-\sum_{i=1}^{r-1} \frac{\prod_{\substack{j=1 \\ j=1 \\ \neq i}}^{r+1}\left(\lambda_{j}-\lambda_{j}\right)}{\prod^{r+1}}\left\{e^{-\lambda_{i} \delta}-1\right\}\right.
$$

$$
\begin{aligned}
& K=\left\{H_{1=1}^{\prime-1}, \lambda, \left\lvert\, \sum_{i=1}^{r} \frac{1}{\|_{1,1}^{\prime}\left(\lambda, \lambda_{1}\right)} \int_{t o}^{\infty}\left[\int_{y=0}^{t}\left\{e^{-\lambda_{r}(t-y)}-e^{-\lambda_{r+1}(t-y)}\right\} e^{-\lambda_{i} y} d y\right] d t\right.\right. \\
& =\left(\| 1_{j=1}^{\prime} i_{j}\right) \sum_{i=1}^{\prime} \frac{1}{\| \Pi_{j, 1}^{\prime},\left(\lambda_{i}-\lambda_{i}\right)} \cdot \frac{\left(\lambda_{r+1}-\lambda_{r}\right)}{\lambda_{r} \lambda_{r+1}} \\
& \text { - }\left[-\frac{\lambda_{r} \lambda_{r, 1}}{\lambda_{r}\left(\lambda_{r}-\lambda_{r}\right)\left(\lambda_{r+1}-\lambda_{r}\right)}\left\{e^{-\lambda_{i} \delta}-1\right\}\right. \\
& +\frac{\lambda_{r+1}}{\left(\lambda_{r}-\lambda_{i}\right)\left(\lambda_{r+1}-\lambda_{r}\right)}\left\{e^{-\lambda_{r} \delta}-1\right\} \\
& \left.-\frac{\lambda_{r}}{\left(\lambda_{r+1}-\lambda_{j}\right)\left(\lambda_{r+1}-\lambda_{r}\right)}\left\{e^{-\lambda_{r+1} \delta}-1\right\}\right] \text { (on simplification) }
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\prod_{\substack{j=1 \\
\neq r}}^{r+1} \lambda_{j}}{\Pi_{\substack{j=1 \\
\neq r}}^{r+1}\left(\lambda_{j}-\lambda_{r}\right)}\left\{e^{-\lambda_{r} \delta}-1\right\} \\
& \left.-\frac{\Pi_{\substack{j=1 \\
j+1 \\
r+1}}^{\prod_{j}^{j=1}} \underset{\neq r+1}{r+1}\left(\lambda_{j}-\lambda_{r+1}\right)}{}\left\{e^{-\lambda_{r+1}{ }^{\delta}}-1\right\}\right] \text { (by applying Lemma 1(a)) } \\
& =\frac{\left(\lambda_{r+1}-\lambda_{r}\right)}{\lambda_{r} \lambda_{r+1}}\left[\sum_{i=1}^{r+1} \frac{\substack{\prod_{j=1}^{r+1} \lambda_{j} \\
\neq i}}{\prod_{\substack{r+1 \\
\neq i}}\left(\lambda_{j}-\lambda_{i}\right)}\left\{1-e^{-\lambda_{i} \delta}\right\}\right] \\
& =\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right) G_{r+1}(\delta / \pi) \text { (using Lemma 1(b) and Corollary 1). }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varepsilon\left[Z(\delta, \pi)-Z\left(\delta, \pi^{\prime}\right)\right] & =P_{3}\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right)-\left(P_{2}+P_{3}\right)\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right) G_{r+1}(\delta / \pi) \\
& =\left(\mu_{\pi_{r}}-\mu_{\pi_{r+1}}\right)\left[P_{3}-\left(P_{2}+P_{3}\right) G_{r+1}(\delta / \pi)\right] .
\end{aligned}
$$

Hence the lemma holds.
We know that for any due-date δ and sequence $p, G_{1}(\delta \mid \pi) \geq \ldots \geq G_{n}(\delta \mid \pi)$. Let $Q=P_{3}\left(P_{2}+P_{3}\right)$. Nete that $0<Q \leq 1$.

Lemma 7 : Assume that due-date δ is given. For a sequence $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$, suppose that
$G_{k}(\delta \mid \pi) \geq Q>G_{k+1}(\delta / \pi)$ for some $0 \leq k \leq n$,
where $G_{o}(\delta \mid \pi)=1$ and $G_{n+1}(\delta \mid \pi)=0$. We have
(a) if $\mu_{\pi_{r}}<\mu_{\pi_{r+1}}$ for some $1 \leq r \leq k-1$, then $\pi^{\prime}=\left\langle\pi_{1}, \ldots, \pi_{t-1}, \pi_{t+1}, \pi_{r}, \pi_{t+2}, \ldots\right.$, π_{n}) is at least as good as π,
(b) if $\mu_{\pi_{s}}>\mu_{\pi_{s+1}}$ for some $k \leq s \leq n-1$, then $\pi^{\prime \prime}=\left(\pi_{l}, \ldots, \pi_{s-1}, \pi_{s+1}, \pi_{s}, \pi_{s+2}, \ldots\right.$, π_{n}) is at least as good as π,
Proof : Using Lemma 6, the proof is simple.
The following result helps us to reduce the effort in the search for optimal sequence.

Theorem 3 : Let the due-date is be given. In order to minimize the expected total cost $\varepsilon[Z(\% . \pi))$, it is enough to consider the sequences - π 's which satisfy the condition
$\mu_{\pi}>\ldots>\mu_{n_{4}}<\ldots<\mu_{n}$, for some $1 \leq k \leq n$,
where $\pi:\left(\pi_{1}, \ldots, \pi_{1}\right)$.
Proof: The proof follows from repeated applications of Lemma 7.
Remark 4 : A sequence having property (13) is called V-shaped. Let us represent the set of all such sequences by V.

Finally, we present an algorithm for minimization of $\varepsilon[Z(\delta, \pi)]$ (when $P_{3}>P_{1}$) based on the results obtained

Algorithm
Step 0: Set $Z_{c}=\infty$.
Step 1: $1 f V=0$, then goto Step 4. Else, take $\pi \in V$ and update $V \leftarrow V \mid\{\pi\}$.
Step 2 : Let δ be the solution of the equation (11). Evaluate $\varepsilon[Z(\delta, \pi)]$ using the relation (6).

Step 3: \| $\varepsilon[Z(\delta, \pi)]<Z_{c,} \leftarrow \varepsilon[Z(\delta, \pi)], \quad \pi^{*} \leftarrow \pi$ and $\delta^{*} \leftarrow \delta$. Goto Step 1 .
Step 4 : Return as optimal due-date δ^{*} and optimal sequence π^{*} with Z_{o} as the corresponding minimurn expected total cost.

5. Discussion

In this aritcle, we have dealt with a stochastic version of the common duedate determination and scheduling problem on single machine, where the object is to minimize the expected total cost associated with the due-date and earliness/ tardiness of the jobs.

Wh $P_{1} \geq P_{3}$, we have derived optimal solution (Theorem 1) for general processing times. This solution is same as that of Panwalkar et al. [12] for the deterministic processing times. The case of $P_{3} \geq P_{1}$ is analysed for distinct exponential processing times. It is shown that the search for optimal sequence may be confined to V-shaped sequences only (Theorem 3). The procedure (Theorem 2) for the determination of optimal due-date is also obtained. (In fact, it holds for genral processing times.) Based on these results, we have developed an algorithm for the dervation of optimal solution.

A closer view of the Theorems 2 and 3 suggest that similar characterization of the problem with general (or even with arbitrary exponential) processing times is quite difficult.

References

[1] Agrawala AK, Coffman EG Jr., Garey MR and Tripathi SK. "A Stat Optimization Algorithm Minimizing Expected Flowtime on Uniform Processors', IEEE Transactions on Computing, 33 (1984), 351-357.
[2] Al-Turki U, Mittenthal J and Raghavachari M. "The Single-machine Absolutedeviation Early-tardy Problem with Random Completion Times", Naval Research Logistics, 43 (1996), 573-587.
[3] Al-Turki U, Mittenthal J and Raghavachari M. "A Dominant Subset of V-shaped Sequences for a Class of Single Machine Sequencing Problems", European Journal of Operational Research, 88 (1996), 345-347.
[4] Baker KR. "Sequencing Rules and Due-Date Assignments in a Job Shop", Management Science, 30 (1984), 1093-1104.
[5] Cheng TCE and Gupta MC. "Survey of Scheduling Research Involving Due Date Determination Decisions", European Journal of Operational Research, 38 (1989), 156-166.
[6] Conway RW. "Priority Dispatching and Job Lateness in a Job Shop", Journal of Industrial Engineering, 16 (1965), 228-237.
[7] De P, Ghosh JB and Wells CE. "On the Multiple-Machine Extension to a Common Due-Date Assignment and Scheduling Problem", Journal of the Operational Research Society, 42 (1991), 419-422.
[8] De P, Ghosh JB and Wells CE. "Due-date Assignment and EarlyTardy Schedulind on Identical Parallel Machines", Naval Research Logisitcs, 41 (1994), 17-32.
[9] Frost FG. "Stochastic Sequencing on one Machine with Earliness and Tardiness Penalties", Probability in the Engineering and Informational Sciences, 7 (1993), 291-300.
[10] Glazebrook KD. "Scheduling Tasks with Exponential Service Times on Parallel Processors", Journal of Applied Probability, 16 (1979). 685-689.
[11] Kampke T. "Optimal Scheduling of Jobs with Exponential Service Times on Parallel Machines", Operations Research, 37 (1989), 126-133.
[12] Panwalkar SS, Smith ML and Seidmann A. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem", Operations Research, 30 (1982), 391-399.
[13] Seidmann A, Panwalkar SS and Smith ML. "Optimal Assignemnt of Due-Date for a Single Processor Scheduling Problem", International Journal of Production Research, 19 (1981), 393-399.
[14]. Weiss G and Pinedo M. "Scheduling Tasks with Exponential Service Times on Non-identical Processors to Minimize Various Cost Functions", Journal of Applied Probability, 17 (1980), 187-202.

Appendix

Lemma 1 : For any $r(r \geq 2)$ distinct numbers $-a_{i}(i=1,2, \ldots, r)$,
(a) $\sum_{i=1}^{1} \frac{1}{H_{j=1}^{\prime}\left(a_{j}-a_{i}\right)}=0$,
(b) $\sum_{i=1}^{\prime} \frac{\|_{j=1}^{\prime}, a_{j}}{l l_{j=1}^{\prime}\left(a_{j}-a_{i}\right)}=1$.

Proof of Pant (a): We prove it by induction.
For $m=2$, the result is trivial. Suppose, the result is true for $m=r-1$. We wil show that the same holds for $m=r$.

Let $a_{1}, a_{2} \ldots$, a, be the distinct numbers. Denote the left-hand-side of (14) by L. Then

$$
\begin{align*}
& \Pi_{k=1}^{r-1}\left(a_{k}-a_{r}\right) L=-\sum_{i=1}^{r,} \prod_{\substack{k=1 \\
j-1 \\
j=1 \\
j-1}}^{r-a_{j}}\left(a_{k}-a_{i}\right), 1 \\
& =-\frac{I_{k}^{r-1}\left(a_{k}-a_{r}\right)}{\prod_{j 2}^{r-2}\left(a_{i}-a_{1}\right)}-\sum_{i=2}^{r-1} \frac{\prod_{\substack{k=1 \\
j-1}}^{\neq i}\left(a_{k}-a_{r}\right)}{\prod_{\substack{r-1 \\
\neq i}}^{r-1}\left(a_{j}-a_{i}\right)}+1 \\
& \left.=\sum_{i=2}^{r} \operatorname{II}_{\substack{k, 1 \\
k-1}}^{r-1}\left(a_{j}-a_{k}\right)-a_{r}\right), \sum_{i=2}^{r-1} \frac{\prod_{\substack{k=1 \\
k-1 \\
\neq i}}^{r-1}\left(a_{k}-a_{r}\right)}{\left.\prod_{j}-a_{i}\right)}+1 . \tag{16}
\end{align*}
$$

This is because of the assumption that the result is true for $m=r-1$, i.e.,

$$
\sum_{i=2}^{r-1} \frac{1}{\mathrm{II}_{\substack{j=1 \\ \neq i}}^{r-1}\left(a_{j}-a_{i}\right)}=0
$$

which implies that

$$
\frac{1}{\prod_{j=2}^{r-1}\left(a_{j}-a_{1}\right)}=-\sum_{i=2}^{r-1} \frac{1}{\prod_{\substack{j=1 \\ \neq i}}^{r-1}\left(a_{j}-a_{i}\right)}
$$

Now, on simplification, we get from (16),

$$
\begin{aligned}
& \Pi_{k=1}^{r-1}\left(a_{k}-a_{r}\right) \cdot L=\sum_{i=2}^{r-1} \frac{\left(a_{i}-a_{1}\right) \prod_{\substack{k=2 \\
\neq i}}^{r-1}\left(a_{k}-a_{r}\right)}{\prod_{\substack{j-1}}^{r-1}\left(a_{j}-a_{i}\right)}+1 \\
& =-\sum_{i=2}^{r-1} \frac{\prod_{\substack{k=2 \\
j=2 \\
\neq i}}^{r-1}\left(a_{k}-a_{r}\right)}{\prod_{j}^{r-1}\left(a_{j}-a_{i}\right)}+1 \\
& =\prod_{k=2}^{r-1}\left(a_{k}-a_{r}\right) \cdot\left[\sum_{i=2}^{r-1} \frac{1}{\prod_{\substack{j=2 \\
\neq i}}^{r}\left(a_{j}-a_{i}\right)}+\frac{1}{\prod_{k=2}^{r-1}\left(a_{k}-a_{r}\right)}\right] \\
& =\Pi_{k=2}^{r-1}\left(a_{k}-a_{r}\right) \cdot\left[\sum_{i=2}^{r} \frac{1}{\prod_{\substack{j=2 \\
\neq i}}^{r}\left(a_{j}-a_{i}\right)}\right] .
\end{aligned}
$$

Therefore,

$$
L=\frac{1}{\left(a_{1}-a_{r}\right)} \cdot\left[\sum_{i=2}^{r} \frac{1}{\prod_{\substack{j=2 \\ \neq i}}^{r}\left(a_{j}-a_{i}\right)}\right]=0
$$

since the result holds for $a_{2}, a_{3}, \ldots, a_{r}$.
This completes the proof of Part (a).
Proof of Part (b) : Denote the left-hand-side of (15) by $U(r)$. We can write

$$
\begin{aligned}
& =\sum_{i=1}^{r} \frac{\prod_{\substack{r \\
j=1 \\
j=1}}^{1}\left(a_{j}-a_{j}\right)}{i} \text { (by applying Part (a) of this lemma) } \\
& =U(r-1) \text {. }
\end{aligned}
$$

Using the above recursive relation, one can easily prove the result.
Lemma 2 : Let $X, \cap \exp (\lambda, h i=1,2, \ldots, r(r \geq 2)$ be distinct and mutually independent. Then the pdf of $\sum_{i=1}^{r} X_{i}$, denoted by $\mathrm{G}_{r}(\mathrm{t})$, is given by

$$
\begin{equation*}
g_{r}(t)=\left(\Pi_{j=1}^{r} \lambda_{j}\right) \sum_{\substack{i=1 \\
\Pi_{\begin{subarray}{c}{j=1 \\
* i} }}^{r}\left(\lambda_{j}-\lambda_{i}\right)}\end{subarray}}^{e^{-\lambda_{i} t}} . \tag{17}
\end{equation*}
$$

Proof : The proof is by induction.
With $m=2$, it can be seen that the result holds. Assume that the result is true for $m=r$, i.e.,

$$
g_{r}(t)=\left(\Pi_{j=1}^{r} \lambda_{j}\right) \sum_{i=1}^{r} \frac{e^{-\lambda_{i} t}}{\prod_{\substack{j=1 \\ \nexists i}}^{r}\left(\lambda_{j}-\lambda_{i}\right)}
$$

We will show that (17) holds for $m=r+1$. Let $f_{r+1}(t)$ be the pdf of X_{r+1}, and $\lambda_{r+1} \neq \lambda$, for $i=1,2, \ldots, r$. Then, the pdf of $\sum_{i=1}^{r+1} X_{i}$, denoted by $g_{r+1}(t)$, can be written as

$$
\begin{aligned}
& g_{r+1}(t)=\int_{y=0}^{t} g_{r}(t-y) f_{r+1}(y) d y \\
& =\left(\Pi_{j=1}^{r+1} \lambda_{j}\right) \sum_{i=1}^{r} \frac{1}{\prod_{\substack{j=1 \\
\neq i}}^{r}\left(\lambda_{j}-\lambda_{i}\right)} \int_{y=0}^{t} e^{-\lambda_{i}(t-y) \cdot e^{-\lambda_{r+1}} d y} \\
& =\left(\Pi_{j=1}^{r+1} \lambda_{j}\right) \sum_{i=1}^{r} \frac{1}{\prod_{\substack{j=1 \\
\neq i}}^{r}\left(\lambda_{j}-\lambda_{j}\right)} \cdot \frac{e^{-\lambda_{i} t}}{\left(\lambda_{i}-\lambda_{r+1}\right)}\left[e^{\left(\lambda_{i}-\lambda_{r+1}\right) t}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\Pi_{j=1}^{r+1} \lambda_{j}\right) \sum_{i=1}^{r} \frac{e^{-\lambda_{i} t}}{\Pi_{\substack{r+1 \\
\neq i}}\left(\lambda_{j}-\lambda_{i}\right)}+\left(\Pi_{j=1}^{r+1} \lambda_{j}\right) \cdot \frac{1}{\Pi_{j=1}^{r}\left(\lambda_{j}-\lambda_{r+1}\right)} \cdot e^{-\lambda_{r+1} t}
\end{aligned}
$$

(by using Lemma 1(a))

$$
=\left(\Pi_{j=1}^{r+1} \lambda_{j}\right) \sum_{i=1}^{r+1} \frac{e^{-\lambda_{i} t}}{\Pi_{\substack{j=1 \\ \neq i}}^{r+1}\left(\lambda_{j}-\lambda_{i}\right)} .
$$

Hence the result holds.

