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SUMMARY. In this papsr wo havo studiod a proporty of location astimetors which
aro givon a3 lincar bination of ord»r statisti Intuitivoely, one would oxpoct that the
location estimators which givo lass woight to tho oxtromns chuworvations should bo preforrod for
distributions having havier tails, This fooling is mads proeiso at diffsront lovols of gonorality
introducing a now condition for heavinoas of tail, Alo, a mothod has boon indicated to computo
infiroum of some rolative officioncois over tho claw of aymmotrie unimodal distributions.

1. InTRODUCTION

Throughout this papor, we restrict ourselves to tho class C of strictly
increasing absolutely continuous d.f. (distribution function). Let K be a
d.f. on [0, 1], symmetric about 4. Then following (Bickel and Lehmann, 1975),

1
px(F) = | F-Y{)dK(?) is a location parameter. The most natural cstimator
[
1
of such a location paramoter is fig(F) = [ Fi'()dK(t), where F, denotes
[
emp'rical d.f. and F;'(¢) is defined in usual fashion. Asymptotio variance of
such an estimator is given by (seo Huber, 1069).

o*ux(F)) = var (U(K, F, T})

where T is uniform distribution on (0, 1) and
UK, F,0) = | dKQfF-0)ywith £ = dF(a)da.
12

By cfficiency of one estimator w.r.t. other wo mean the ratio of asympto-
tic variances, Whenover we replaco d(K()) by J(f)dt, it is assumed that K
permits a density which is given by J{1). In gencral ¢(K,, K,, F) donotos
the relativo efliciency of ﬂKg(F) w.r.t, ﬁK‘(F). Tor brovity, wo will also adopt

the following notations.

(i) T, F) denotes the efficiency of « trimmed mean w.r.t. mean for
d.f. F.

(i) (17, &, F) donotos the efficioncy of a 1Vinsorised mean w.r.t. moan
for F,
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(ili) ¢(TW,, F) denotes the officiency of o trimmed mean wrt, «
Winsorised mean.  For tho sake of convenicnco, unless tho contrary is prociscly
stated, wo shall bo assuming the distributions under consideration to be
symmctrio about zcro which docs not affect the generality of tho results.
Two distributions for which the efficicncy is being compared aro assumed to
have same location parameter. We shall denote by D tho subset of C
consisting of all unimodal distributions.

Tet F, G eC and supposo @ has got heavier tail than F (A preciso definition
is given later). Suppose K, and K, aro two d.f.’s on (0, 1) a.t. K, gives an
estimator which is less sensitive for tails than that of K, (to bo mado precise
later). Then we shall be proving results of the kind

oKy, Ky, F) € ¢(Ky, Ky, G).

In Bickel and Lehmann (1075) (also sce Doksum, 1969), @ is defined to
have beavier tail than F if

G-Y)/F-(t) is non-decreasing in (3}, 1). . (L)

As long as weight functions are modification of the uniform distribution

on [0, 1], (1.1) is enough. In order to achieve similar comparisons for a pair

of estimators with gonoral weight functions, a stronger condition (3.1) has been

introduced for heavincss of tail. A consequonco of Lemma (3.1) enablos

us to get lower bounds for certain relativo efficiencies over the class D dofined
above,

A particular result of this kind is contained in Bickel and Lehmann
(1975, Theorem 6) which proves that under abovo set up if (1.1) holds thon
(T, F) < (T, G).

2. LINEAR WEIOHT FUNCTIONS
The first result which wo are going to prove is essentially a gencralisation
—1,
of Theorem 6 in Bickol and Lehmann (1975). Denoto 'gﬁ% by r{t), F-)1)2
by »(t) and G-(t)? by q(2).

Theorem 2.1: If G has heavier tail than F in the sense thal for some

0 <a <} we have the relation
M < rl—a) Kt for p<s < 1—a <t <1,

then T, F) € e(T,, G). e (21)
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For proof we nced to strengthen Lemma 2b in Bickel and Lehmann
(1975) as follows.

Lemma 2.1:  Let I, be a conlinuous distribution function on (0, o) and
I, is oblained by truncating Il, at the point u. Let a(z), b(x) be positive
Junctions integrable w.rt. I s.t.

(i) a(x) is non-decreasing;

b
(i) 35‘;; < Z((::; n‘&; Joro<s<u<t<oo
§ W) \(x) _ [ bx)dH(x)

then Ta@ i@ S [a@all@

Proof :  Define Ify(x) = H,(z) in (0, u)
= —1#'(1) in [, o).

Let ) = § a@)ll)] | a()ll). . 29
0 0

Similarly we define II3 and 11§ replacing I, by I, and Il, respectively in
diny ana 91
di; amy
Then the following are easy to verify :

(2.2) so that exist. Set f a(z)dlz)y=A; for i=0,1, 2
o

arr 22,

ai: ,\—“ 70, w4 =2 1w, ) . (23)
dll; A, 22 5
m; =3, 10 u)+— I{u} e (24)

where 7 stands for indicator function. Also a(2) is non-decreasing == A, > Ar-
This fact together with condition (i) of Lemma (2.1), (2.3) and (2.4) implies

W) blu) [ dI dlI} as
:Tx)—zTu')][dnE’duE‘] >0 wyup0 . (29

Integrating (2.5) w.r.t. JI§ wo get the required resut.

Proof of Theorem 2.1 :  Proof follows directly from above lemma by put-
ting = 1—a, a(t) = p(t), b(t) = g(t) and 11, as uniform distribution on [}, 1]
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Corollary 2.1: Lel ag = sup {& < } : r{l) is non-decreasing in (1—a, 1)}
and r(s) € r(1—a)¥} < 8 < 1—a,, then'Na < a, (2.1) holds. For ay =},
Theorem 6 of Bickel and Lehmann (1975) is a special case of this corollary.

Corollary 2.2: Let tg=inf{t < 4 :1(t) is non-decreasing in (§, 1—1))
and s(1—1,) < r(s) for (1—1t,) < 8 < 1 then Na > l, (2.1) holds.

Remark 2.1 : Tho following result shows that symmetry of F and @
can also be relaxed toa little extent. Lot F and @ Lo s.t. F-'(t) = —F=)(1--1),
G-1(1) = G-Y1—!) for { € a then under the conditions of Theorem (2.1) and
zero mean (2.1) holds.

The statement follows casily from the following four inequalities which
are true under abovo sct up.

a 1/2 .. .
(i) [ _‘[ p()dt—ap(a) ]/jo p(t)dt < similar cxpression for G.

(ii) [ li p(l)dl—ap(l—a)]/ﬁ[: p(hdt < similar oxpression for G,

(iii) [ :[ p(l)rll—ap(:z)]/l;[z p()dt < similar expression for @.

(iv) [ l_j'; p(l)dl—ap(l—:z)]/ lf ()t £ similar expression for G.

The theorem proved below studies behaviour of efficiency (w.r.t, mean)
of a class of location estimators which ignore tails to a lesser extent than
trimmed mean. This result can be achieved, under stronger assumptions, as
a particular caso of Theorem (3.1) but tho proof included hero is of particular
interest.  In the statement which follow U stands for uniform distribution on
[0, 1] which of courso leads to mean. For convenience writo

’{I.p(l)dl =, li. q)dt = pa, j‘ p(dt = v, and 'Lq(l)rlt = 1y,

12
Theorem 2.2: Let J begivenasJ =c infal—alwithl <c¢ < I_lhz s

1
=d otherwise a.l. [ J()dt = 1. Assume r(f) is non-decreasing in [l—a, 1)
L

and for } <a(1—a), r(s) < r(1—a). Then if K denoles disiribulion
corresponding lo J, ¢(K, U, F) € ¢(K, U, G).
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Proof : After a little computation it follows that a sufficiont condition
for above result is
]
= [ m= S -2+ P -2y ]
vy 172 €
< similar expression for ¢ . (2.8)

using the conditions of abovo thcorem it follows easily that s, fu; < vifv,.
The fact that numerator in (2.6) is > 0 can bo shown proving that e(K, U, F)

> —: . Notico that without strict incquality it straightaway follows from
¢

Theorem 5 in Bickel and Lehmann (1075). (2.6) follows if we prove

[ m=, f‘ (F-l(l—a)+% (P30~ F-(1~a)) ] / 11 < similar expression for
for @ or equivalently

I‘l/‘l (F-Y()4+K(F-(1 —a))*dt < similar expression for @ where K > 0.
A sufficient condition for this is

Jalpe < |-'i¢ F“(I)dl/r(l—a)lj' aG-Y)de. e (27)

To establish (2.7) motice that sy, < | F-Y0)G-Yt)dljr(1—a). Henco it
1-a

will be onough to show that

1 1 ) /l
f G-’(t)F-’(l)dt/ [ Fu g [ god [ Gyl . (28)
1=a 1-2 1-a

1=z

Since G-(¢) is an increasing function, (2.8) will follow from the argument
of stochastic ordering if we show that ¢1—z <t <1 one hnsl"[ F-)1)dtf
i’ F-)(t)ydt > similar expression for & and this is clear from the fnct.. that (t)
li;‘non-dccmm;ing in [1—a, 1). This finishes the proof of Theorem 2.2.

Corollary 2.3 : Let ay = sup {& < 4 : r(t) ts non-decreasing in (1—a, 1)}
and 1) < rl—a)vi e < (1—ay) then N a< a, the result of
Theorem 2.2 holds.

Remark 2.2: Hero also symmotry can bo relaxed in tho central part
[x, 1—a].
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8. GENERAL WEIGUT FCNCTIONS PERMITTING DENSITY

Let us write by = f(F-1(t), hy(t) = g(G-'(1)) and R(t) = hy{t)[h\(t) where f
and g denote dersitics of F and @ respectively. In this scction we introduce
o new condition for heaviness of tail, i.e., @ has got heavier tail than F if

R{t) is non-incressing in (3, 1). e (300)

It follows from Corollary 3.1 that this condition is stronger than (1.1).
One also observes that condition (3.1) is transitive and invariant under scalo
transformation of ono distribution or both. The following four distributions
are arranged in increasing order of heaviness of tail according to criterion
@.1).

Exzample 3.1 : (i) Uniform, f{F-}{¢)) =1

(i) Triengular, f(F-'(5)) = (2(1-)]

(i) Distribution with density |z]e "
SIF-Y 1) = [—log 201 —1))i%(1—2)

(iv) Double exponential, f(F-1(t)) = (1—1).

Now we prove a lemma which is of central importance in this section and
also in next section.

Lemma 3.1: Let J denole density of a d.f. K on (0,1]. If F and G
satisfy (3.1) then U(K, G, ){U(K, F,t) is non-decreasing in (3, 1).

Proof : Sot } < S < 8 < 1. Using (3.1) observe that

I 4
Uk, E sy ROUOROW { RO
TE.G.5 > RS > —————— .
(K. G, 5) [ v § @M

From this tho lemma follows easily.

Corollary 3.1: Il) ts non-increasing = r(l) is non-decreasing in (4, 1).
Obviously, uniform distribution has got lighlest tail in class D defined carlier
according lo criterion (3.1) and hence also according lo (1.1). This fact enables
us lo compule infimum of many relative cfficiencies over the class D.  For example
eT,, Uy=11+4a)=1inf {(T,, F):FeD}, a fact established by Bickel
differently (see Bickel, 1975). Same procedure will work for e(K, U, F) of
Theorem 2.2.

Using the lomma proved above wo prove a thoorem which is the most
gonoral result of the kind.
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Theorem 3.1: Let Jy, Jg be two symmetric densities of d.f's Ky and K,
8L Jo= J,|Jy i3 non-decrcasing in [§,1]. Let F, G salisfy (3.1). Then
oKy Ky, F) < oKy K, G).

Proof : In effect, wo went to show

[ (UK, P\ OIUK,, F,OF UXK,, F, l)f”l} UKy F, bt
i 2
« similar expression for ¢

we shall first prove
U(K,, F,1)]U(K,, F, 1) < similar expression for ¢ e (3.2)
U(K,, G, 1)]U(K,, G, ) is non-docreasing and . (3.3)

Hys) = | UKn F,0dt] [ UK, F, )it > similar expression for ¢
1/2 172

= IL{z) . (34)

ze(3, 1). Then using (3.2), (3.3) and stochastic ordering between If,
and 71, we conclude our desired result immediately. We shall indicate proof
of (3.2), (3.3) and (3.4) briefly. (3.2) can be written as

j’ Jo(O)[J )/ y(1))dt] j! [Ja(8)/hy(0))dt € similar expression for G
172 1/2

which i3 truo observing that J(t) is non-decreasing and U(K,, F, 1)]U(K,, G, !)
is non-increasing.

Nextly for (3.3), set § < § < 8" < 1. The result is a simplo consequence
of the following observation.

L oo f I 00w
T LUl —
1‘/[2 [t} Ry))dle .! [JL0hft)de

Finally (3.4) follows from 'Tho following inequalitics,  Writing
U*t) = [U(K, F, )UK, G, ))*%ze(3, 1)
1
; U UK, G, 1)t ] U0UAK, G,
20> .
[ UK, G, iyt J UAK, G, 0t
V2 1

This finishes proof of Theorem 2.1



EFFICIENCY OF L-ESTIMATORS 33

Wo can derive various interesting results similar to Theorems 2.1 and 2.2
for general weight functions permitting density and computo corresponding
infimum of relative efficiencics over the class D of d.f.s.

4. \WEIGHT FUNCTIONS NOT PERMITTING DENSITY
In this section we shall study rclated properties for the weight functions
which give positive masses at few points. Following the notations adopted
in Soction 1,

[ tap(l—a)le(TIW,, F) = (1— 22y, + a(FY(1—a)+afh(1—a))].
So, obviously co > (T, F) > (1—2a)? with both ends sharp in ¢ (i.e., both
the bounds can be approached controlling h(x)). The rcsult proved below
throws light on sensitivities of trimmed mean and \Winsorised mean for the tail
of underlying distribution. Also it enables us to find inf {¢(T1¥,, F): FeD}.

Theorem 4.1: If for two symmelric distributions F and @, r(t) ts
non-decreasing in (3, 1—a] then ¢(TWW,, F) < e(TWW,, G).

Proof : Since tho condition that r{t) is non-decrcasing and ¢(T'IV,, F)
are unaffected by scalo transformation on F and G, it will bo enough to prove
that e(T'IV,, F) < ¢(TWW,, G°) where G*(z) = G(r(1—a)z). Writeg® = dF°*/dx,
k() = g*(G*(1)) and p°(t) = G*-Y(!)®. An ecasy calculation shows that our
theorem is true if wo show

[(a/hy(1—a))t+2aF - (1—a)/hy(1 —a)]/l:;f: 2()dt+ap(l—a)

< similar expression for G*.
Above mentioned inequality is true under the light of following
observations

(i) G*-!/F-! is non-decreasing in [§, 1—a] and G*-Y(1—a) = F-1—a)
implics G*-! < F-1in (}, 1—a).

(i) (G-t F-Yt)/dtliy-q > O implics hy(1—a) > A*(1—a).
This finishes proof of Theorem 4.2.

Tho theorem which follows is analogous to Theorem 3.1 for Winsorised
typo estimator. It is tho most general result in this context.

Theorem 4.2 : Let F and @ satisfy (3.1) in (3, 1—a). Let J,, J3 be two
aymmelric densities of d.f’s K, and K, respectively on [0, 1] s.t. Jo = Jy/Js
is non-decreasing in [4,1). Define, J; = ¢J, tn [2, 1—a), = 0 O.W. where ¢
is normalising conslant and Ji = J, in [z, 1—a), = 0 in [a, 1—a]’. Let K}

Bl-5
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be the d.f. on [0, 1] whose absolutely continuous part is given by the density Jy and

it has two atomic points @ and (1—a) which share rest of the mass equally. If

K} denotes d.f. corresponding lo densily J3 then e(K3, K3, F) < e(K3, K3, G).
We first prove briofly o lemma which is quito similar to Theorem 4.1,

Lomma 4.1: Let Ji*=dJ, in [2, 1—a),=0 O.WW. where d isa
normalizing constant. Let K}* denote d.f. corresponding lo J;* then
«K}*, K3, F) < o(K}*, K}, G).

Proof : The argument i3 parallel to Theorem (4.1). If wo apply the
transformation G*(z) = G(z/a) then U(K,, G, )=a UK, G, ) and

ﬂ{‘"‘i'[) = Jy(t)/h\{t). For this result we apply the transformation G* (z)

= G(U(K,, G, 1—a)x|U(K,, F, 1—a)). Then supplying similar arguments ono
gets tho lomma.,

Proof of Theorem 4.2: Notice that

e(Ky, K}, F) = (K}, K{*, F).e{K}*, K3, F) < e(K3, K3*, G).e(K}*, K3, C)
= ¢(K;, Kj, G) (using Lemma 4.1 and a consequenco of
Theorem 3.1).
This establishes the theorem,
Remark 4.1: oo > ¢(K}*, K}) > 1/d% with both ends sharp.
Remark 4.2: Here we establish an interesting numerical rosult
inf {(TW,, F): FeD}=eTW,, U) = (1—8a’+12a2)/(14-4a)

For & = .05, this quantity is about .86 whilo tho universal lower bound
is .81, Under tho light of theso facts ono is safe in proforring trimmed mean
to \Winsorised mean.

Finally we turn to study of behaviour of relative efficicncy of winsorised
mean to mean. Such nice comparisons are not available in this case and as
& conscquenco uniform distribution is not the least favourable distribution
for this efficicney (also sco Bickol 1965). Tho following result which is proved
under a bit stringent condition throws some light on tho behaviour of this
efficicncy.

Theorem 4.3: If r{t) is conslant in (}, 1—a,) and non-decreasing in
[I—ay, 1] then e(W, o, F) S e (W, e, G) ¥ a> a,. (e(IV, a, ) is defined in
Section 1),

Proof : In effoct we want to show that

m—a[F(1—a)tafh(l—a))?
n—pta(F(1—a)+afh(l—a)l

< similar exprossion for @. ... (4.1}
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Let G*, g°, 2* and p* bo sameo 28 that defined in proof of Theorem 4.1.
Then (4.1) can bo concluded aftor replacing G by @* (which is again good enough
becauso everything is unaffected by scale transformation) from the following
simple observations.

(i) lT[.p(l)dl = similar expression for G°
172

(ii) j’ p(t)dt < similar expression for G*
1-a

i) 1—a) = h(1—a).

Example 4.1: Following i3 an example of the situation described in
Theorem 4.3. Let F(ox) have MLR in o. G(z) = F(z/o,) for z€(0,2) and
= yF(z/a,)+1F(z]oy) for z >z where o, 0y, 0, are s.t. F(z/o,) = (F(z/oy)
+F(z]o,))/2. Hero 1—a, = F(zfo,) = G(z). The required property follows
from a theorem stated in Bickel and Lehmann (1975, pp. 1062).

Remark 4.3: As ay— } in Theorom 4.3, the condition of constant r{t)
tends to become void. Ieuristically one can say that this is tho roason why
e(WV, a, U) — 1[3 as ag — § where } is inf {¢(1V, «, F) : F ¢ D} (Bickel, 1965).

Remark 4.4 : Theorem 4.3 odmits the following generalisation. Let
R(t) be constant in (}, 1—a,) and non-increasing after that. Let K be a d.f.
on [0, 1] (having donsity) and K* is obtained Winsorising K ay points a, and
1—a, then ¥a > «, eK*, K, F) < ¢(K*, K, G).
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