Minimal Path Sets with Known Size in a Consecutive-2-out-of-n:F System

Arvind Seth and Mohammad Khanjari Sadegh
Indian Statistical Institute, 7SJS Sansanwal Marg, New Delhi - 110016 (India)

Abstract

K.G. Ramamurthy [4] showed that the number of minimal path sets of a linear consecutive-2-out-of-n:F system is the rounded value of the expression $\rho^{n}(1+\rho)^{2} /(2 p+3)$ where ρ is the unique real root of the cubic equation $x^{3}-x-1=0$. This paper gives two others formulae for the same. The first formula is in terms of the binomial coefficients. While the second formula is in terms of the number of minimal path sets with known size of a linear consecutive-2-out-of-n:F system. It is shown that the number of minimal path sets of a circular consecutive-2-out-of-n:F system is the rounded value of ρ^{n}, for $n \geq 10$.

Key words

Consecutive-2-out-of-n:F system, Minimal path sets.

1. Introduction

A linear consecutive-k-out-of-n:F (con/k/n:F) system consists of n linei ordered components and the system fails if and only if at least k consecul components fail. If components are arranged on a circle we have a circular con $|k|$ system. This system has been studied by various authors since 1980 [3] and fil applications in telecommunication and pipeline network [2], vacuum systems accelerators, computer networks, design of integrated circuits [1] etc. We assu binary state. All components and the system are in operating or fail state. Supp P denotes the subset of components, which are in operating state. We call \mid path set of a system when the system itself is in operating state. A path se
of the system is said to be a minimal path set if $S \subset P$ implies that S is not a path set. In this paper, we confine our attention only to minimal path sets of conl2In:F system. In Section 2, we give a closed formula for determining the number of minimal path sets of a linear coni2ln:F system. In Section 3, we give a closed formula for determining the number of minimal path sets with known size of a linear conl2in:F system. Similar results for a circular conl2ln:F system are given in Section 4.

2. Minimal Path Sets of a Linear conl2In:F System

Suppose p_{n}^{L} denotes the number of minimal path sets of a linear conl2ln:F system. The following lemma is required in the sequel.

Lemma 1. We have:
$p_{n}^{L}=p_{n-2}^{L}+p_{n-3}^{L}$ for $n \geq 3$
Proof. Let $p_{n}^{L}=\left|\alpha^{L}(n)\right|$ where $\alpha^{L}(n)$ is the collection of minimal path sets of a linear conl2ln:F system. We note that:

$$
a^{L}(n)=\left\{P: P \in \alpha^{L}(n) \text { and } n \in P\right\} \cup\left\{P: P \in \alpha^{L}(n) \text { and } n \notin P\right\}
$$

and the collections on the right hand side are disjoint. If $n \in P$ then $n-\boldsymbol{1} \notin P$ and $n-2 \in P$. And if $n \notin P$ then $n-1 \in P$. We have:
$\alpha^{L}(0)=\alpha^{L}(1)=\{\phi\}, \alpha^{L}(2)=\{\{1\},\{2\}\}, \alpha^{L}(3)=\{\{1,3\},\{2\}\}$ and
$\alpha^{L}(4)=\{\{1,3\},\{2,3\},\{2,4\}\}$
It is easy to verify that for $n \geq 3$ we have:
$\left\{P: P \in \alpha^{L}(n)\right.$ and $\left.n \in P\right\}=\left\{P: P=T \cup\{n-2, n\}\right.$ and $\left.T \in \alpha^{L}(n-3)\right\}$
and for $n \geq 2$ we have:
$\left\{P: P \in \alpha^{L}(n)\right.$ and $\left.n \notin P\right\}=\left\{P: P=T \cup\{n-1\}\right.$ and $\left.T \in \alpha^{L}(n-2)\right\}$
Therefore we have:

$$
p_{n}^{L}=\left|\alpha^{L}(n)\right|=\mid\left\{P: P \in \alpha^{L}(n) \text { and } n \in P\right\}|+|\left\{P: P \in \cdot \alpha^{L}(n) \text { and } n \notin P\right\} \mid
$$ $=\mid\left\{P: P=T \cup\{n-2, n\}\right.$ and $\left.T \in \alpha^{L}(n-3)\right\}|+| P: P=T \cup\{n-1\}$ and $\left.T \in \alpha^{L}(n-2)\right\} \mid$

That is: $p_{n}^{L}=\left|\alpha^{L}(n-3)\right|+\left|\alpha^{L}(n-2)\right|=p_{n-2}^{L}+p_{n-3}^{L} ; n \geq 3$. This completes the proof of the lemma.

Suppose $[x]$ denotes integer part of x and $\binom{m}{r}$ is usual binomial coefficient. We assume that $\binom{m}{r}=0$ for $m<r$ or $r<0$.

Theorem 1. We have :

$$
p_{n}^{L}=\sum_{i=[n / 3]}^{[n / 2]} \sum_{i=n-2 i-2}^{n-2 i}\binom{i}{j}
$$

Proof. Let $g(x)$ denotes the generating function of p_{n}^{L} the number of minimal path sets of a linear conl2ln:F system. Noting that $p_{0}^{L}=p_{1}^{L}=1, p_{2}^{L}=2$ we have:

$$
\begin{aligned}
& g(x)=p_{0}^{L}+p_{1}^{L} x+p_{2}^{L} x^{2}+p_{3}^{L} x^{3}+\ldots+p_{n}^{L} x^{n}+\ldots \\
& x^{2} g(x)=p_{0}^{L} x^{2}+p_{1}^{L} x^{3}+\ldots+p_{n-2}^{L} x^{n}+\ldots \\
& x^{3} g(x)=p_{0}^{L} x^{3}+\ldots+p_{n-3}^{L} x^{n}+\ldots
\end{aligned}
$$

Using Lemma 1, we have: $\left(1-x^{2}-x^{3}\right) g(x)=1+x+x^{2}$ This implies that $g(x)=\frac{1+x+x^{2}}{1-x^{2}-x^{3}}=\frac{1+x+x^{2}}{1-x^{2}(1+x)}$. For sufficiently small x such that $\left|x^{2}(1+x)\right|<1$, we then have:

$$
g(x)=\left(1+x+x^{2}\right)\left[\sum_{i=0}^{\infty} x^{2 i}(1+x)^{i}\right]=\left(1+x+x^{2}\right)\left[\sum_{i=0}^{\infty} x^{2 i} \sum_{i=0}^{i}\binom{i}{i} x^{j}\right]
$$

For a given i, the maximum value of power of x is $3 i+2$. Hence for geting coefficient of x^{n}, the minimum value of i is the nearest integer greater than or equal to $\frac{n-2}{3}$. That is $[n / 3] \leq i$. Similarly, the minimum value of power of x is 2 i . Hence $i \leq[n / 2]$. It is easy to see that coefficient of $\dot{x}^{\dot{n}}$ in $g(x)$ is:

$$
p_{n}^{L}=\sum_{i=[n / 3]}^{[n / 2]} \sum_{j=n-2 i-2}^{n-2 i}\binom{i}{j}, n \geq 0
$$

Remark 1. We note that in Ramamurthy's formula, $p_{n}^{L}=\left[\frac{(1+\rho)^{2}}{2 \rho+3} \rho^{n}+0.5\right]$ for higher values of n, calculation precision of ρ should be increased. For example, if $\rho=1.324717958$ then Ramamurthy's formula gives exact values only for $\mathrm{n} \leq$ 58. This is not case for our formula as stated in Theorem 1.

3. Minimal Path Sets with Known Size in a Linear conl2ln:F System

In this Section, we first give a recursive relation for the number of minimal path sets with known size of a linear conl2ln:F system and then we derive a closed expression for it. The next lemmae are also required in the sequel.

Lemma 2. Let $R=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a subset of components such that $a_{1}<a_{2}<\ldots a_{r} . R$ is a minimal path set of a linear conlkln:F system if and only if:
(i) $a_{i}-a_{i-1} \leq K$, for $i=1,2 \ldots, r+1$
(iii) $a_{i+1}-a_{i-1} \geq k+1$, for $i=1,2 \ldots, r$
where we take $a_{0}=0$ and $a_{r+1}=n+1$.
Proof. Recall that a conlkin:F system fails if and only if at least k consecutive components fail. Hence a minimal cut set of a conlkln:F system is of the form $\{i, i+1, \ldots, i+k-1\}, i=1,2 \ldots, n-k+1$. It is known that for any coherent system a subset $R \subseteq N=\{1,2 \ldots, n\}$ is a path set if and only if it has non-empty intersection with every minimal cut set. (i) $\Leftrightarrow R$ is a path set of a conlk|n:F system. (ii) $\Leftrightarrow R$ $-\left\{a_{i}\right\}$ is not a path set. This means R is a minimal path set.

Remark 2. If R is a minimal path set of a linear conlk|n:F system then:
(i) $|R \cap\{1,2 \ldots, k\}|=1$
(ii) $|R \cap\{j, j+1, \ldots, j+k\}| \leq 2$ for $j=1,2, \ldots, n-k$
(iii) $|\mathrm{A} \cap\{n-k+1, n-k+2, \ldots, n\}|=1$

It can be seen that:
(i) If we put $\mathrm{i}=1$ in Lemma 2, we then have $a_{1} \leq k$ (from Part (i)) and $\mathrm{a}_{2} \geq k+1$ (from Part (ii)). Therefore $|R \cap\{1,2, \ldots, k\}|=\left|\left\{a_{1}\right\}\right|=1$.
(ii) Suppose there exists $1 \leq j^{*} \leq n-k$ such that $\left|R \cap\left\{J^{*}, j^{*}+1, \ldots, j^{*}+k\right\}\right| \geq 3$ and let $\left\{j_{1}, j_{2}, j_{3}\right\} \subseteq R \cap\left\{j^{*}, j^{*}+1, \ldots, j^{*}+k\right\}\left(j^{*} \leq j_{1}<j_{2}<j_{3} \leq j^{*}+k\right)$ We have $\left\{j_{1}, j_{2}, j_{3}\right\} \subseteq R$ and note that $j_{3}-j_{1} \leq k$. This contradicts the second part
of Lemma 2. Therefore $\mid R \cap\{j, j+1, \ldots, j+K\} \leq 2$ for all $1 \leq j \leq n-k$.
(iii) If we put $\mathrm{i}=r+1$ in Part (i) of Lemma 2, we have $n+1-a_{r} \leq k$.

Therefore $a_{r} \geq n-k+1$. And if we put $i=r$ in Part (ii) of Lemma 2 we then have $n+1-a_{r-1} \geq k+1$. Hence $a_{r-1} \leq n-k$. We get result

$$
|R \cap\{n-k+1, n-k+2, \ldots, n\}|=\left|\left\{a_{r}\right\}\right|=1 .
$$

Lemma 3. Suppose $\overline{\bar{r}}_{k}^{n, L}$ and $\dot{r}_{k}^{n, L}$ denote the maximum and minimum size of a minimal path set in a linear conlk|n:F system respectively. Then we have:

$$
\bar{r}_{k}^{n, L}=\left\{\begin{array}{l}
2\left[\frac{n}{k+1}\right] \quad \text { if } \frac{n+1}{k+1}>\left[\frac{n+1}{k+1}\right] \\
2\left[\frac{n}{k+1}\right]+1 \text { if } \frac{n+1}{k+1}=\left[\frac{n+1}{k+1}\right] \text { and } \bar{r}_{k}^{n, L}=[n / k] .
\end{array}\right.
$$

Proof. From Lemma 2, we note that $R_{1}=\{k, 2 k, 3 k, \ldots, k[n / k]\}$ is a minimal path set of size $[n / k]$. Now suppose $A \subseteq N$ and A is a path set of a conlkln:F system. We note that $C_{s}=\{s k+1, s k+2, \ldots,(s+1) k\}$, for $s=0,1 \ldots,[n / k]-1$, are [n / k] disjoint minimal cut sets. From Lemma 2, we have:
$\left|A \cap C_{s}\right| \geq 1 \forall s$.
Hence
$|A|=\mid\left[\bigcup_{s=0}^{[k / k}\left(A \cap C_{s}\right) \cup\left\{\left(N-\bigcap_{s=0}^{[n / k]-1} C_{s}\right) \cap A\right\}\left|\geq\left|\bigcup_{s=0}^{[n / k]^{-1}}\left(A \cap C_{s}\right)\right|=\sum_{s=0}^{[n / k]^{-1}}\right| A \cap C_{s}|\geq[n / k]=|R||\right.$
Hence R1 is a minimal path set of minimum size.

- if $\frac{n+1}{k+1}=\left[\frac{n+1}{k+1}\right]=t$ then we note that:
$R_{2}=\{1, k+1, k+2,2 k+2,2 k+3, \ldots, p k+p, p k+p+1\}$ is a minimal path set (by conditions of Lemma 2) where $p=\left[\begin{array}{c}n \\ -k+1\end{array}\right]$ and we have $\left|R_{2}\right|=2 p+1$ Suppose

$$
\begin{aligned}
& C_{1}=\{1,2, \ldots, k\} \\
& C_{2}=\{k+1, k+2, \ldots, 2 k+1\} \\
& \bar{C}_{3}=\{2 k+2,2 k+3, \ldots, 3 k+2\} \\
& \vdots \\
& \bar{C}_{1}=\{(t-1)(k+1), \ldots,(t-1)(k+1)+k=n\}
\end{aligned}
$$

and Let P be a minimal path set of a linear conlkln:F system. By Remark 2, we have: $\left|P \cap \bar{C}_{1}\right|=1$ and $P \cap C_{j}$: for $\leq 2 \leq j \leq t$. We note that $P=\bigcup_{j=1}^{t}\left(P \cap \bar{C}_{j}\right)$ hence:

$$
\begin{aligned}
& |P|=\sum_{j=1}^{1}\left|P \cap \bar{C}_{j}\right| \leq 1+2(t-1)=2 t-1=2\left[\frac{n+1}{k+1}\right]-1 \\
& =2\left(\frac{n+1}{k+1}\right)-1=2\{[n /(k+1)]+1\}-1=2[n /(k+1)]+1=2 p+1=\left|R_{2}\right|
\end{aligned}
$$

Hence in this case R_{2} is a minimal path set with maximum size.

- if $\frac{n+1}{k+1}>\left[\frac{n+1}{k+1}\right]=t$ then we note that:
$R_{3}=\{1, k+1, k+2,2 k+2,2 k+3, \ldots,(p-1) k+p, p k+p\}$ is a minimal path set (by Lemma 2) and $\left|R_{3}\right|=2 p=2[n /(k+1)]$ We have : $n+1=(k+1)+s$ and $0<s \leq k$. In this case we have :
$\bar{C}_{t}=\{(t-1)(k+1), \ldots,(t-1)(k+1)+k=n-s\}$
We define $\bar{C}_{t+1}=\{n-s+1, n-s+2, \ldots, n\}$.
Suppose $P \subseteq N$ is a minimal path set. By Remark 2, we have $\left|P \cap \bar{C}_{1}\right|=1,\left|P \cap \bar{C}_{j}\right| \leq 2$, for $j=2,3, \ldots, t$ and $P \cap \bar{C}_{t+1} \leq 1\left(\operatorname{since} \bar{C}_{t+1} \subseteq\{n-k+1, n-k+2, \ldots, n\}\right.$ and
$|P \cap\{n-k+1, n-k+2, \ldots, n\}|=1)$. We note that $P=\bigcup_{j=1}^{t+1}\left(P \cap \bar{C}_{j}\right)$. Hence $|P|<1+\left(2(t-1)+1=2 t=2\left[\frac{n+1}{k+1}\right]=2[n /(k+1)]=2 p=\left|R_{3}\right|\right.$. Therefore in this case R_{3} is a minimal path set with maximum size. This completes the proof of the lemma.

Lemma 4. Let $p_{n}^{r, L}$ denotes the number of minimal path sets of size r in a linear con|2|n:F system. We have :

$$
p_{n}^{r, L}=p_{n-2}^{r-1, L}+p_{n-3}^{r-2, L}, n \geq 3, \bar{r}_{2}^{n, L} \leq r \leq \overline{\bar{r}}_{2}^{n, L}
$$

We assume that :

$$
p_{n}^{r, L}=\left\{\begin{array}{lll}
0 & \text { if } n<0 \\
0 & \text { if } n=0,1 & \text { and } r \neq 0 \\
1 & \text { if } n=0,1 & \text { and } r=0 \\
0 & \text { if } n=2 & \text { and } r \neq 1 \\
2 & \text { if } n=2 & \text { and } r=1
\end{array}\right.
$$

Proof. If $n=3$, we have :

$$
p_{n}^{r, L}=\left\{\begin{array}{lc}
1 & \text { if } r=1 \text { or } r=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

' and if $n=4$ we have :

$$
p_{n}^{r, L}=\left\{\begin{array}{cc}
3 & \text { if } r=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence the lemma is trivially true for $n=3$ and 4. Now consider the case where $n \geq 5$. Let P_{n}^{r} denote the collection of all minimal path sets of size r in a conlan $n: F$ system. We note that :

$$
P_{n}^{r}=\left\{S: S \in P_{n}^{r} \text { and } n \in S\right\} \cup\left\{S: S \in P_{n}^{r} \text { and } n \notin S\right\}
$$

and the collections on the right hand side are disjoint. We have:
$\left\{S: S \in P_{n}^{\prime}\right.$ and $\left.n \in S\right\}\left|=\left|P_{n-3}^{r} 2\right|=p_{n-3}^{r-2 . L}\right.$ (since $n-1 \notin S, n-2 \in S$)
$\mid\left\{S: S \in P_{n}^{r}\right.$ and $n \in S| |=\left|P_{n-3}^{\prime-2}\right|=p_{n-3}^{r-L}$ (since $n-1 \in S$)
It follows that : $p_{n}^{r, L}=\left|P_{n}^{r}\right|=\left|P_{n-3}^{n-2}\right|+\left|P_{n-2}^{r-1}\right|=p_{n-2}^{r-1, L}+p_{n-3}^{r-2, L}$
This completes the proof of the lemma.
Theorem 2. We have :

$$
p_{n}^{r, L}=\binom{n-r+1}{2 n-3 r} \text { for } \quad \bar{r}_{2}^{n, L} \leq r \leq \overline{\bar{r}}_{2}^{n . L} \text { and } n \geq 2
$$

Proof. Let $\mathrm{g}(\mathrm{x}, \mathrm{y})$ denote the generating function of $p_{n}^{r, L}$, the number of minimal path sets of size r in a linear con $|2| n: F$ system. We have :
$g(x, y)=\sum_{n=0}^{\infty} \sum_{r=r_{2}^{n}}^{\dot{j}_{2}^{n, L}} x^{n} y^{r} p_{n}^{r, L}$
$=1+x+2 x^{2} y+x^{3}\left(y+y^{2}\right)+3 x^{4} y^{2}+x^{5}\left(y^{2}+3 y^{3}\right)+x^{6}\left(4 y^{3}+y^{4}\right)+\ldots$.
$=1+x+2 x^{2} y+\sum_{n=3}^{\infty} x^{n} \sum_{r=r_{2}^{n . L}}^{r^{n, L}} y^{r} p_{n}^{r, L}$
Using Lemma 4, we have :
$g(x, y)==1+x+2 x^{2} y+\sum_{n=3}^{\infty} x^{n} \cdot \sum_{r=r_{2}^{n, L}}^{j_{j}^{n, L}} y^{r}\left(p_{n-2}^{r-1, L}+p_{n-3}^{r-2, L}\right)$
$=1+x+2 x^{2} y+x^{2} y \sum_{n=3}^{\infty} x^{n-2} \sum_{r==_{2}^{r n, L}}^{i \sum_{n}^{n, L}} y^{r-1} p_{n-2}^{r-1, L}+x^{3} y^{2} \sum_{n=3}^{\infty} x^{n-3} \sum_{r=r_{2}^{n, L}}^{j_{1}^{n}, L} y^{r-2} \rho_{n-3}^{r-2, L}$
$=1+x+2 x^{2} y+x^{2} y\{g(x, y)-1\}+x^{3} y^{2}\{g(x, y)\}$.
It implies that :
$g(x, y)=\frac{1+x+x^{2} y}{1-x^{2} y-x^{3} y^{2}}$.

For sufficiently small x and y such that $\left|x^{2} y(1+x y)\right|<1$, we then have :

$$
\begin{aligned}
& g(x, y)=\left(1+x+x^{2} y\right)\left\{\sum_{i=0}^{\infty} x^{2 i} y^{i}(1+x y)^{i}\right\} \\
& =\left(1+x+x^{2} y\right)\left\{\sum_{i=0}^{\infty} x^{2 i} y^{i} \sum_{j=0}^{i}(x y)^{i}\binom{i}{j}\right\} .
\end{aligned}
$$

For finding coefficient of x^{n} as in the proof of Theorem 1, we note that $[n / 3] \leq i \leq[n / 2]$. We have :

$$
\sum_{r=r_{2}^{n, L}}^{\bar{F}_{2}^{n, L}} y^{r} p_{n}^{r, L}=\sum_{i=[n / 3]}^{[n / 2]} y^{i}\left\{\sum_{j=n-2 i-1}^{n-2 i} y^{j}\binom{i}{j}+y^{n-2 i-1}\binom{i}{n-2 i-2}\right\}
$$

Let $\ell=[n / 2]-i$ then

$$
\sum_{r=r_{z}^{n, L}}^{F_{n}^{n, L}} y^{r} p_{n}^{r, L}=\sum_{t=0}^{[n / 2][-[n / 3]} y^{[n / 2]-1}\left\{\begin{array}{c}
n-2[n / 2]+2 l \\
i=n-2[n / 2]+2 t-1
\end{array} y^{\prime}\binom{[n / 2]-\ell}{j}+y^{n-2[n / 2]+2 /-1}\binom{[n / 2]-\ell}{n-2[n / 2]+2(-2)}\right.
$$

For a given r, suppose $r=[n / 2]+k^{\prime}$ for some $k^{\prime}=0,1, \ldots, \overline{\bar{r}}_{2}^{n, L}-[n / 2]$. Then the coefficient of $y^{[n / 2]+k^{\prime}}$ is :

$$
\begin{aligned}
& \binom{n-[n / 2]-k^{\prime}-1}{2[n / 2]-n+2 k^{\prime}+1}+\binom{n-[n / 2]-k^{\prime}-1}{2[n / 2]-n+2 k^{\prime}}+\binom{n-[n / 2]-k^{\prime}}{2[n / 2]-n+2 k^{\prime}} \\
& =\binom{n-r-1}{2 r-n+1}+\binom{n-r-1}{2 r-n}+\binom{n-r}{2 r-n}
\end{aligned}
$$

First and second binomial coefficients are corresponding to $\ell=2[n / 2]-n+k^{\prime}+1$ (if $k^{\prime} \leq n-[n / 2]-[n / 3]+1$). We note that $\ell \geq 0$, the third binomial coefficient is corresponding to $\ell=2[n / 2]-n+k^{\prime}$ (if $k^{\prime} \geq n-2[n / 2]$). We also note that $t \leq 2[n / 2]-n+\overline{\bar{r}}_{2}^{n, L}-[n / 2]=[n / 2]-n+\overline{\bar{r}}_{2}^{n, L} \leq[n / 2]-[n / 3]$

Therefore we have
$p_{n}^{r . L}=\binom{n-r}{2 r-n}+\binom{n-r-1}{2 r-n+1}+\binom{n-r-1}{2 r-n}=\binom{n-r+1}{2 n-3 r}$. (after simplification)
This completes the proof of the theorem.
Remark 3.
(i) If n is odd then the minimal path set with minimum size $\left(r=\bar{r}_{2}^{n, L}=[n / 2]\right.$) l) is unique. Since in this case we have $p_{n}^{r, L}=1$.
(ii) If $n / 3=[n / 3]$ then the minimal path set with maximum size $\left(r=r_{2} \bar{r}_{n, L}\right.$), is unique. Because we have $(n+1) / 3>[(n+1) / 3]=n / 3$. From Lemma 3 we have $\overline{\bar{r}}_{2}^{n, L}=2[n / 3]=2 n / 3$. It implies that
$p_{n}^{\bar{r}_{2}^{n . L}}=\binom{n-\overline{\bar{r}}_{2}^{n, L}+1}{2 n-3 \bar{r}_{2}^{n \cdot L}}=\binom{n-2 n / 3+1}{2 n-2 n}=1$.
(iii) We can introduce second formula for p_{n}^{L}, the number of minimal path sets

The number of minimal path sets of a linear con $|k| n: F$ system $(k \geq 3)$ is difficult to compute directly. We have the following special cases.

Lemma 5. Let p_{n}^{k} denote the number of minimal path sets of a linear con|k|n:F system, where $k \geq 2$ and $k \leq n \leq 2 k$, we then have
$p_{n}^{k}=k+\frac{(n-k)(n-k-1)}{2}=k+\binom{n-k}{2}$.
Proof. Suppose $n=k+t, 0 \leq t \leq k$ then minimal path sets of size 1 are :
$\{t+1\}, t+2\}, \ldots,\{k\}(t<k)$. And the minimal path sets of size 2 are : (if $0<t$)
$\{1, k+1\}$

```
\(\{2, k+1\},\{2, k+2\}\)
\(\{t, k+1\},\{t, k+2\}, \ldots,\{t, k+t\}\).
```

Remark 4. For $k=3$ we have next recurrence relation :
$p_{n}^{3}=p_{n-2}^{3}+p_{n-3}^{3}+p_{n-4}^{3}-p_{n-6,}^{3} n \geq 6$ with $\quad p_{0}^{3}=p_{1}^{3}=p_{2}^{3}=1, p_{3}^{3}=p_{4}^{3}=3$ and $p_{5}^{3}=4$:

4. Minimal Path Sets in a Circular con $|2| n: F$ System

In this Section, we establish a relationship between number of minimal path sets of a linear con $|2| n: F$ system with that of in a circular con $|2| n: F$ system. Using this, we derive a closed formula for p_{n}^{c} (number of minimal path sets in a circular con|2|n:F system) and $p_{n}^{r . C}$ (number of minimal path sets in a circular con $\mid 2 n: F$ system of size r). We further show that the same recursive relation holds in a linear coni2|n:F system as well as a circular con $2 \mid n: F$ system but with different initial values.

In a circular con $|k| n: F$ system we have n minimal cut sets as given below:

$$
C_{1}=\{1,2, \ldots, k\}
$$

$$
C_{2}=\{2,3, \ldots, k+1\}
$$

$$
\vdots
$$

$$
C_{n-k+1}=\{n-k+1, n-k+2, \ldots, n\}
$$

$$
C_{n-k+2}=\{n-k+2, \ldots, n, 1\}
$$

$$
\vdots
$$

$$
C_{n}=\{n, 1,2, \ldots, k-1\}
$$

Lemma 6. Let $R=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a minimal path set of a circular con $|k| n: F$ system such that $a_{1}<a_{2}<\ldots a_{r}$. We then have: $a_{1}+n-a_{r} \leq k$ and $a_{1}+n-a_{r-1} \geq k+1$.

Proof. We note that we should have : $\left\{a_{r}+1, a_{r}+2, \ldots, n, 1,2, \ldots, a_{1}\right\} \leq k$ otherwise R is not a path set of a circular con $k \mid n: F$ system. Therefore $n-a_{r}+a_{1} \leq k$.

On the other hand we also note that :
$\left\{a_{r-1}+1, a_{r-1}+2, \ldots, a_{r}, a_{r}+1, \ldots, n, 1,2, \ldots, a_{1}\right\} \geq k+1$ otherwise we can delete a_{r} from R and still be path set, that is R is not a minimal path set and this results in a contradiction. Therefore we have $n-a_{r-1}+a_{1} \geq k+1$.

Lemma 7. Let $R=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a subset of $N=\{1,2, \ldots, n\}$ such that $a_{1}<a_{2}<\ldots<a_{r}$. Then R is a minimal path set of a circular con!kin:F system if and only if we have :
(i) $a_{i}-a_{i-1} \leq k$ for $i=1,2, \ldots, r$
(ii) $a_{i-1}-a_{i-1} \geq k+1$ for $i=1,2, \ldots, r$
where $a_{0}=a_{r}-n$ and $a_{r+1}=a_{1}+n$.
Proof. The proof of part (i) for $i=2,3, \ldots, r$ and the proof of part (ii) for $i=1,2, \ldots, r-1$ are same as that of Lemma 2 and in view of Lemma 6 the proof of part (i) for $i=1$ and the proof of part (ii) for $i=r$ are trivial.

Remark 5. If R is a minimal path set of a circular con|k|n:F system then:
(i) $\quad|R \cap\{1,2, \ldots, k\}| \leq 2$
(ii) $|R \cap\{j, j+1, \ldots, J+k\}| \leq 2$ for $j=1,2, \ldots, n-k$
(iii) $\quad|R \cap\{n-k+1, n-k+2, \ldots, n, 1\}| \leq 2$
$|R \cap\{n-k+2, n-k+3, \ldots, n, 2\}| \leq 2$
$R \cap\{n, 1,2, \ldots, k-1\} \leq 2$
Let P_{C} and P_{L} denote minimal path sets in a circular conkn:F system and in a linear con kin:Fsystem, respectively. We note that the only difference between P_{C} and P_{L} is :
(i) $\quad C_{i} \cap P_{C} \leq 2$ for $i=1,2, \ldots, n$
(ii) $\quad C_{i} \cap P_{L} \mid=1$ for $i=1, n-k+1$
(iii) $\left|C_{i} \cap P_{L}\right| \leq 2$ for $i=2,3, \ldots, n-k$

Lemma 8. We have : $p_{n}^{C}=2 p_{n \cdots 3}^{L}+p_{n-6}^{L} ; n \geq 6$ where p_{n}^{L} is the number of minimal path sets in a linear con $|2| n: F$ system.

Proof. Suppose P_{C} is a minimal path set of a circular con!2n:F system. We have the following mutually exhaustive cases.
(i) Let $1 \in P_{C}$ and $2 \in P_{C}$.

We then have $n \notin P_{C}$ and $3 \notin P_{C}$. Hence $n-1 \in P_{C}$ and $4 \in P_{C}$. In this case P_{C} is a minimal path set for a circular con $2 \mid n: F$ system if and only if $P_{C} \cap\{5,6, \ldots, n-2\}$ is a minimal path set for a linear coniz $n-6: F$ subsystem with $\{5,6, \ldots, n-2\}$ component set. Hence we have : $p_{n}^{C}=p_{n-6}^{L}$. If $n=6$ we know that the only minimal path set in this case is : $P_{C}=\{1,2,4,5\}$ and also we note that $p_{n}^{C}=p_{n-6}^{L}=1$.
(ii) Let $1 \in P_{C}$ and $2 \notin P_{C}$.

We then have $3 \in P_{C}$. Similarly P_{C} is a minimal path set for a circular coni2n: F system if and only if $P_{C} \cap\{4,5, \ldots, n\}$ is a minimal path set for a linear con $2 n-3: F$ subsystem with $\{4,5, \ldots, n\}$ component set. Hence we have : $P_{n}^{C}=p_{n-3}^{L}$.
(iii) Let $1 \notin P_{C}$ and $2 \in P_{C}$.

We then have $n \in P_{C}$ and P_{C} is a minimal path set for a circular coni2n: F system if and only if $P_{C} \cap\{3,4, \ldots, n-1\}$ is a minimal path set for a linear con $|2| n-3: F$ subsystem with $\{3,4, \ldots, n-1\}$ component set. Hence we have: $P_{n}^{C}=p_{n-3}^{L}$.

From these cases we get the result : $P_{n}^{C}=p_{n-6}^{L}+2 p_{n-3}^{L}$ for $n \geq 6$.
Remark 6. We know that : $p_{n}^{L}=p_{n-2}^{L}+p_{n-3}^{L} ; n \geq 3$ with $p_{0}^{L}=p_{1}^{L}=1$ and $p_{2}^{L}=2$. We define : $p_{-1}^{L}=1, p_{-2}^{L}=0, p_{-3}^{L}=1, p_{-4}^{L}=0, p_{-5}^{L}=0$ and $p_{6}^{L}=1$. Therefore the relation $p_{n}^{L}=p_{n-2}^{L}+p_{n-3}^{L}$ holds true for all $n \geq-3$. Hence using Lemma 8 , we get ; $: p_{0}^{C}=2 p_{-3}^{L}+p_{-6}^{L}=3, p_{1}^{C}=0, p_{2}^{C}=2, p_{3}^{C}=3, p_{4}^{C}=2$, and $p_{5}^{C}=5$. Therefore Lemma 8 holds true for all $n \geq 0$.

Lemma 9. We have :
$p_{n}^{c}=p_{n 2}^{c}+p_{n \cdot 3}^{c} ; n \geq 3$
Proof. From Lemma 8 and Remark 6, we have : $p_{n}^{C}=2 p_{n-3}^{L}+p_{n-6}^{L}$ and $n \geq 0$ and $p_{n}^{L}=p_{n-2}^{L}+p_{n-3}^{L}$ for $n \geq-3$.

Hence for $n \geq-3$ we can write :

$$
p_{n}^{C}=2\left(p_{n-5}^{L}+p_{n-6}^{L}\right)+\left(p_{n-8}^{L}+p_{n-9}^{L}\right)=\left(2 p_{n-5}^{L}+p_{n-8}^{L}\right)+\left(2 p_{n-6}^{L}+p_{n-9}^{L}\right) .
$$

If we again use Lemma 8 , we get result : $p_{n}^{c}=p_{n-2}^{C}+p_{n-3}^{C}$.
In other words same recursive relation holds in a circular con|2|n:F system as well as a linear con2n:F system but with different initial conditions ($p_{0}^{L}=p_{1}^{L}=1, p_{2}^{L}=2$ and $p_{0}^{C}=3, p_{1}^{C}=0, p_{2}^{C}=2$).

Up to now we have given closed formulae for the number of minimal path sets of a linear con $2 n: F$ system (three formulae are proposed) and also for $p_{n}^{r, L}$ as stated in Theorem 2. Hence applying Lemma 8 and Remark 3 (part (iii)) we can derive a closed formula for p_{n}^{c}. Now we use Lemma 9, to derive a closed formula for p_{n}^{c} directly.

Let $g_{c}(x)$ denote the generating function of p_{n}^{c}, the number of minimal path sets of a circular con $2!n: F$ system. By using Lemma 9 we have :

$$
g_{C}(x)=\frac{p_{o}^{c}+p_{1}^{c} x+\left(p_{2}^{c}-p_{o}^{c}\right) x^{2}}{1-x^{2}-x^{3}}=\frac{3-x^{2}}{1-x^{2}-x^{3}}
$$

For partial fraction expansion of $g_{c}(x)$ let $\frac{3-x^{2}}{1-x^{2}-x^{3}}=\frac{a}{1-\rho x}+\frac{b}{1-\sigma x}+\frac{c}{1-\bar{\sigma} x}$ where ρ is the real root and σ and $\vec{\sigma}$ (conjugate of σ) are the complex roots of the cubic $x^{3}-x-1=0$. (We note that $1 / \rho, 1 / \sigma$ and $1 / \sigma$ are the roots of the equation $1-x^{2}-x^{3}=0$). It is easy to see that :

$$
\rho \sigma \bar{\sigma}=1, \rho+\sigma+\bar{\sigma}=0, R(\sigma)=-\rho / 2,1^{2}(\sigma)=\frac{3-\rho}{4 \rho},|\rho-\sigma|^{2}=\frac{2 \rho+3}{\rho} .
$$

We then have :

$$
\begin{aligned}
& a=\frac{3-1 / \rho^{2}}{(1-\sigma / \rho)(1-\bar{\sigma} / \rho)}=\frac{3 \rho^{2}-1}{(\rho-\sigma)(\rho-\bar{\sigma})}=\frac{3 \rho^{2}-1}{|\rho-\sigma|^{2}}=\frac{\rho\left(3 \rho^{2}-1\right)}{2 \rho+3}=\frac{3 \rho^{3}-\rho}{2 \rho+3}=\frac{3(1+\rho)-\rho}{2 \rho+3}=1 \\
& b=\frac{3-1 / \sigma^{2}}{(1-\rho / \sigma)(1-\bar{\sigma} / \sigma)}=\frac{3 \sigma^{2}-1}{(\sigma-\rho)(\sigma-\bar{\sigma})}=-\frac{(\rho-\bar{\sigma})\left(3 \sigma^{2}-1\right)}{2(\sqrt{-1}) /(\sigma)|\rho-\sigma|^{2}} \\
& c=\frac{3-1 / \bar{\sigma}^{2}}{(1-\rho / \bar{\sigma})(1-\sigma / \bar{\sigma})}=\frac{3 \bar{\sigma}^{2}-1}{(\bar{\sigma}-\rho)(\bar{\sigma}-\sigma)}=\frac{(\rho-\bar{\sigma})\left(3 \bar{\sigma}^{2}-1\right)}{2(\sqrt{-1}) /(\sigma)|\rho-\sigma|^{2}}
\end{aligned}
$$

It follows that :
$p_{n}^{c}=\rho^{n}-\frac{(\rho-\bar{\sigma})\left(3 \sigma^{2}-1\right)}{2(\sqrt{-1}) /(\sigma)|\rho-\sigma|^{2}} \sigma^{n}+\frac{(\rho-\bar{\sigma})\left(3 \bar{\sigma}^{2}-1\right)}{2(\sqrt{-1}) I(\sigma)|\rho-\sigma|^{2}} \bar{\sigma}^{n}$

Suppose $\sigma=r(\cos \theta+\sqrt{-1} \sin \theta), c_{1}=\frac{2+\rho}{2 \rho+3}$ and $c_{2}=\frac{-\sqrt{\rho} \rho^{2}}{(2 \rho+3) \sqrt{3-\rho}}$. It is easy to verify that (see for example Spickerman [5])

$$
p_{n}^{c}=\rho^{n}+3 h_{n}-h_{n-2}, \text { where } h_{n}=r^{n}\left(c_{1} \cos n \theta+c_{2} \sin n \theta\right)
$$

Theorem 3. The number of minimal path sets of a circular con $|2| n: F$ system for all $n \geq 10$ is given by $p_{n}^{C}=\left\lfloor\rho^{n}+0.5\right\rfloor$ where ρ is the unique real root of the, cubic equation $x^{3}-x-1=0$.

Proof. From Lemma 9, we have $p_{n}^{C}=p_{n-2}^{C}+p_{n-3}^{C}, n \geq 3$ with $p_{0}^{C}=3, p_{1}^{c}=0, p_{2}^{c}=2$. Using this up to $n=12$ we get, $p_{10}^{c}=17, p_{11}^{c}=22$ and $p_{12}^{c}=29$. Applying Cardan's formula to the cubic equation $x^{3}-x-1=0$, we have approximately $\rho=1.324717958$. It can be verified that the theorem is trivially true for $n=10,11,12$. Now suppose $n \geq 13$. We have already shown that $p_{n}^{c}=\rho^{n}+3 h_{n}-h_{n-2}$ Therefore it is enough to show that $\left|3 h_{n}-h_{n-2}\right|<0.5$ for $n \geq 13$ We have:

$$
\left|3 h_{n}-h_{n-2}\right| \leq 3\left|h_{n}\right|+\left|h_{n-2}\right| \leq 3 r^{n} \sqrt{c_{1}^{2}+c_{2}^{2}}+r^{n-2} \sqrt{c_{1}^{2}+c_{2}^{2}}=\left(3 r^{n}+r^{n-2}\right) \sqrt{c_{1}^{2}+c_{2}^{2}}
$$

$$
\text { Let } H_{1}(\rho)=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{\left(\frac{2+\rho}{2 \rho+3}\right)^{2}+\frac{\rho^{5}}{(2 \rho+3)(2-\rho)}}=\frac{2}{\sqrt{-2 \rho^{2}+3 \rho+9}} \text { (after }
$$

simplification).
We note that $H_{1}(\rho)$ is an increasing function for $\rho>3 / 4$
Hence we have $H_{1}(\rho)<H_{1}(1.325)=0.650127$ since we know that $\rho<1.325$. We also note that $\rho \sigma \bar{\sigma}=1$, hence $\rho r^{2}=1$ or $r=1 / \sqrt{\rho}$ if $n \geq 13$, we then have:

$$
\begin{aligned}
& 3 r^{n}+r^{n-2} \leq 3 r^{13}+r^{11}=\frac{3}{\sqrt{\rho \rho^{6}}}+\frac{1}{\sqrt{\rho \rho^{5}}}=\frac{3}{\sqrt{\rho}(1+\rho)^{2}}+\frac{1}{\sqrt{\rho}(1+\rho) \rho^{2}} \\
& =\frac{3}{\sqrt{\rho}(1+\rho)^{2}}+\frac{1}{\sqrt{\rho}\left(\rho^{2}+\rho+1\right)}\left(\text { since } \rho^{3}-\rho-1=0\right) . \\
& \text { Let } H_{2}(\rho)=\frac{3}{\sqrt{\rho}(1+\rho)^{2}}+\frac{1}{\sqrt{\rho}\left(\rho^{2}+\rho+1\right)} . \text { We note that } H_{2}(\rho) \text { is a }
\end{aligned}
$$

decreasing function for $\rho>0$. Hence we have
$3 r^{n}+r^{n-2} \leq H_{2}(\rho)<H_{2}(1.324)=0.696$, since $\rho>1.324$. Therefore we have for al $n \geq 13:\left|3 h_{n}-h_{n-2}\right| \leq H_{1}(\rho) H_{2}(\rho)<(0.65)(0.696)<0.5$ This completes the proof of the theorem.

We now consider the number of minimal path sets with known size in a circular conl21n:F system. Suppose ${ }_{r_{2}}^{=n, C}$ and $\bar{r}_{2}^{n, C}$ denote the maximum and the minimum size of a minimal path set in a circular conl2ln:F system, respectively.

Lemma 10. We have:
(i) ${ }_{r_{2}}^{=n, C}={ }_{r_{2}}^{=n, L}$
(ii) $\quad \bar{r}_{2}^{n, C}= \begin{cases}\bar{r}_{2}^{n, L}=[n / 2] & \text { if } n \text { is even } \\ \bar{r}_{2}^{n, L}+f=[n / 2]+1 & \text { if } n \text { is odd }\end{cases}$

Proof.
(i) We consider two cases as follows:

- $n+1=3 s$ for some integer $s \geq 1$.

By Lemma 3, we note that $R_{1}=\{1,3,4,6,7,9, \ldots, 3(s-1), 3(s-1)+1\}$ is a minimal path set with maximum size in a linear conl2ln:F system and $\left|R_{1}\right|=2(s-1)+1=2 s-1$. From Lemma 7 , we note that R_{1} is also a minimal path set of a circular coni2ln:F system. We show that size of R_{1} in a circular conl2ln:F system is also maximum. Let:

$$
\begin{aligned}
& C_{1}=\{1,2\} \\
& C_{2}=\{3,4,5\} \\
& C_{3}=\{6,7,8\}
\end{aligned}
$$

$$
C_{s}=\{3(s-1), 3(s-1)+1,3(s-1)+2=n\}
$$

Let P_{C} be a minimal path set of a circular coni2ln:F system. We note that $P_{C} \cap C_{i}$ is nonempty and by Remark 5 , we also note that $\left|P_{C} \cap C_{i}\right| \leq 2$ for $i=1,2, \ldots, s$. We show that there exists $1 \leq i^{*} \leq s$ such that $\left|P_{C} \cap C_{i^{*}}\right|=1$. Suppose $\mid P_{C} \cap C_{i}=2 \forall i$. We then have: - $\{1,2\} \subseteq P_{C} \Rightarrow 3 \notin P_{C} \Rightarrow\{4,5\} \subseteq P_{C} \Rightarrow$ $6 \notin P_{C} \Rightarrow \ldots \Rightarrow 3(s-1) \notin P_{C} \Rightarrow 3(s-1)+1=n-1 \in P_{C}$ and $n \in P_{C}$. Hence we have: $\{1,2, n-1, n\} \subseteq P_{C}$ that is, P_{C} is not a minimal path set, resulting in a contradiction. Therefore there exists $1 \leq i^{*} \leq s$ such that $\left|P_{C} \cap C_{i^{*}}\right|=1$ it implies that:

$$
\left|P_{C}\right|=\left|\bigcup_{i=1}^{s}\left(P_{C} \cap C_{i}\right)\right|=\sum_{i=1}^{s}\left|P_{C} \cap C_{i}\right| \leq 1+2(s-1)=2 s-1=\left|R_{t}\right|
$$

That is R_{f} is a minimal path set with maximum size in a circular coni2ln:F system.

- $n+1=3 s+t, s \geq 1,1 \leq t \leq 2$ and t and s are integers.

In view of Lemma $3, R_{2}=\{1,3,4,6,7,9, \ldots, 3(s-1), 3(\dot{s}-1)+1,3 s\}$ is a minimal path set with maximum size in a linear conl2ln:F system. $\left|R_{2}\right|=2 \mathrm{~s}$.

From Lemma $7, R_{2}$ is also a minimal path set of a circular con $121 n$:F system. We have $C_{s}=\{3(s-1), 3(s-1)+1,3(s-1)+2\}=\{n-t-2, n-t-1, n-t\}$

We define $C_{s+1}=\{n-t+1, n\}$. Let P_{C} be a minimal path set of a circular conl2ln:F system.

By Remark 5, we note that $P_{C} \cap C_{i} \mid \leq 2$ for $1,2, \ldots s+1$
If $t=1$ and $n \in P_{C}$ then we note that $P_{C} \cap C_{1}=\mid P_{C} \cap\{1,2\}=1$ Hence we have

$$
\left|P_{C}\right|=\left|\bigcup_{i=1}^{s-1}\left(P_{C} \cap C_{i}\right)\right|=\sum_{i=1}^{s+1}\left|P_{C} \cap C_{i}\right| \leq 1+2(s-1)+1=2 s=\left|R_{2}\right| . \quad \text { Therefore }
$$ R_{2} is a minimal path set with maximum size in a circular conl2ln:F system.

If $n \notin P_{C}$ we then have $\left|P_{C}\right|=\left|\bigcup_{i=1}^{s}\left(P_{C} \cap C_{i}\right)\right|=\sum_{i=1}^{s}\left|P_{C} \cap C_{i}\right| \leq 2 s=\left|R_{2}\right|$ and the result is immediate.

Now suppose $t=2$. We show that there exist $1 \leq i^{*} \leq s+1,1 \leq j^{*} \leq s+1, i^{*} \neq j^{*}$ such that $\left|P_{C} \cap C_{i^{*}}\right|=\left|P_{C} \cap C_{j^{*}}\right|=1$

We note that $\{1,2, n-1, n\} \not \subset P_{C}$ that is $\left|P_{C} \cap C_{7}\right|=1$ or $\left|P_{C} \cap C_{s+1}\right|=1$ Without loss of generality we assume that $\left|P_{C} \cap C_{s+1}\right|=1$ We have :
$\left|P_{C} \cap C_{i}\right|=2$ for $i=1,2, \ldots, s$
$\{1,2\} \subseteq P_{C} \Rightarrow 3 \notin P_{C} \Rightarrow\{4,5\} \subseteq P_{C} \Rightarrow 6 \notin P_{C} \Rightarrow \cdots \Rightarrow 3(s-1)=n-4 \notin P_{C} \Rightarrow$ $\{n-3, n-2\} \subseteq P_{C} \Rightarrow n-1 \notin P_{C} \Rightarrow n \in P_{C}$

Therefore we have $\{1,2, n\} \subset P_{C}$ resulting in a contradiction. Hence there exists $1 \leq i^{*} \leq s$ such that $\left|P_{C} \cap C_{i^{*}}\right|=1$ We then have: $\left|P_{C}\right|=\left|\bigcup_{i=1}^{s+1}\left(P_{C} \cap C_{i}\right)\right|$ $=1+\sum_{i=1}^{s+1}\left|P_{C} \cap C_{i}\right|=1+\sum_{i \neq i^{*}}^{s}\left|P_{C} \cap C_{i}\right|+1 \leq 2+2(s-1)=2 s=\left|R_{2}\right|$.
This completes the proof of part (i).
(ii) We consider two cases as follows:

- $n=2 s$ for some infeger $s \geq 1$.

Let $R_{3}=\{2,4,6, \ldots, 2 s\}$ From Lemma 3, we know that R_{3} is a minimal path set with minimum size in a linear conl2ln:F system and by Lemma $7, R_{3}$ is also a minimal path set of a circular coni2ln:F system. We have $\left|R_{3}\right|=s=[n / 2]$ We show that size of R_{3} is minimum. Suppose P_{C} is a minimal path set of a circular conl2|n:F system. We note that $C_{i}=\{2 i-1,2 i\}, i=1,2, \ldots,[n / 2]$, are $[n / 2]$ disjoint minimal cut sets. We also note that $\left|P_{C} \cap C_{i}\right| \geq 1$ for $i=1,2, \ldots,[n / 2]$. Hence $\left|P_{C}\right|=\left|\bigcup_{i=1}^{[n / 2]}\left(P_{C} \cap C_{i}\right)\right| \geq[n / 2]=\left|R_{3}\right|$ Therefore the result is immediate.

- $n=2 s+1$ for some integer $s \geq 1$.

Let $R_{4}=\{1,2,4,6,8, \ldots, 2 s\}$. We know that R_{4} is a minimal path set with minimum size in a linear conl2ln:F system and is also a minimal path set of a circular coni2ln:F system. We show that size of R_{4} is minimum. We have: $\left|R_{4}\right|=9+1=[n / 2]+1$ and $\left|P_{C} \cap C_{i}\right| \geq 1$ for $i=1,2, \ldots, s$ Hence:

$$
\left|P_{C}\right|=\left|\bigcup_{i=1}^{s}\left(P_{C} \cap C_{s}\right) \cup\left(P_{C} \cap\{n\}\right)\right| \geq\left|\bigcup_{i=1}^{s}\left(P_{C} \cap C_{i}\right)\right|=\sum_{i=1}^{s}\left|P_{C} \cap C_{i}\right| \geq s
$$

If $n \in P_{C}$ then $\left|P_{C}\right| \geq s+1=\left|R_{4}\right|$ and the required result follows.

If $n \notin \dot{P}_{C}$ we show that there exists $1 \leq i^{*} \leq s$ such that $\left|P_{C} \cap C_{i^{*}}\right|=2$ Suppose $\left.\mid P_{C} \cap C_{i}\right) \mid=1$ for $i=1,2, \ldots, s$ We then have:
$n \notin P_{C} \Rightarrow 1 \in P_{C} \Rightarrow 2 \notin P_{C} \Rightarrow 3 \in P_{C} \Rightarrow 4 \notin P_{C} \Rightarrow \ldots \Rightarrow 2 s-1 \in P_{C} \Rightarrow$ $2 s \notin P_{C} \Rightarrow 2 s+1=n \in P_{C}$ and this gives arise to a contradiction. Therefore, there exists $1 \leq i^{*} \leq s$ such that $\left|P_{C} \cap C_{i^{*}}\right|=2$. Hence:
$\left|P_{C}\right|=\left|\bigcup_{i=1}^{s}\left(P_{C} \cap C_{i}\right)\right|=\sum_{i=1}^{s}\left|P_{C} \cap C_{i}\right| \geq(s-1)+2=s+1=\left|R_{4}\right|$
This completes the proof of the lemma.
Lemma 11. We have:
$p_{n}^{r \cdot C}=2 p_{n}^{r-2 . L}+p_{n-6}^{r} 4 \cdot L ; n \geq 6, \vec{r}_{2}^{n, C} \leq r \leq r_{2}^{n_{n}, C}$
In view of Lemma 8, the proof of this lemma is easy and omitted.
Lemma 12. We have:
$p_{n}^{r . C}=p_{n-2}^{r-1 . C}+p_{n-3}^{r-3 \cdot C}: n \geq 3, r_{2}^{n, C} \leq r \leq r_{2}^{-n, C}$
That is, the recurrence relation for the number of minimal path sets of given size r in both a linear and a circular con $121 n: F$ system is the same.

Now using Theorem 2 and Lemma 11 we give a closed formula for $p_{n}^{r, C}$ We have:

$$
\begin{aligned}
& p_{n}^{r \cdot C}=2 p_{n-3}^{r-2 \cdot L}+p_{n-6}^{r-4 . L}=2\binom{n-3-(r-2)+1}{2(n-3)-3(r-2)}+\binom{n-6-(r-4)+1}{2(n-6)-3(r-4)} \\
& =2\binom{n-r}{2 n-3 r}+\binom{n-r-1}{2 n-3 r}=\frac{n}{2 r-n}\binom{n-r-1}{2 n-3 r}
\end{aligned}
$$

5. References

[1] Bollinger R C and Salvia, A.A. "Consecutive-k-Out-Of-n:F Networks". IEEE Transaction on Reliability. 31 (1982) 53-56.
[2] Chiang D T and Niu S C "Reliability of Consecutive-k-Out-Of-n:F System". IEEE Transaction on Reliability. 30 (1981) 87-89.
[3] Kontoleon J M "Reliability Determination of a r-Successive-Out-Of-n:F System". IEEE Transaction on Reliability. 29 (1980) 437.
[4] Ramamurthy K G "Number of Minimal Path Sets of A Consecutive-2-Out-Ofn:F System". Unpublished manuscript (1996).
[5] Spickerman W R "Binet's Formula for the Fibonacci Sequence". Fibonacci Quarterly, 20 (1982) 118-120.

