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Fuzzy tools for the management of uncertainty in pattern
recognition, image analysis, vision and expert systems

SANKAR K. PALt

The paper presents different fuzzy tools that are useful for decision-taking in pattern
recognition, image processing and vision problems, and in designing expert systems
when the patterns are ill-defined or the input data does not have complete, precise
or reliable information. Tools are explained with several examples. Algorithms for
feature ranking, clustering evaluation, quantitative indices for image processing,
fuzzy enhancement/segmentation of both grey tone image and colour image, the
front end compiler, and for representing rules and facts in the knowledge base are
also demonstrated with various examples of real-life problems. Some of the illus-
trations are taken from the existing literature.

1. Introduction

Machine recognition of patterns can be viewed as a two-fold task, consisting of
learning the invariant and common properties of a set of samples characterizing a
class, and of deciding a new sample as a possible member of the class by noting that
it has properties common to those of the set of samples. In other words, the pattern
recognition by computers can be described as a transformation from the measurement
space M to the feature space F and finally to the decision space D (Duda and Hart
1973), i.e.

M->F->D

The mapping §: F — D is called the decision function. The elements d € D are called
decisions. A loss function, depending on the decision d and the other probability of
distribution on F, may be introduced in order to determine a preference for a certain
decision d,(eD) over others. Minimization of the expected value of this loss (called
‘risk’) is the criterion for taking a decision.

When the input pattern is an image, the measurement space involves processing
tasks such as enhancement, filtering, contour extraction and noise reduction, in order
to extract salient features from the pattern. This is what is called image processing
(Rosenfeld and Kak 1982, Pratt 1978). The ultimate aim of this is the understanding,
recognition and interpretation from the processed information available from the
image pattern. For example, the recognition of shape of a 3-D object pattern may be
done from the contour extracted from its 2-D image, or from its shade, or from its
motion. Similarly, a contour can correspond to the scene to a depth discontinuity, a
surface orientation discontinuity, a reflectance discontinuity, an illumination discon-
tinuity, or shadow. The task of understanding the scene in this context, i.e. the
‘recovery of scene characteristics, comes under the heading ‘computer vision’ (Horn
1986). e

Arficial intelligence is the field that aims to understand how computers can be
~made to exhibit intelligence in different aspects of thinking, reasoning, perception or
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action in some limited sense. In other words, it involves the study of mental faculties
using computational models (Charniak and McDermott 1985). A key contribution of
Al is the observation that knowledge should be represented explicitly and not be
heavily encoded, such as numerically, in ways that suppress structure and constraint,
Al has developed a set of techniques such as the semantic network, frames and
production rules, that are symbolic, highly flexible encoding of knowledge, but yet can
be efficiently processed.
, An expert system can be viewed as a rule-based Al application program which

provides the user with the facility for posing and obtaining answers (which requires
. expertise) to questions relating to the information stored in its knowledge base (Hayes
et al. 1983, Waterman 1985, Kohout and Bandler 1986). Typically, such systems
possess a non-trivial inferential capability, and in particular have the capability to
infer from premises which are imprecise, incomplete or not totally reliable.

Since Zadeh published his classic paper (Zadeh 1965), fuzzy set theory has been

receiving more and more attention from researchers in a wide range of scientific areas,
‘the most important of which is decision-making modes under different kinds of risk,
uncertainty and ambiguity. Although we use the probabilistic theory of decision and
estimation to design automatic decision-making systems under risk and uncertainty,
it is felt that there exist some qualitatively different kinds of uncertainty—such as
ill-definedness, vagueness and ambiguity, which have come to be known as fuzziness
—which are not covered by statistical theories. Many situations are found in pattem
recognition (PR) problems where the notion of probability alone is not adequate to
describe the reality.

The application of fuzzy set theory in the problems of pattern recognition is found

1in various places (Zadeh et al. 1975, Kickert 1978, Gupta et al. 1989, Wang and Chang

1980, Dubois and Prade 1980, Bezdek 1981, Kandel 1982, 1986, Yager 1982, Gupta
and Sanchez 1982, Pal and Dutta Majumder 1986). In some cases the performances
of the algorithms are compared with those of conventional approaches. Pal and Dutfa
Majumder (1986) did not consider the fuzzy approaches as always a competitor 0
the statistical and syntactic approaches; rather, they considered this approach to be
more general and a very useful supplement to the classical (syntactic and statistical)
approaches, depending on the nature of the problems.

Similarly, a grey tone including a colour image possesses some ambiguity within
the pixels, owing to the possible multivalued levels of brightness, and it is therefore
justified to apply the concept and logic of a fuzzy set, rather than ordinary set theory,
to image processing and vision problem. Keeping this in mind, an image can b¢
considered as an array of fuzzy singletons, each with a value of membership function
denoting the degree of having some property, say brightness, smoothness, edginess,
semibrightness, or the degree of possessing some colour property. Some simple but
effective pre-processing algorithms such as enhancement, edge extraction, primitive
extraction, segmentation and coding were given by Pal and Dutta Majumder (1986)
Pal and King (1981a,b, 1983), Pal (19822, 1986), Pal er al. (1983 a,b), Nasrabadi
et al. (1983).

Since the knowledge base of an expert system is a repository of human knowledge.
and since much of human knowledge is imprecise in nature, it is usually the.case that
the knowledge base of an expert system is a collection of rules and facts which for the
most part are neither totally certain nor totally consistent. The uncertainty of infor
mation in the knowledge base of any question-answériné system thus induces somé
uncertainty in the validity of its conclusions (Negoita 1985, Gupta et al. 1985, Hart

re
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1986). Therefore the answer to a question must be associated explicitly, or at least
mplicitly, with an assessment of its reliability. For this reason, a basic problem in the
design of expert systems is how to analyse the transmission of uncertainty from the
premises to the conclusion, and associate the conclusion with what is commonly called
acertainty factor (Zadeh 1983).

In the existing systems, uncertainty is dealt with through a combination of predicate
logic and probability-based methods. A serious shortcoming of these methods is that
they are not capable of coming to grips with the pervasive fuzziness of information
inthe knowledge base, and as a result are mostly ad hoc in nature (Zadeh 1983). An
alternative approach is suggested by Zadeh based on the logic of fuzzy sets. Details
regarding the management of uncertainty in expert systems such as MYCIN (Shortcliffe
1976) and PROSPECTOR (Duda et al. 1979) were discussed by Zadeh (1983).

The present work discusses some fuzzy tools and their applications for the
management of uncertainty (indeterminacy) in problems of pattern recognition,
image processing and vision, and expert systems. The problems discussed here are:

(i) to provide quantitative measures for processed images;

(i) to take decisions regarding the selection of thresholds, or the segmentation of
animage into a meaningful region, without committing ourselves to a specific
segmentation when the regions in an image are ill-defined;

(iii) to provide fuzzy transforms for the enhancement and segmentation of colour
(including pseudo-colour) images;

(iv) to evaluate the importance of features in the PR problem;

(v) to extract the seed point in clustering a set of data and to give a performance
measure for partitioning;

(vi) to equip an expert system with the computational capability to analyse the
transmission of uncertainty in information from the knowledge base to the
uncertainty in the validity of its conclusions.

The fuzzy tools considered here are measures of fuzziness—such as the index of
fuzziness (Kaufmann 1975), entropy (De Luca and Termini 1972), index of non-
fuzziness (Pal 1986), n-ness (Pal 1982 b) and dispersion (De Luca 1985), correlation
between membership functions (Murthy 1985), fuzzy geometry (such as area, perimeter
and compactness) (Rosenfeld 1984), fuzzy expected value and fuzzy expected intervals .
(Schneider and Kandel 1991, Kandel and Byatt 1978). The fuzzy measures are optimized
msome of the PR and IP problems in order to take decisions for ill-defined patterns.

Some new operators (Murthy et al. 1987) for union, intersection and inclusion
have also been mentioned. Fuzzy transforms for colour image processing and graphics
are defined using the operator ‘bounded difference’ (Dubois and Prade 1980, Pal and
Dutta Majumder 1986, Zadeh et al. 1975). Fuzzy expected value and intervals are
Used in designing expert systems when the input data do not have complete or precise
information. The use of fuzzy and fractionally fuzzy grammars (Pathack and Pal
1986) for developing production rules is also discussed.

Various examples from real-life problems are taken into account in order to
tplain both the tools and the suitability of the algorithms developed.

2 Fuzzy sets
2L, Definitions

Afuzzy set A in the universe of discourse X = {x} is defined by its membership
Unction 1, (x), which assigns to each element x € X a real number in the interval
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[0, 1]. The value of p,(x) represents the grade of membership of x in A. In othy
words, a fuzzy set 4 on X is denoted by its membership function

i X - [0,1] or p(x), VxeX

The definitions of union, intersection and complementation originally proposed
by Zadeh (1965) and used since then are as follows. Union of two fuzzy sets 4 and
Bin X:

= taos(x) = max{p,(x), p(0)}, VxeX [U
Intersection of two fuzzy sets 4 and B in X:
= pynp(x) = min{u,(x), pp(x)}, V¥xe X @
Complementation of 4 in X: _
= pi(x) = 1 — p,(x), VxeX e

The mathematical foundation to these ideas was given by Bellman and Giertz
(1973) and Fung and Fu (1975).

There are also other definitions, such as bold union and bold intersection (Dubois
and Prade 1980), in this regard. These are defined as

AU B = pt,5() = min[l, pu(x) + (), VxeX (9
AnB= .uAnB(x)b = max [O’ :uA(-x) + ”B(x) - 1]5 Vxe X (4b)

The abdve definitions of intersection and union are based only on the value of
membership functions characterizing fuzzy sets. A different interpretation of thest
operators was given by Murthy et al. (1987) in the light of measure theory. They
defined

AU B=p,,(x) = M4,V B,) (50

AN B=py0p(x) = Md N B) (b
where »
A, = [0, py(x)] if p,(x) is non-decreasing at x
= [1 — u,(x), 1] if p,(x)is non-increasing at x
= [0, 1] if pe(x) =1
= any finite set if u,(x) =0 (0)
B, = [0, us(x)] if g is non-decreasing at x
= [l — pz(x), 1] if g is non-increasing at x
= [0, 1] if pp(x) =1
= any finite set  if py(x) = 0 (0
Therefore ,V )
pa(x) = M4,) ®
us(x) = A(B,) | 0

where 2 is the Lebesgue measure on R. .
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Equations (5)—(9) are found to be generalized in the sense that Zadeh’s definitions
and bold union and intersection can be derived from them. These also satisfy the
properties followed either by equations (1) and (2) or by equations (4).

Example 1
Let #,(x) = x and pg(x) = 1 — x? then for x = 0, 0-3, 0-5, 0-8 and 1, we have
A, = [0,x] = [0,0], [0,0-3], [0,0-5], [O,0-8], [O,]1]
B, = [x¥4 1] = [0,1], [0-09,1], [0-25,1], [0-64,1], [I,1]
mos(x) = 40,1 = 10, 1.0, 10, 10, 1-0
Hang(x) = A%, x] = x—x2 = 0, 021, 025 016, 0
On the other hand, we have using equations (1) and (2)1’-
feos(®) = 10, 091, 075, 08, 10
Hanp(x) = 0, 03, 05 036 0
and using equations (4)
Haop(x) = 10, 10, 10, 1-0, 10
Henp(x) = 0, 021, 025, 016, 0

Thus the generalized definition of equations (5)-(8) follows the results obtained by
bold union and intersection. Similarly, if pz(x) = x?, then equations (5)~(8) would
follow equations (1) and (2).

22. Membership fu;tctions when x € R
The standard S function is defined (Zadeh et al. 1975) as

S(x;a, b c) = 0, ' x<a

il
[\
N
o %
(N
QIR
M
)
N

x<b

_ 2
= 1—2(x c), b<x<c
c—a
= 1, xX=zc (10)
Wihh = (a + c)/2. The standard = function is defined as )
n(x;b,c)=S(x;c—b,c—g,c>, x<c
b
=1—S(x;C,c+§,c+b>, xzc (1D

InS(x; a, b, ¢) b is the cross-over point, i.e. S(b; a, b, ¢) = 0-5. In n(x; b, ¢) b is the
“dwidth, i.e. the separation between the cross-over points of n-function. ¢ is the
®ntral point at which = = 1.

The § and 7 functions represent the compatibility functions corresponding to the
Uzzy sets *x is large’ and ‘x is ¢’, respectively. Besides these standard functions, there
¥ several other forms of these functions (Bezdek 1981, Pal and Dutta Majumder
%6, Kaufmann 1975) as used for practical problems. ‘
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2.3." Membership functions when x € R"

" Thestandard S and = functions when x € R" are defined by Pal and Pramanik
(1986) by extending equations (10) and (11). These are as follows:

SCb,2) = (1 — |x ~ b4y
or.
SCib, ) = 1 —3(1 — |Ix = bI/AY, |x — b]l < A
' = 0 or 1, otherwise (12)

where | - || denotes any norm in R’, 2 > 0 is the radius of S(x; b, 4) and b is the
cross-over point. It is to be noted that S(x; b, 1) is a two-valued (values being
complementary) function.

. A A
fi(x; ¢, A) = minS(x;y,§>, 3 < flx — el <2

A 2
= maxS(x; ¥, —), 0K x—c| €= (13)
2 2
where Iy — cll = /2, and min S(x; y, 4/2) implies the minimum of the two values

of the".SA‘“furiction at the point x. Similarly, max S(x; y, 4/2) implies the maxir‘num' of
the two"values of the § function at the point x. ¢ is the central point, Le.
fi(c; ¢, 4) = 1, and 4 is the bandwidth.

.. On simplification we have

A
R(x5¢,4) = 11 — 2x — pl/A%, S lx—cl <2
=131 —=2x—yl/A 0<lx—cl<A2 (19
Lwith [y — ¢f = /2. Considering the euclidean norm
A,
e =yl = lx—cl =% if J2<lx—cl<2
A . (15)
== lIx—cl if 0<|x—cl <22

We can write

i(x; ¢, )

20 — lIx — /2y, S <lx—cl <2

N>

Ix — el?
A

#(x; ¢, ) represents the compatibility function corresponding to a ‘cluster’ when
- xeR.

1 -2 0<Ix —c|| <A2 (16)

3. Fuzzy relations and composition )
Let X = {x} and Y = {} be the two universes of discourse. The cartesian
product X x Y is the collection of ordered pairs (x,); x € X, y € Y. A binary fuzzy

relation R from Xto Yisa fuzzy subset on X x Y and is characterized by a bivariat¢
membership function n4(x, y) € [0, 1].

3
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An n-ary fuzzy relation is thus a fuzzy subset on X; X X3 X - - - X X, and is
characterized by a multivariate (n-parameter) membership function
uR(xl’ xZ’ LRI ] xn) € [0’ 1]
xekX, i=12,...,n
Typical forms of u, are given by equations (12)-(16).
Example 1
Let X = {Ram, Shyam} and Y = {Jadu, Madhu}. Then the binary ordinary

relation is a subset of the cartesian product of X and Y. The binary fuzzy relation
‘similarity” or ‘resemblance’, say, may be expressed as a matrix

Jadu Madhu
Ram 09 0-5
Shyam 02 0-7
where the (i, j)th element is the value of pg(x;, y;), x,€ X, y;e ¥, i,j = 1,2.
It is to be mentioned here that each entry of the similarity matrix may again be
determined from the attributes characterizing a human being. Let p,, p,,. . ., py be

such attributes, each denoting the properties, say, behaviour, intelligence, looking,
opinion, etc. Then we may write

pr(xi, 3) = 1 — max|u,(a) — pa( ;) a7

or

Bl 1) = 1= 5% b — 1 (0)) 18)

n = 12,...,N

where p,( +) denotes the degree of possessing the nth property.

Similarly, if p,, ps, . . . , py denote some properties that characterize the template
of an object pattern, then u, may be used to represent the degree of equality or
consistency between two such templates.

Let R, and R, be two fuzzy relations from X to Y and from Y to Z. The composed
fuzzy relation C from X to Z then written as

C = R R, (19)
and is characterized by the membership function
pelx, 2) = myaxmin{ﬂR,(x, ) (¥, 2)}
xeX, ye¥Y, zeZ (20)
Considering Example 1 of a relation matrix from X to Y, if we have another fuzzy
‘similarity’ relation matrix from Y to Z, {Lalu, Bhulu}, as

Lalu Bhulu

Jadu 03 08
Madhu 06 0-7
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then the composed fuzzy relation denoting the ‘similarity’ between {Ram, Shyam}
and {Lalu, Bhulu} is

c 09 057 [03 08 05 08
" 102 07| loe 07| |06 07
Example 2

Let us consider the speech recognition problem (Pal and Dutta Majumder 1977)
where, say

X
Y {1000, 2000 : second formant frequencies F}
Z = {2500, 3000: third formant frequencies F;}

and let the fuzzy relation matrices for vowel sound /u/ from X to Y and Y to Z be

{300, 700: first formant frequencies F,}

1000 2000 2500 3000
300 | 0-8 005 1000 [ 007 025
R] = R Rz =
700 | 0-1 005 2000 0 0
Then the composed relation matrix from X to Z is
2500 3000

300 | 07 025

700 | 0.1 O
In the above example, each entry of the matrix denotes the degree to which the
corresponding combination (F,, F)), i,j = 1,2,...,3, i # j, represents the vowel

sound /[u/.
Some other examples of fuzzy relations are ‘much larger/taller/younger than’.

4. Measures of fuzziness

The index of fuzziness reflects the average amount of ambiguity (fuzziness) present
in 4 by measuring its distance (linear and quadratic corresponding to the linear index
of fuzziness and the quadratic index of fuzziness) from its nearest ordinary set <. The
term ‘entropy’, on the other hand, uses Shannon’s function, but its meaning is quite
different from classical entropy because no probabilistic concept is needed to define
it. The ‘index of non-fuzziness’, as its name implies, measures the non-fuzziness
(crispness) in 4 by computing its distance from its complement set. These quantities

are defined below.
4.1. Linear index of fuzziness (Kaufmann 1975)
2
vi(d) = ;Z la(xi) — po ()l

2
= - Z uAnZ(xi)

n

= %Zmin(/u(xi), 1 — py(x)), i=12,...,n @
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where p,(x;) is defined as

Ha(x) = 0, if p(x;) < 05 22)
= 1, otherwise
4.2. Quadratic index of fuzziness (Kaufmann 1975)
2 0-5
vq(A) = % I:Z (ra(x;) — .ud(xi))z] , 1 =12,...,n (23)
43. Entropy (De Luca and Termini 1972)
1
= — ; 24
HA) = 55 Y S, (a(x) 24)
with
' Swax)) = —ux)Inp,(x) — (1 — paCeDIn(l — p,(x), i=12,...,n
(25)
44. Index of non-fuzziness (crispness) (Pal 1986)
1 .
nd) = ;Z laCe) — palx)l, i=1,2,...,n (26)
All these measures lie in [0, 1] and have the following properties:
I(4) = 0 (minimum) for p,(x) = Qor 1, Vx 27 a)
I(4) = 1 (maximum) for u,(x) = 0-5, Vx 27b)
I(4) = I(4%) (27¢)
I(A) = I(A) (27d)

where I stands for v(4), H(A)and 1 — 5(A4). A* is the sharpened or intensified version
of 4 such that

= u,(x;), if =05
B (X)) L X (28)
Spqlx), if <05
45. n-ness (Pal 1982b)
The n-ness of A is defined as
1
TE(A) = ; z Gﬂ (xl )’ i = 1’ 2’ AR ] n (29)

where G, is any 7 function such that 0 < G, < 1 and it increases monotonically in
[ = 0to x; = Xpmu /2, say] and then decreases monotonically in [X,,,/2, Xpn.x] With
4 maximum of unity at x,,,/2, where x,,, denotes the maximum value of X;.

3. Measures of dispersion (De Luca 1985)
An energy measure E of a fuzzy set A satisfies the following axioms:

EA = 0 iff pux) =0, VxeX (30a)
if uy < pp then E(A) < E(B) (304)
E(A) reaches it maximum iff p,(x) = 1, VxeX 300)
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The power (or cardinality) which represents an energy measure is defined as

P(A) = Y pi()

xekX

Z#A(xi)’ l—__ 152""9’1 (31)

where X is a finite set of cardinality .

The dispersion measure of a fuzzy set gives a measure of the size (cardinality, in
cases of finite supports) in which almost all the energy of 4 is concentrated. Let 4
denote the fuzzy set obtained from 4 by rearranging its membership values p, (x;),

i = 1,2,...,n, in a non-increasing way. In other words
Wi = pix + 1), 1<x<n—1 (32)
One would obviously have
P(A) = P(4) = P (33)
d(A) = d(4) (34)

where d stands for the measure of fuzziness as described in §4.
The dispersion of 4 may then be defined as

5,(4) = min{ke[n] Y pi(x) > P — e}

x<k
e>0, [0 ={12,...,n} (35
This definition implies that
Y ui(x) <e (364)
x>9,
Y pilx) e (365)
x=d,
5,(4) = 9,(4) (36¢)

Ife = Plnsothat 0 < e < 1, then 6(A4) gives a measure of the minimal cardinality
of a subset of the universe X in which an amount of power greater than P — P/ns
concentrated.

6. Fuzzy geometry

Rosenfeld (1984) and Rosenfeld and Haber (1985) extended the concept of digital
picture geometry to fuzzy subsets and generalized some of the standard geometric
properties of the relationships among regions to fuzzy subsets. Among the extensions
of the various properties, we discuss only the area, perimeter and compactness ofa
fuzzy image subset, which may be used for pattern recognition and image processing
problems. In defining the above mentioned parameters we replace p, (x) by u for
simplicity.

The area of u is defined as

a(u) £ J# 37

where the integral is taken over any region outside which y = 0.
If i is piecewise constant (for example, in a digital image) a(y) is the weighted sum
of the areas of the regions on which y has constant values, weighted by those values.
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For the piecewise constant case, the perimeter of u is defined as
p(#) £ ZZIM - Auj”Aijkl’ i’j = 1727' <ot i <j’ k = 1’2" sty (38)
ij k

This is just the weighted sum of the length of the arcs 4, along which the ith and jth
regions with constant y values g, and g, respectively, meet, weighted by the absolute
difference of these values.

The compactness of u is defined as

comp(p) 2 a(w/p’(w) (39)

For the crisp sets, this is largest for a disc, where it is equal to 1/4n. For a fuzzy
disc where u depends only on the distance from the origin (centre), it can be shown
that

R 1
a(@)/p (w) = o (40)

In other words, of all possible fuzzy discs, the compactness is smallest for its crisp
version.

7. Correlation between membership functions (Murthy ef al. 1985)

In real-life phenomena we come across many fuzzy subsets, e.g. tall, very tall,
short, medium, etc., where if one membership function increases the other also
increases or decreases, or vice versa; or else when one membership function takes low
values the other also takes low values or high values, and vice versa. A similar
phenomenon is studied in statistics and is called correlation. A measure of such
relationship was studied by Murthy ez al. (1985), and is explained here in brief.

Let i, and y, be two membership functions defined on the same domain Q. Let
C.,.., epresent the correlation between them. The properties which C,, ,, may possess
are given below.

(i) If for high values of u, (x), u,(x) takes high values, and if the converse is also
true, then C, , must be very high.

e
(i) IfQisa sublset2 of R and
(@ xT=p,x)T and ,(x)t then C >0

K42

(®) xt = u®1 and ()| then G, <0
(111) ICM‘“;’I g la V#la 5]

(IV) QI,u =1 ’ Cu.l -t -1 s vlu
(V) C,ul.;lz = - Cu,.l—;lz’ V:ul > Ha
(Vl) Cp‘\uz = Cuz.u\’ vﬂl s

(Vll) C#]-#z = Cl—pl.l—yz’ V.ul’ 253

Let Q = R and let the domain Q be the minimal set. Let Q be a closed interval of R,
andlet i, : Q@ — [0, 1]and i, : Q — [0, 1] be continuous. 4, (Q) = 1, (Q) = [0, 1]and
for all x € Q¢, p,(x) = 0 or 1 or is undefined for all i = 1,2.

Then define

4
C = 1

- 2
Hy ol X] + X2 fg (Nl + HZ) dx (41)
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where
X = J Qu — 1Pdx and X, = j Qu, — 1) dx
a o

This definition satisfies all the seven properties mentioned above. When  is finite (Q
need not be a subset of R)

4
Coy = 1 — mzn W — w) (42a)
=1, fX,+ X,=0 (42b)
where
X, = Y @u~17 and X, = ¥ Qu — 1)
xeQ xe)
Example 3

Let Q = [0, 1], u, = x, denoting the ‘tal’ men membership function, and
U = 2min{x, 1 — x), denoting the ‘medium’ men membership function. Then

X, = I(2x—1)2dx=%, X, =1
o
[ =y =
Q

C

By =

Similarly, if we consider y, = x*, 1 — x and (1 — x)* to represent the member-
ship functions for ‘very tall’, ‘not tall’ and ‘very not tall’ men, then the corresponding
Cuppy Will be ¢, — 1 and — §.

Details of the correlation were given by Murthy er al. (1985).

8. Fuzzy expected value and interval

Kandel and Byatt (1978) defined the fuzzy expected value (FEV) of a membership
function p over a fuzzy set 4 with respect to a fuzzy measure y as follows.

Let p, be a B-measurable function such that u, € [0, 1]. The fuzzy expected value
of 1, over A, with respect to the fuzzy measure y( *) is defined as

FEV(u,) = sup {min [T, (¢} 43)
where

&= {xlp(x) > T} (44)

Now, x{x|p,(x) > T} = f,(T)is a function of the threshold T and the function ¥
maps ¢ into [0, 1]. In other words, the method of evaluating FEV(u,) consists of
finding the point of intersection of the curves g(T) = T and f,(T). These curves will
therefore intersect at T = H so that FEV(u,) = H € [0, 11.

FEV can thus be regarded as an indicative measure of some sort of central
tendency.

N
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Example 4

For a given population and a given membership function for the set ‘Old’, let us
consider the following data (Schneider and Kandel 1991):

10 people are 20 years old, i.e. 4 = 0-20
15 people are 30 years old, i.e. ¢ = 0-30
25 people are 45 years old, i.e. u = 0-45
30 people are 55 years old, i.e. g = 0-55
20 people are 60 years old, i.e. u = 0-60

Here we have T = 0-20, 0-30, 0-45, 0-55 and 0-60. For a given threshold we can now
determine the number of people (as a percentage) who are above the threshold. For
example, the numbers are 100, 90, 75, 50 and 20, corresponding to the thresholds 0-20,
0-30, 0-45, 0-55 and 0-60. Thus we have y = 1:0, 0-90, 0-75, 0-5 and 0-20.

Now the minimum values of each (7, x) pairs are 0-20, 0-30, 0-45, 0-50 and 0-20.
The FEV(u,), which is the maximum of all these minima, is thus 0-50.

The fuzzy expected age of the population is 50.

Suppose we have the following data for a population: more or less 20 people are
between the ages of 20 and 30; 20 to 25 people are 15 years old; 25 people are almost
40 years old.

The FEV denoting the typical age of the group of people is not applicable here,
because the data do not have complete information about the distribution of the
population and their grades of membership. In order to tackle this kind of problem
the concept of the fuzzy expected interval (FEI) is introduced (Schneider and Kandel
1991).

The upper and lower bounds of any y; are defined as

Z, max (p;, pn)
UB, = = _ (45)

J =1

Z max (p;, pn) + Z min (p,, pp)

i=j i=1

Z. min(p;, p»)
LB = ~ . =/ = (46)
Z min(p;, p») + 2 max (p;, p»)

i=1

i=j

where p,; and p;, are the lower bound and upper bound, respectively, of group i.

Therefore, arranging the data in order of increasing age, we may write: 20 to
25 people are 15 years old; more or less 20 people are between the ages of 20 and 30;
25 people are almost 40 years old.

Let us assume that the adjectives ‘almost’ and ‘more or less’ for the variable x have
lower and upper bounds x — 10% and x — 1,and x — 10% and x + 10%, respec-
tively. Therefore, we have: 20 to 25 people are of y, in 0:15 — 0-15; more or less 20
people are of u, in 0-2 — 0-3; 25 people are of y, in 0-36 — (-39.

The corresponding upper and lower bounds of the y; values are (using equations
(45) and (46))

20 + 18 + 25 25 4 22 4+ 25

L0 18+ 2540 iyt 0 - !
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L,-norm and the L,-norm are used). Since the poles of the obtained square-
magnitude function are prevented from occurring on the jQ axis or unit circle by
constraints, the reduced model determined by the factorization technique is always
stable. Therefore, this approach both ensures the stability of the reduced model and
preserves the advantages of using the linear programming technique. This method
applies to both continuous and discrete time systems. Examples are given to illustrate
its applicability.

We proceed as follows. The reduction of continuous-time systems via the pro-
posed approach is formulated in § 2. An illustrative example is given in § 3. Section 4
discusses the formulations for reduction of discrete-time systems. In § 5, an example
is introduced to illustrate its usefulness. Finally, the discussion and conclusion are
presented in §6.

2. Model reduction for continuous-time systems
Let G(s) be the transfer function of a given system and its reduced model be

H = S 2 )
W 3 e
n=0

where the coefficients d,,¢,,0 < n < N,0 < m < M, are real and N, M are the
desired degrees of the denominator and numerator polynomials, respectively. With-
out loss of generality, d, = 1.

2.1. Squared-magnitude function

Consider P(s), Q(s) to be the squared-magnitude functions of G(s) and H(s),
respectively. Then

P(s) = GE)G(—s) = % o
i b,,s*"

Q@) = H()H(—s) = ,38 - mg : o
’ a,s

where @, = di = 1. Replacing s by jQ, the frequency responses of P(s) and Q(s) can
be obtained as follows

B(jQ)

PUQ) = GUDG(-/Y) = GUIG*(A) = e

4
M

B (= D"b, Q"

4,79) \20 .
where G*(jQ) is the complex conjugate of G(jQ). Since 4, (5) and B,(s) are squared-
magnitude functions of D(s) and C(s), respectively

Q) =

©)

4,(jQ) = D(jQD*(jQ) = i(—l)"anﬂz" >0 ©
n=0
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B.(jQ) = CUYC*(Q) = i(—l)"'bmﬂz'"Z 0 (7

A,(jQ) should not be equal to zero because no pole exists on the jQ axis for a stable
reduced model.

2.2. Approximation problem

In order to find Q(jQ) that approximates P(jQ), the error function is defined as
follows:
B(jQ) _ B(j&)
A(Q)  A,(D

E(jQ) = [P(jQ) — Q(jQ)| =

5 —1)"b,, Q"
gy _ & T ®
A(]Q) Z (_l)na"QZn

n=0

Then, the approximation problem is to find the coefficients {a,,b,,1 < n < N,
0 < m < M} such that the error function E(jQ) is minimum in some design sense.

2.3. Linear programming formulation

In order to be adapted to the linear programming environment, the error function
is modified in the following form:

409 _ BUQ) o)
4G9 ~ BGD

Such a definition is adequate because when A,(jQ)/A(jQ) approximate B,(jQ)/
B(jQ), B(jQ)/A(jQ) will also approximate B,(jQ)/4,(jQ) and vice versa. Next,
consider a set of frequency points {Q;,i = 1,. . ., L} for matching. Two formulations
based on the respective criteria of the L;-norm and L -norm of the error function for

linear programming to solve the approximation problem can be derived as follows.
as follows.

E(jQ) =

Formulation 1. L,-norm approach
Define a set of auxiliary non-negative variables {¢;, i

A4,0Q)  BGQ)

A3(Q)  B(Q)

Multiplying (10) by A(jQ,)B(jQ,), we get

| B(jQ)A4,(j&) — A(Q)B.(jQ)| = &A(Q)B(j) (amn

Since ¢; is non-negative, the following two inequality constraints can be applied to
obtain the same minimum ¢, as (11):

B(jQ)A.(jQ) — A(Q)B,.(jQ) < &A(Q)B(Q;) (12)

—B(jQ)A,(jQ) + A(Q)B, () < &A(Y)B(Q) (13)

In addition, the constraints (6),(7) are included in order to obtain the factorizable

A,(s) and B,(s) and to ensure the stability of the reduced model. Therefore, the

formulation of the linear programming technique to find optimum coeflicients
{@y,b,,1 < n < N,0<m < M} based on the L,-norm as criterion can be

1,...,L} such that

= E(Q) = ¢ (10)
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described as

Minimize i W(jQ)e;
Subject to _

BUR) S (—1yaQ — AGD) S, (= Pb,@" < 54(Q)BUR) (19
n=0 m=0
CBUR) T (1Y a0 + 4G S (— b7 < 54(Q)BGR) (15
n=0 m=0
i (— l)"a,,Q,z'l >0 (16)
n=0
M
S (= 1,00 > 0 an
m=0

where W(jQ) is the weighting function and constraints (14), (15) are obtained by
stating 4,(jQ) and B,(jQ) of (12),(13) in terms of coefficients {a,,b,,}.

Formulation 2: L ~norm (or mini-max) approach
Define an auxiliary non-negative variable ¢ which has the following property:
A, (<) _ B,(j& < é
AGQ)  B(GQ)| T W(Q)
where W(jQ) is the weighting function and { = 1,..., L. Multiplying (18) by
A(jQ)B(j,), two equivalent constraints are

(13)

B(jQ)A,(jQ) — A(jQ)B.(jQ) < —WoR) (19
BUR)A,Q) + AUR)B Q) < ==ias=s 20)

As in Formulation 1, the constraints (6), (7) are also necessary. Thus, the formulation
using the L_-norm as the criterion is

Minimize &
Subject to
L il A(jQ)B(j€)
B(jQ, C1Ya, Q0 — A(Q, — b, i g ST (g
(%) ¥ (~1ya (2) ¥ (=1 Ty
i i A(j$)B(jCY)
— B(jQ, —1Ya, 0 + A(Q, —1ynb, Qi g ST ()
(J2) X (~1ya (9 ¥ (=1 ooy
N
Y (= 1Ya,Q” > 0 23)
n=0
M .
Y (=1)5,Q" =0 @)
m=0

where the subscript i = 1,.. ., L.
In practice, the error between the responses of a given system and its reduced
model is usually required to be small in one band (such as the passband or the
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transition band) and allowed to be a little larger in another band (such‘ as the
stopband). Thus the weighting function W(jQ) of the mini-max approach is often
not uniform.

2.4. Steady-state value preservation

In order for the reduced model to preserve the same steady-state value of step
responses as that of the original system, it is necessary that G(j0) = H(j0), P(j0) =
Q(j0). Therefore, the following constraint is employed:

P(j0)a, = by (25)

2.5. Factorization

After obtaining the coefficients a,, b,,, the squared-magnitude function Q(s) of the
reduced model can be factorized as below

_ (1 = s/z))(1 + s/z)) ... (1 — s/zp) (1 + 5/z))
Q@) = K5y a + slpy) - (1 = sTzw) (1 + s/zx)

where Re(p,) < 0 and Re(z,) < 0. Taking the roots in the left-hand side of the
s-plane, the reduced model is

(26)

M
Y (- s/z,)

H(s) = K*25—o—— 27
;l (1 - S/pn)

where K* = /K since Q(j0) = H(jO)H(—j0).

3. Illustrative example for continuous-time systems
Consider the following system:

G(s) = (1441-53s® + 78319s” + 525286-125s + 607693-25)/(s” + 112:04s°
+ 3755:925° + 39756:73s* + 363650-56s° + 759894-195s°
+ 683656-25s + 617497-375) (28)
The reduced model of this system by the squared-magnitude CFE method (2) is

1-2157 + 0-6646s
1-2354 + 0-5427s + s*
For the proposed methods, we choose 100 frequency matching points {Q,,i = 1,
..., 100}, logarithmically spaced within frequency range [0-05,7-5]rads ', which
include from passband to stopband of the squared-magnitude responses of the
original system. The weighting function is

100 Q < 1-7rads™!

F(s) = (29)

Wi = { (30)

1 otherwise
in order to emphasize the matching in the passband and transition band of the
squared-magnitude responses of the original system and its reduced model. Assume
@ = 1. Next, the squared-magnitude functions Q,(s) and Q% (s) of the reduced
models, corresponding to L,-norm and L_-norm approaches, respectively, are
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Figure 1. Step responses (continuous-time).

obtained by the linear programming technique:

—0-165770s* + 0-968554

I(s) = 31
() = 57288835 + 15138205 + 1 (31

— 01636535 + 0-968554
07() = 57296145% 1 15157865 T 1 (32)

Finally, the reduced models H, (s) and H;"(s) can be computed by the factorization
technique (26), (27):

0-407149s + 0-984151
H; = 33
2 () 0-865380s” + 0-465769s + 1 33)

0-40450s + 0-984151
H® = 34
7 = 538658035 1 04643635 T+ 1 (34)

The step responses and squared-magnitude responses of the original system G(s) and
its reduced models F,(s), H; (s), H5" (s), are shown in Figs 1 and 2, respectively. These
results show that the proposed methods are satisfactory and comparable to those of
the squared-magnitude CFE method.

4. Model reduction for discrete-time systems
The formulation procedure for model reduction of discrete-time systems is similar
to that of continuous-time systems. Consider the transfer function of a given system
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Figure 2. Squared-magnitude responses (continuous-time).
G(z) and its reduced model H(z)
M
Y cuz "
C(Z) m=0
HO) = 55 = ' G9)
Y d,z7"
n=0

where the coefficientsd,,c,,0 < n < N,0 < m < M, are real. Without loss of
generality, d, = 1.

4.1. Squared-magnitude function

Let P(z), Q(2), be the squared-magnitude functions of G(z) and H(z), respectively.
Then

P() = G@G(E™") = ig (36)
i b,z™"

00) = HOHG) = 20 - =i @
’ Y az"

where a, = a_,,b,, = b_,,for 1 < n < N,1 < m < M. g, can be assumed to be
one without loss of generality. Replacing z by exp (jw), the frequency responses of
P(z) and Q(z) are

B(expjw)

Plexoiw) = Sexoim) =

G(expjw)G*(exp jw) (38)
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M
2 b
B(expiw) by + m; 1w €OS (M)

A,(expjw)

Q(expjw) = (39

N
ay + 2 Y a,cos(nw)

m=1

Similar to continuous-time systems

N
A,(expjw) = D(expjw)D*(expjw) = ay + 2 ), a,cos(nw) > 0 (40)
n=1

i

M
B (expjw) = C(exp,jw)C*(expjw) by + 2 Y b,cos(mw) =0 (41)
m=1

A, (exp jw) will not be equal to zero since no poles of stable H(z) exist on the unit circle.
4.2. Approximation problem
Similarly, the error function is defined as follows
E(expjw) = |P(expjw) — Q(expjw)|

Blexpjw) _ B,(exp,w)
Alexpjw) A, (expjw)

M
. by, + 2 b, cos (mw)
— B (epr W) 0 mz=:1 ( (42)

A(expjw) -

N
a + 2 ) a,cos(nw)

n=1

Next, the approximation problem is to find the coefficients {a,,b,,1 < n < N,
0 < m < M} so that the object function E(expjw) is minimum in some design sense.

4.3. Linear programming formulation
The error function is modified as follows:

A,(expjw)  B.(expjw) (43)

E(expjw) = A(expjw)  B(expjw)

in order to adapt to the linear programming technique. Next, consider a set of
frequency points {w;,i = 1,...,L} for matching. Two formulations based on the
L,-norm and the L -norm as criteria are also presented.

Formulation 1. L,-norm approach
Define a set of auxiliary non-negative variables {¢;,i = 1,...,L} such that

A, (expjw;) _ B, (expjw;)

A(expjw;)  B(expjw;)

Multiplying (44) by A(expjw;)B(expjw;), two equivalent constraints to obtain the
same minimum ¢; are

= E(expjw;)) = & (44)

B(expjw;)A,(expjw;) — A(expjw;)B,(expjw;) < g A(expjw;)B(expjw;) (45)
— B(expjw;)4,(expjw;) + A(expjw;)B,(expjw;) < ¢.A(expjw;)B(expjw;) (46)

In addition, the constraints (40), (41) are added to obtain the factorizable A4,(z) and
B.(z) and to ensure the stability of the reduced model. Therefore, the formulation
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based on the L,-norm as criterion is

L
Minimize ). W(expjw,)e;
i=1

Subject to

B(expjw;) [ao +2 i a, cos (nw,-):| — A(expjw;) [bo + 2 ) b,cos (mwi):,

n=1 m=1

< g A(expjw;)B(expjw;) 47

— B(expjw;) [ao +2 1zv: a,cos (nw,-):l + A(expjw;) [bo +2 Y b,cos (mw,-)]

n=1 m=1

< g A(expjw;)B(exp jw;) (48)
N
ay + 2 ) a,cos(nw;) > 0 49)
n=1
M
by +2 ) b,cos(mw;) >0 (50)
m=1

where W(expjw) is a weighting function and constraints (47), (48) are obtained by
stating A4, (expjw) and B,(expjw) of (45),(46) in terms of coefficients {a,,b,,}.

Formulation 2: L -norm (or mini-max) approach
Define an auxiliary non-negative variable ¢ which has the following property

A, (expjw,) _ B, (expjw;) < €

< 51
A(expjw;)  B(expjw;) W(expjw;) D

where W (exp jw) is the weighting function. Multiplying (51) by A(expjw,)/B(expjw;),
two equivalent constraints are
eA(expjw;)B(expjw;)

Wexpiw) D

B(expjw;)A,(expjw;) — A(expjw;)B,(expjw;) <

eA(expjw,)B(expjw;)

W(expjw;) )

— B(expjw;)4,(expjw;)) + A(expjw;)B,(expjw;) <
As with Formulation 1, the constraints (40), (41) are necessary. Thus, the formulation
based on the criterion of the L -norm is
Minimize ¢
Subject to
m=1

B(expjw;) [ao + 2 i a,cos (nwi):l — A(expjw;) [bo + 2 f b, cos (mw,-)]

< &A(expjw;)B(expjw;)
W (expjw;)

(59

N M
— B(exp jw;) [ao +2 Y a,cos (nw,-)] + A(expjw;) [bo +2 Y b,cos (mwi)]
n=1 m=1

eA(exp jw;)B(expjw;)
W(expjw;) (53)
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Figure 3. Step responses (discrete-time).
N
a + 2 a,cos(nw;) > 0 (56)
n=1
M
by +2 ), b,cos(mw;) =0 (57
m=1

where the subscripti = 1,...,L.

4.4. Steady-state value preservation

In order for the reduced model to preserve the same steady-state value of step
responses as that of the original system, it is necessary that G(1) = H(1), P(1) = Q(1).
Therefore, the following constraint is applied

P(D) (ao + 2 i a,,) = by + 2 i b, (59)

n=1

4.5. Factorization
After obtaining the coefficients a,, b,,, the squared-magnitude function Q(z) can
be factorized as
2 Mz —z)(z — 1/z) ... (2 ~ zy)(z — 1z4)
00 = K e = =) GG =ik
where |z,,| < 1and|p,| < 1. Taking the roots within the unit circle of the z-plane,
the reduced model is

z M f iz~ z,)

H(E) = K*—== (60)
Z_N ;} (Z - pn)

where K* can be obtained from the relation H(1) = /Q(1).
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Figure 4. Squared-magnitude responses (discrete-time).
5. lllustrative example for discrete-time systems
Consider a fourth-order system

0-547377 — 0-404730z™" + 0-319216z~% — 0-216608z >
1 — 1361780z + 0-875599z7% — 0-551205z> + 0-282145z7*

The reduced model of this system by the squared-magnitude CFE method in the
z-domain (3) is

G(z) = 61)

0-535150 — 0-377930z""
1 — 1-497814z7" + 0654717272

For the present methods, 100 frequency points {w;, i = 1,. . ., 100}, logarithmically
spaced within frequency range [0-1, TI]rad s ', which include from passband to stop-
band of the squared-magnitude response of the original system, are chosen for
matching. The weighting function is

F(z) = (62)

100 w < 0-8rads™!
W(expjw) = . (63)
1 otherwise
in order to emphasize the matching in passband and transition band of the squared-
magnitude responses of the original system and its reduced model. Assume a, = 1.
Then, the obtained squared-magnitude functions Q,(z) and Q¥ (z) of reduced models
corresponding to L,-norm and L, -norm approaches, respectively, are

0-101807 — 0-047722(z + z~ )

1 —

2@ = T"oesa0sc 720 + 0-178577(F + z %) (64)
o 0091766 — 0-042441(z + z~')

7@ = 12 0-676627(z + z~') + 0-180055(z2 + z ?2) (65)
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Finally, the reduced models H}(z) and H{ (z) can be computed by the factorization
technique (59), (60):
0-506137 — 0-352008z~"

1 - 66
() = 15128057 + 0-6666212 (©6)

0-487448 — 0-326732z!
% = 67
HE®) = 115152927 1 046756837 )
The step responses and squared-magnitude responses of the original system G(z) and
its reduced models F,(z), H)(z), HF (z), are shown in Figs 3 and 4, respectively. The
results obtained by the present methods are clearly comparable to those of the
squared-magnitude CFE method.

6. Discussion and conclusion

The linear programming technique is used for model reduction of continuous- and
discrete-time systems by matching the squared-magnitude responses of the original
system and its reduced model. A novel error function is prevented. Two formulations
based on the L,-norm and the L -norm of the error function as respective criteria are
introduced. Since the poles of the obtained squared-magnitude function occurring on
the jQ axis (continuous-time case) or unit circle (discrete-time case) are prevented by
constraints (6) or (40), the application of the factorization technique will ensure the
stability of the reduced model. A useful property of this approach that needs further
elaboration is its flexibility. If necessary, constraints may be added to the formulation.
For example, constraints may easily be added to the reduced model in order to
preserve the initial value of step responses of the original system.
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