A Marketing Decision Problem in Single-Period Stochastic Inventory Model

Surajit Pal and D.K. Manna
SQC \& OR Unit, Indian Statistical Institute, 110 Nelson Manickam Road, Aminjikarai, Chennai 600 029, India.

Abstract

Jhis article deals with a marketing decision problem in the classical single-period stochastic iwentory model. where the level of marketing effort decides on the extent of demand Specifically, it is assumed that mean demand is an increasing concave function of the level of narketing effort. The problem under consideration is optimal determination of both order quantity swell as level of marketing effort. Results are presented to describe the solution procedure for eneral demand distribution. Optimal decision rules are derived for some particular demand dsstibutions.

Key Words

Single-period, stochastic, inventory, marketing effort.

1. Introduction

Marketing operations are vital to business management. The budgetary allocation of the mompanies towards marketing is growing at a very rapid rate. However, the decisions involved in marketing are taken generally on ad hoc basis, and therefore, the fffectiveness of such decisions remains in doubt. This leads us to analyze the marketing decision problems in more objective way.

The marketing environment of most of the companies is characterized by keen competition, an over-supply of goods/services, high rate of product/service innovation and so on. These make the overall marketing process very complex to analyze in general. In fact, without some knowledge of the functional relationship between sales and marketing effort, it becomes very difficult to know how much to spend on marketing.
for quite sometime, the researchers have been studying the inventory models when bigher) demand is induced by different kind of marketing strategies. A major focus on such strategy has been the pricing-policy /quantity-discount. For instance, see Kotler [4], Ladany and Sternlieb [5], Lal and Staelin [6], Jucker and Rosenblatt [3], Shah and Jha [7], Eliashberg and Steinberg [2], Bhunia and Maiti [1] etc.

It is well known that marketing in the form of advertisement induces an increase ir demand and sale. However, it may be observed that as the marketing effort, say frequency of advertisement, gradually increases demand is also expected to grow. Therate of this growth is generally decreasing in nature. Further, we note that the tuif demand is never known in practice. In order to analyze an inventory system, we therefor attach probability to different possible demand values. That is, demand is treated a: random variable (or stochastic). In this article, we study the classical single-perioc stochastic inventory model where the (stochastic) demand can be controlled by markeing effort. It is assumed that with higher marketing effort, the mean demand can be increased but with a diminishing rate. The problem under consideration is to find simultaneous) the optimal marketing effort as well as order quantity.
We formulate the problem in Section 2 as maximization of the expected profit. Section 3 contains the main results that describe the solution approach. We then derive the optimal decision rules for some special cases of demand distribution in Section 4.

2. Problem Formulation

Consider the classical single-period stochastic inventory model, which can be describec as follows. The decision is to be made on the number of units (q) of an item to be procured, at a cost of $\$ c /$ unit, for inventory at the beginning of a period. The period represents the duration of the planning horizon. The demand (X) for the item during the: period is a random variable. The sale price of the item is $\$ s /$ unit $(s>c)$. The units thal remain unsold at the end of the period, can be disposed of at the rate $\$ v /$ unit ($v<c)$. However, if there is a shortage, it results in an opportunity loss of $\$ p /$ unit. We intend ios maximize the expected profit over a given planning horizon.
In the above, we assume that the random demand (X) can be influenced by markeing; effort, so that, demand is dependent on the level of marketing effort. Let us denote the: level of marketing effort (for example, the number units of advertisements) by m and its, unit cost by $\$ r$.
It is natural that demand is likely to grow with an increase in marketing effort, but with a diminishing rate. Therefore, we assume that the mean demand, denoted by μ_{0} (with $\mu_{0}>0$) is an increasing concave function of m (See Figure 1), that is, μ_{m} increases with m, but the rate of increase is non-increasing (diminishing). Mathematically,

$$
\begin{equation*}
\text { (i) } \mu_{m}^{\prime}=\frac{d \mu_{m}}{d m}>0 \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and (ii) } \mu_{m}^{\prime \prime}=\frac{d^{2} \mu_{m}}{d m^{2}} \leq 0 \tag{2.2}
\end{equation*}
$$

For example, the function

$$
\mu_{m}=A-B \rho^{m}, \text { for } A>B>0, \quad 0<\rho<1
$$

inssesses both the above properties given by equations (2.1) and (2.2).

$\rightarrow m$
Figure 1 Relationship between \boldsymbol{m} and μ_{m}
iuther, it is assumed that X is non-negative continuous random variable. When the liscrete demand values are quite large, it is customary to treat the same as continuous in
various modelling situations. Denote its probability density function and cumulative distribution function by $f\left(x ; \mu_{m}\right)$ and $F\left(x ; \mu_{m}\right)$ respectively, when the level of marketing effort is m. Therefore,

$$
\mu_{m n}=\int_{0}^{\infty} x f\left(x ; \mu_{m}\right) d x .
$$

In order to write the mathematical expression for profit, we suppose that (q, m) is specified, and the demand is given as x. Obviously, $q \geq 0$ and $m \geq 0$. Then, the profit function

$$
\pi(q, m \mid x)= \begin{cases}s x+v(q-x)-c q-r m & \text { if } x \leq q \tag{2.3}\\ s q-p(x-q)-c q-r m & \text { if } x>q\end{cases}
$$

and hence, the expected profit denoted by $Z(q, m)$ can be written as

$$
\begin{align*}
Z(q, m)= & v q F\left(q ; \mu_{m}\right)+(s-v) \int_{0}^{q} x f\left(x ; \mu_{m}\right) d x \\
& +(s+p) q\left[1-F\left(q ; \mu_{m}\right)\right]-p \int_{q}^{\infty} x f\left(x ; \mu_{m}\right) d x-c q-r m \\
= & (v-c) q+(s-v) \mu_{m}-r m-(s+p-v) \int_{q}^{\infty}(x-q) f\left(x ; \mu_{m}\right) d x \tag{2.4}
\end{align*}
$$

The problem under consideration is to find $\left(q^{*}, m^{*}\right)$ such that

$$
\begin{equation*}
Z\left(q^{*}, m^{*}\right)=\max _{(q, \ldots,)} Z(q, m) \tag{2.5}
\end{equation*}
$$

3. Main Results

In this section, we discuss the approach for derivation of optimal solution $\left(q^{*}, m^{*}\right)$ with general forms of μ_{m} and $f\left(x ; \mu_{m}\right)$.

Let $k \quad(0<k<1)$ be any constant. If $F\left(q ; \mu_{m}\right)=k$ holds, then we wite $q=H\left(k ; \mu_{m}\right)$, or simply $q=H\left(\mu_{m}\right)$. (H(.) may be viewed as inverse function of $F($.$) .) We shall use this notation throughout the rest of the article.$

Theorem 1 : An optimal solution $\left(q^{*}, m^{*}\right)$ is given by :
(i) q is the solution for q in

$$
\begin{equation*}
F\left(q ; \mu_{m^{\prime \prime}}\right)=\frac{s+p-c}{s+p-v} \tag{3.1}
\end{equation*}
$$

where m^{*} is described below.
iii) m^{*} is the value of m that maximizes

$$
\begin{equation*}
z(m)=(s-v) \mu_{m}-(s+p-v) \int_{H\left(\mu_{m}\right)}^{\infty} x f\left(x ; \mu_{m}\right) d x-r m \tag{3.2}
\end{equation*}
$$

3) where $q=H\left(\mu_{m}\right)$ is obtained from the equation (3.1) by putting $m^{*}=m$.
wf: For fixed m, we get from the equation (2.4),

$$
\begin{align*}
& \qquad \frac{d Z(q, m)}{d q}=(v-c)+(s+p-v)\left[1-F\left(q ; \mu_{m}\right)\right] \tag{3.3}\\
& \text { and } \frac{d^{2} Z(q, m)}{d q^{2}}=-(s+p-v) f\left(q ; \mu_{m}\right) \tag{3.4}
\end{align*}
$$

ing the equations (3.3) and (3.4), one can see that
4)

$$
\begin{equation*}
q=H\left(\frac{s+p-c}{s+p-v} ; \mu_{m}\right)=H\left(\mu_{m}\right) \tag{3.5}
\end{equation*}
$$

ximizes the expected profit for any given m.
5)

We use the relation (3.5) to eliminate q from the expression of expected profit, xh in turn becomes a function of m only. Let us denote it by $z(m)$. On plification, we get its expression as given in the equation (3.2). Consequently, we get
it by maximizing $z(m)$. This completes the proof.
tefore, according to the above result, we find m^{*} by maximizing $z(m)$ given by e Mion (3.2), and then obtain q^{*} using the relation (3.1).
If ifegard to maximization of $z(m)$, we observe that

$$
\begin{aligned}
\frac{d z(m)}{d m}= & \mu_{m}^{\prime}\left[(s-v)-(s+p-v) \int_{H\left(\mu_{m}\right)}^{\infty} x \frac{d f\left(x ; \mu_{m}\right)}{d \mu_{m}} d x\right. \\
& \left.+(s+p-v) \frac{d H\left(\mu_{m}\right)}{d \mu_{m}}\left\{H\left(\mu_{m}\right) \cdot f\left(H\left(\mu_{m}\right) ; \mu_{m}\right)\right\}\right]-r=\mu_{m}^{\prime} T(m)-r \quad \text { (say) },
\end{aligned}
$$

and $\frac{d^{2} z(m)}{d m^{2}}=\mu_{m}^{\prime \prime} \cdot T(m)+\mu_{m}^{\prime} \cdot \frac{d T(m)}{d m}$.

It must be noted that the function $z(m)$ depends on $\mu_{m}, f\left(x ; \mu_{m}\right)$ and the constant parameters -- c, s, v, p and r. A closed form solution for m^{*} looks very difficult with general forms of μ_{m} and $f\left(x ; \mu_{m}\right)$. However, the following result gives the values of m^{*} under two possible situations.

Theorem 2: (i) $m^{*}=0$ if for every $m . T(m) \leq 0$ or $\mu_{m}^{\prime} T(m)<r$ holds, and (ii) $m^{*}=\infty$ if $\mu_{m}^{\prime} T(m)>r \quad \forall m$.

Proof : Suppose that for every $m, T(m) \leq 0$ or $\mu_{m}^{\prime} T(m)<r$ holds. Since $\mu_{m}^{\prime}>0$, we then have $\frac{d z(m)}{d m}<0$ for all m. It implies that $z(m)$ is decreasing monotone function, of m. Consequently, optimal value of m is given by $m^{*}=0$. Similarly, it can observed that $z(m)$ is increasing monotone function of m if $\mu_{m}^{\prime} T(m)>r \forall m$. Therefore, $m^{*}=\infty$ in this situation.

4. Special Cases

We now consider some special cases of demand distribution -- $f\left(x ; \mu_{m}\right)$, and discuss the solution procedure even with the general form of the function μ_{m}. These cases are Exponential, Uniform, Normal and Lognormal. We assume throughout this section that the two situations described in Theorem 2 do not hold good, as otherwise, the solution is known. Therefore, we suppose that
(a) $\mu_{m}^{\prime} T(m) \geq r$ for some m, and (b) $\mu_{m}^{\prime} T(m) \leq r$ for some m. (4.1)

Case I Exponential) : For any m, let $X \sim \operatorname{Exp}\left(\mu_{m}\right)$, that is,

$$
f\left(x ; \mu_{m}\right)=\frac{1}{\mu_{m}} e^{-x / \mu_{m}} \quad \text { for } x>0
$$

ionsequently,

$$
\begin{aligned}
& \quad \begin{aligned}
F\left(x ; \mu_{m}\right) & =1-e^{-x / \mu_{m}}, \quad q=H\left(\mu_{m}\right)=\mu_{m} \cdot \ln \left(\frac{s+p-v}{c-v}\right), \\
z(m) & =\mu_{m}\left[(v-c) \ln \left(\frac{s+p-v}{c-v}\right)+(s-c)\right]-r m,
\end{aligned} \\
& \text { and } \quad T(m)=(v-c) \ln \left(\frac{s+p-v}{c-v}\right)+(s-c) .
\end{aligned}
$$

Therefore, we have the following result describing the procedure to obtain optimal mution.

Corollary 1 : An optimal solution $\left(q^{*}, m^{*}\right)$ is given by :

$$
\begin{equation*}
q^{*}=\mu_{m \cdot} \ln \left(\frac{s+p-v}{c-v}\right) \tag{4.2}
\end{equation*}
$$

where m^{*} is the solution of

$$
\begin{equation*}
\mu_{m}^{\prime}\left[(v-c) \ln \left(\frac{s+p-v}{c-v}\right)+(s-c)\right]=r . \tag{4.3}
\end{equation*}
$$

Proof: This follows from Theorem 1 by observing that
(a) $T(m)$ is independent of m,
(b) the equation (4.3) has always a solution because of the assertion (4.1), and
(c) $\frac{d^{2} z(m)}{d m^{2}}=\mu_{m}^{\prime \prime} \cdot T(m) \leq 0$, since $\mu_{m}^{\prime \prime} \leq 0$ and $T(m)>0$ hold.

Case II (Uniform) : For any m, let $X \sim U\left(0,2 \mu_{m}\right)$, so that,

$$
f\left(x ; \mu_{m}\right)=\frac{1}{2 \mu_{m}} \quad \text { for } x \in\left(0,2 \mu_{m}\right)
$$

This implies that

$$
\begin{aligned}
& \qquad \begin{aligned}
F\left(x ; \mu_{m}\right) & =\frac{x}{2 \mu_{m}}, \quad q=H\left(\mu_{m}\right)=2 \mu_{m} \cdot\left(\frac{s+p-c}{s+p-v}\right), \\
z(m) & =\mu_{m}\left[\frac{(s+p-c)^{2}}{s+p-v}-p\right]-r m \\
\text { and } \quad T(m) & =\frac{(s+p-c)^{2}}{s+p-v}-p .
\end{aligned}
\end{aligned}
$$

Hence, optimal solution is derived as follows.
Corollary 2 : An optimal solution $\left(q^{*}, m^{*}\right)$ is given by :

$$
\begin{equation*}
q^{*}=2 \mu_{m^{*}}\left(\frac{s+p-c}{s+p-v}\right) \tag{4.4}
\end{equation*}
$$

where m^{*} is the solution of

$$
\begin{equation*}
\mu_{m}^{\prime}\left[\frac{(s+p-c)^{2}}{s+p-v}-p\right]=r \tag{4.5}
\end{equation*}
$$

Proof: The argument is exactly same as in the proof of Corollary 1.

Case III (Normal) : For any m, let $X \sim N\left(\mu_{m}, \sigma^{2}\right)$, so that,

$$
f\left(x ; \mu_{m}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu_{m}}{\sigma}\right)^{2}\right\} \quad \text { for }-\infty<x<\infty
$$

It must be noted that even though $-\infty<x<\infty$, the use of Normal distribution has beefin extensive in all most all kinds of management decision problems (e.g. quality control,
inventory, queues etc.) in order to describe the variation pattern of positive random rariables. Furthermore, it can be observed that the expression for $Z(q, m)$ in the equation (2.4) remains unaltered, and the results of the previous section hold good for this distribution.

We then have

$$
\begin{gathered}
F\left(x ; \mu_{m}\right)=\Phi\left(\frac{x-\mu_{m}}{\sigma}\right), \\
q=H\left(\mu_{m}\right)=\mu_{m}+\sigma \Phi^{-1}\left(\frac{s+p-c}{s+p-v}\right), \\
z(m)=(s-c) \mu_{m}-\frac{(s+p-v) \sigma}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left\{\Phi^{-1}\left(\frac{s+p-c}{s+p-v}\right)\right\}^{2}\right]-r m,
\end{gathered}
$$

and $T(m)=(s-c)$, where $\Phi($.$) is the cumulative distribution function of Standard$ Normal variable.
Therefore, we have the following result that can be proved by the arguments used for arlier corollaries.
Corollary 3 : An optimal solution (q^{*}, m^{*}) is given by :

$$
\begin{equation*}
q^{*}=\mu_{m n^{\prime}}+\sigma \Phi^{-1}\left(\frac{s+p-c}{s+p-v}\right) \tag{4.6}
\end{equation*}
$$

where m^{*} is the solution of

$$
\begin{equation*}
(s-c) \mu_{m}^{\prime}=r . \tag{4.7}
\end{equation*}
$$

Case IV (Lognormal) : For any m, let $X \sim L N\left(\xi, \sigma^{2}\right)$, so that,

$$
f\left(x ; \mu_{m}\right)=\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{\ln x-\xi}{\sigma}\right)^{2}\right\} \quad \text { for } x>0
$$

where $\mu_{m}=E(X)=\exp \left(\xi+\sigma^{2} / 2\right)$, that is, $\ln \mu_{m}=\xi+\sigma^{2} / 2$. Or in other words, μ_{m} is a function of both the parameters of the distribution that implies μ_{m} is influenced by m through ξ or σ. We assume σ to be fixed, and derive optimal solution. Now, it may be observed that

$$
\begin{aligned}
F\left(x ; \mu_{m}\right) & =\Phi\left(\frac{\ln \left(x / \mu_{m}\right)+\sigma^{2} / 2}{\sigma}\right), \quad q=H\left(\mu_{m}\right)=\mu_{m} \exp \left[-\frac{\sigma^{2}}{2}+\sigma \Phi^{-1}(k)\right] \\
z(m) & =\mu_{m}\left[(s+p-v) \Phi\left\{\Phi^{-1}(k)-\sigma\right\}-p\right]-r m
\end{aligned}
$$

and $T(m)=(s+p-v) \Phi\left\{\Phi^{-1}(k)-\sigma\right\}-p$, where $\Phi($.$) is the cumulative distribution$ function of Standard Normal variable and $k=\frac{s+p-c}{s+p-v}$.

Hence, optimal solution can be obtained from the following result.

Corollary 4 : An optimal solution $\left(q^{*}, m^{*}\right)$ is given by :

$$
\begin{equation*}
q^{*}=\mu_{m^{\prime \prime}} \exp \left[-\frac{\sigma^{2}}{2}+\sigma \Phi^{-1}(k)\right] \tag{4.8}
\end{equation*}
$$

where m^{*} is the solution of

$$
\begin{equation*}
\mu_{m}^{\prime}\left[(s+p-v) \Phi\left\{\Phi^{-1}(k)-\sigma\right\}-p\right]=r \tag{4.9}
\end{equation*}
$$

Before we conclude this section, it is important to note the following. In all the specia cases considered above, we have noticed that $T(m)$ is independent of m. However, thi: is not true in general. For instance, in the case of lognormal demand distribution witi fixed $\xi, T(m)$ is indeed a function of \boldsymbol{m}. A simple decision rule for the same is not quite apparent.

5. Conclusion

We have studied the classical single-period stochastic inventory model wherein demand is under the influence of marketing effort. The mean demand is assumed to grow with an increase in marketing effort, but at a diminishing rate. The relationship used is in generic form, that is, it represents a class of functions. The problem under consideration is optimal determination of both order quantity as well as level of marketing effort. Results are presented to describe the solution procedure for general demand distribution. We also
illustrate the same for some particular demand distributions -- Exponential, Uniform, Vormal and Lognormal.

It is assumed throughout that demand is continuous random variable. However, we bbserve that the same approach can be adopted for discrete situation as well .

6. Acknowledgements

The authors wish to thank the two anonymous referees for the useful comments that reped to improve the content of the article substantially.

7. References

1] Bhunia A.K. and Maiti M. "An Inventory Model for Decaying Items with Selling Price, Frequency of Advertisement and Linearly Time-dependent Demand with Shortages", Journal of the Indian Association for Productivity, Quality \& Reliability, 22, pp41-49, 1997.
? Eliashberg, J. and Steinberg, M.S. "Marketing-Production Joint Decision-Making" in Handbooks in OR and MS (Vol. 5) (Eds Eliashberg J. and Lilien G.L.), Elsevier, Amsterdam, 1993.
IJ Jucker, J.K. and Rosenblatt, M.J. "A Single-Period Inventory Model with Demand Uncertainty and Quantity Discounts : Behavioural Implications and a New Solution Procedure", Naval Research Logistics Quarterly, 32, pp537-550, 1985.

H Kotler, P. Marketing Decision Making : A Model Building Approach, Holt, Rinehart and Winston Inc., New York, 1971.
j) Ladany, S. and Sternlieb, A. "The Interaction of Economic Ordering Quantities and Marketing Policies", AIIE Transactions, 6, pp35-40, 1974.
G] Lal, R. and Staelin, R. "An Approach for Developing an Optimal Discount Pricing Policy", Management Science, 30, pp1524-1539, 1984.
17 Shah, Y.K. and Jha, P.J. "A Single-Period Stochastic Inventory Model under the Influence of Marketing Policies", Journal of the Operational Research Society, 42, ppl73-176, 1991.

