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ABSTRACT

Assuming a super-population model the expected

variance of the generalized  d i f fe re n ce  estimator

(Basu,1971)  based on the nearest proportional to s ize  

sampling design  introduced by G a b le r (1 98 7 )  is shown to be

less than that of the same estimator based on an arbitrary

sampling design  from which the former design is r e a l iz e d ,

former strategy is  also shown to fare better than an

1 On. leave  from In d ian  S ta t is t ic a l  I n s t i t u t e , C a l c u t t a .
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unbiased  ratio-cum-generalized d if ference  estimator based

on the nearest proportional to s ize  sampling design  in the

sense of having less expected design variance  under the 

same model.

1. INTRODUCTION

Consider a f in i te  population U of s i ze  N and let 

y ( i = l , . . . ,N)be the values of a variate  y under enquiry, 

our problem is to estimate the the popu lat ion  total
N

Y = £ y. on the basis  of a sample of a fixed  s i z e  n drawn 
i = l

from the population with a probabil ity  P o( s ) .

Gabler ( 198 7 )  has introduced the nearest proportional

*
to size  sampling design p ( s )d e f in e d  as 

P * ( s ) =  ( E  \ ]  p o ( s ) ( 1 .1)

where A ' s  ( i = l , . . . , N )  are all  positive  and are given 

by

where
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( 1.2)

X =(A^,. . . ,\n ) and

being  the f i r s t  order inclusion  pr o b a b i l i t ie s  for the units 

for the sampling design P0 ( s ) |p*( s )  Jand s being the

second order inclusion p r o b a b il i t ie s  for the p a i r s  of units 

for the design p ( s ) .



G a b l e r ( 1987)  has also d iscussed  how to real ise  p ( s )  

starting from an a rb i tra r y  f ixed  sample s i z e ( n )  design 

p (s) and has called  such a design  a -j ps design which 

N *
satisf ies £ . = n .

i. =1 N

Let t 1 = 2 ^ 2  be a generali zed  d if ference  
# i = l 

’•es Hi

estimator ( B a s u , 1 9 7 1 )  based on such a n ps design for some

real numbers 9. t = l . . . . , N .  known or otherwise.  Our purpose 
l,

here is to invest igate  whether t fares better than the 

same estimator based on the o r ig inal  design p ( s )  v iz .

N
y.

t 2 _
O  i = i

ies  n,

As the c l a s s i c a l  rat io  estimator is  known to be 

unbiased under the Midzuno-Sen sampling scheme (Midzuno, 

1952; Sen,  1953)  and as n*ps design is a proceeding of the 

Midzuno-Sen sampling scheme, we may consider the following 

ratio-cum-generalized d i f f e r e n c e  estimator

I
y i -ei

o
i<=s

t = 
3

------------  * I 6 . .

I \
t «ES

which is also unbiased under p * ( s ) .

The motivation for introducing  the above

ratio-cum-generalized d i f fe re n ce  estimator is eventually  to

compare its  re lat iv e  e f f ic i e n c y  with that of t and t .
1 2



2. A MODEL AND THE RESULTS 

To compare the re lative  e f f i c i e n c i e s  of the above 

s t rategies  we postulate a super-population model H 

sp ec i f ie d  by

E (y. ) - e , V (y. ) = E ( y -  &  ) Z = a 2
m *v V m v m v V x

and C (V , y .)- Em( y . - e . ) ( y 0 V u*j, 
j  m v t  j j

where s are any positive  real  numbers V i.

Writing E *( V * )as an operator for the expectation 
p p

*
(variance)  with respect to the sampling design  p  , we have 

the following  theorem

Theorem 1 . Under the model M, we have

E V * (t  ) > E V * (t  ) , ,  n
m p 3 m p 1 ( 2 . 1 )

P ro o f . Following Godambe and Thompson ( 1 9 7 7 ) ,  we can write

Em v „* = E *V ( t  ) +E . A  ( t ) - V  (Y )m p  x p  ttj 1 p  m 1 tn

where A (t  ) = E ( t )-E ( Y ) .
m l  m l  Tn

Now under the model M, we have A (t  ) = 0 and hence
m i

E V * ( tm p

N r i

•> =  x < M

Similarly  we may check that

m p  3

i S3v

By Cauchy-Schwarz inequal ity  it follows that

( 2 .2 )

(2.3)
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How,
E V * (t  )-E V * (t )
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by u s in g  ( 2 . 4 ) .

Remark 1 . The equality  holds when \ X. is constant for a l l

ISs

s with p ( s )  > 0 i . e  when V  = - V i which sat is f ie s
N 1 n

)  V-n° = 1 and in that case t concidss with t .
L  l  " i  1 3

Let us now consider a s implif ie d  form of the above

o *

V"iHi-
2 2 o *

model (to be called  model M ) when ov ~o V  n . n . . where <* is

a positive real  number.

W r i t i n g  E V as an operator for expectation 
po <■ poJ

(variance) with respect to the sampling design p qJ we have 

the follwing  theorem.

Theorem 2.  Under the model M , we have

E V

Proof. We have

E V
m p

,(i J  2 E» v ( * J

- M - r 1 )v ss 1  ̂ III J

( 2 . 5 )



so that

E V f t ]  - E V . f t l  
m p01 2J m p I

N f 'i
= ----U/  t o *

i=± L Hi M  

= 1,1 ” 11 \ ) " °  
i =1

N

because H?]

i =i

N N

= i i  - 1 as ] T \ ^  
i =1 i =i

N

P * ( s )  - 2+1

i = 1 S 5 i

=  Z ( X N  K ( s )  ■  2 Z p * ( s )  + 1
s les s

= Y i I  po(s) - zI (  I  \  ]po(s> + 1
s i . e s  s i- es

S  i € S  N

Remark 2.  We may note that the quantity Z n K  - - )

the directed distance from the design pQ to the design p 

as introduced by G abler ( 1 9 8 7 ) .

Remark 3.  Here the equality holds when ^  V  = 1 for all 5

i€S
1 * 

with p ( s )  > 0 i . e  when X. = — V i in which case i, 
o i n

coincides  with result ing  no d if ference  between t±



Under another s i m p l i f i e d  version of the above model M

where o is a
2 2 0

(to be called model M ) when a. -a2 ' i o'" i"®i o

positive real  number, we have the fo l low in g  theorem.

Theorem 3.  Under the model M , we have

E V *
m p ( 2 . 6 )

Proof. We havehave

E V *ft }m P V. 3J

N r

-
1

■ L  - q2
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= -Jit: -
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Here also

E V
m p

p 0 (s >

S3v l€S

O
by using  ( 2 . 4 )

Remark 4 .  H e r e  a l s o  t h e  e q u a l i t y  h o l d s  when

constant for all  s with  p ( s )  > 0 i . e .  when X. = — V i
o v n

which case there is nothing  to choose between t and t2 3

have the sameRemark 5 . Under the model M2 , t^ and t2 

expected design-variance i . e .  E V * [t  1 = E V It 1 .
m p (. l j  m p Q l  Z j

Remark 6 . We may note that unl ike  Theorem 1, in 

Theorem 2(Theorem 3 ) ,  the model variance  V (y . )  is assumedm \.

, o * f o *0
to be proportional to V-j j d - h) • D which is nearlyV V I I I .  t I

2 *
Proportional to p i( p i ) ,  p^s being the normed s i z e  measures 

°f the u n it s .  Similar assumptions regarding  c/z are also 

Available in the l i t e r a tu r e .  For example,  Ca s se l ,  Sarndal  

and Wretman(1976)  invest igated  optimal strat eg ie s  for



estimating  Y within  a class of linear estimators under a 

super-population model in the sense of attain ing  a lower 

bound on the model-expected design-variance of an 

e s t i m a t o r .They found that the lower bound is attained  by a 

g en e ra l i ze d  d i f f e r e n c e  estimator based on a sampling design 

with inclusion  p r o b a b i l i t ie s  proportional  to known 

s i ze- m easu res (W *s ,say )  only when the model-expectations and 

standard dev iat io n s  are proportional to W 's .
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