On enumeration of catastrophic fault patterns $\stackrel{\text{\tiny{phi}}}{\to}$

Soumen Maity^a, Bimal K. Roy^b, Amiya Nayak^{c,*}

^a Stat-Math Unit, Indian Statistical Institute, Calcutta-35, India
 ^b Applied Statistics Unit, Indian Statistical Institute, Calcutta-35, India
 ^c School of Computer Science, Carleton University, Ottawa, ON, Canada, K1S 5B6

Received 4 April 2000 Communicated by F. Dehne

Keywords: Catastrophic fault patterns; Combinatorial problems; Random walk

1. Introduction

Let $A = \{p_0, p_1, \dots, p_N\}$ denote a one-dimensional array of processing elements (PEs). There exists a direct link (regular link) between p_i and p_{i+1} , $0 \le i < N$. Any link connecting p_i and p_j where j > i + 1 is said to be a bypass link of length j - i. The bypass links are used strictly for reconfiguration purposes when a fault is detected. The links can be either unidirectional or bidirectional.

Given an integer $g \in [1, N]$, A is said to have link redundancy g, if for every $p_i \in A$ with $i \leq N - g$, there exists a link between p_i and p_{i+g} . Let $G = \{g_1, g_2, \ldots, g_k\}$, where $g_j < g_{j+1}$ and $g_j \in [1, N]$. The array A is said to have link redundancy G if Ahas link redundancy g_1, g_2, \ldots, g_k .

A fault pattern for *A* is a set of integers $F = \{f_0, f_1, \ldots, f_m\}$ where $m \leq N, f_j < f_{j+1}$ and $f_j \in [0, N]$. An assignment of a fault pattern *F* to *A* means that for every $f \in F$, p_f is faulty. The width W_F

of a fault pattern $F = \{f_0, f_1, \ldots, f_{g-1}\}$ is defined to be the number of PEs between and including the first and the last fault in F, that is, $W_F = f_{g-1} - f_0 + 1$. At the two ends of the array two special PEs called I (for input) and O (for output) are responsible for I/O functions of the system. It is assumed that I is connected to $p_0, p_1, \ldots, p_{g_k-1}$ while O is connected to $p_{N-g_k}, p_{N-g_k-1}, \ldots, p_{N-1}$ so that all PEs in the system have the same degree and reliability bottlenecks at the borders of the array are avoided.

A fault pattern F is catastrophic for A with link redundancy g if the array cannot be reconfigured in the presence of such an assignment of faults. In other words, F is a cut-set of the graph corresponding to A.

Characterization of catastrophic fault patterns (CFPs) and its enumeration have been studied by several authors, e.g., in [3–6]. Enumeration of CFPs for $G = \{1, g\}$ has been done in [2] for bidirectional case and in [9] for unidirectional case. A method of enumeration of CFPs in the more general context is given in [8], but no closed form solution has been obtained. In this paper, we consider only bidirectional case and use random walk as a tool for such enumeration. We provide a simple proof for the case $G = \{1, g\}$ and then enumerate for $G = \{1, 2, ..., k, g\}, 2 \leq k < g$.

^{*} This work was supported in part by Natural Sciences and Engineering Research Council of Canada under Operating Grant 9167.

Corresponding author.

E-mail addresses: res9716@isical.ac.in (S. Maity),

bimal@isical.ac.in (B.K. Roy), nayak@scs.carleton.ca (A. Nayak).

2. Preliminaries

For $G = \{g_1, g_2, \ldots, g_k\}$ with $g_1 = 1$, CFPs with exactly g_k faults are considered because of its minimality [6]. A fault pattern $F = \{f_0, f_1, \ldots, f_{g_k-1}\}$ is represented by a Boolean matrix [4] W of size $(W_F^+ \times g_k)$ where $W_F^+ = \lceil W_F/g_k \rceil$

$$W[i, j] = \begin{cases} 1 & \text{if } (ig_k + j) \in F, \\ 0 & \text{otherwise.} \end{cases}$$

Notice that W[0, 0] = 1 which indicates the location of the first fault. Let $W[h_{i-1}, i-1]$ and $W[h_i, i]$ both be 1 and define $m_i = h_{i-1} - h_i$.

Proposition 1 (Pagli and Pucci [7]). Let $\{m_1, m_2, \ldots, m_{g-1}\}$ be a sequence of moves such that (1) $m_i = -1, 0 \text{ or } 1, \text{ for } 1 \leq i \leq g-1,$ (2) $S_k = \sum_{i=1}^k m_i \leq 0 \text{ for any } 1 \leq k \leq g-2,$ (3) $S_{g-1} = \sum_{i=1}^{g-1} m_i = 0.$

Then, any such sequence corresponds to a minimal CFP and vice versa when $G = \{1, g\}$.

Definition 1 (Feller [1]). A random walk is a sequence { ε_1 , ε_2 , ε_3 , ...} where each $\varepsilon_i = +1$ or -1.

The sequence is normally represented by a polynomial line on a *X*-*Y* plane and whose *k*th side has slope ε_k and whose *k*th vertex has ordinate $S_k = \sum_{i=1}^{k} \varepsilon_i$; such lines are called paths. For example, the row $\{1, -1, -1, 1, -1, -1\}$ is represented by a path from (0, 0) to (6, -2), with intermediate points (1, 1), (2, 0), (3, -1), (4, 0), (5, -1) in the given order.

Definition 2. A subsequence $\{\varepsilon_{s+1}, \varepsilon_{s+2}, \dots, \varepsilon_{s+r}\}$ of $\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n\}$, $r \ge 1$, is called a run of length r if $\varepsilon_s \ne \varepsilon_{s+1} = \varepsilon_{s+2} = \dots = \varepsilon_{s+r} \ne \varepsilon_{s+r+1}$.

R is referred to as the number of runs in { ε_1 , ε_2 , ..., ε_n }, ρ_1 and ρ_{-1} as the number of runs whose elements are 1 and -1, respectively ($R = \rho_1 + \rho_{-1}$).

Notations.

 $E_{n,m}$: A path from (0, 0) to (*n*, *m*). $E_{n,m}^{R}$: An $E_{n,m}$ path with *R* runs. $E_{n,m}^{R+}$: An $E_{n,m}^{R}$ path starting with a positive step.

 $E_{n,m}^{R-}$: An $E_{n,m}^{R}$ path starting with a negative step.

$$E_{n,m}^{R+,t}$$
: An $E_{n,m}^{R+}$ path crossing the line $y = t$,
 $t > 0$ at least once.

 $E_{n,m}^{R-,t}$: An $E_{n,m}^{R-}$ path crossing the line y = t, t > 0 at least once.

$$N(A)$$
: The number of all A paths, e.g.,
 $N(E_{n,m}) = {n \choose (n-m)/2}.$

Theorem 1 (Feller [1]). Among the $\binom{2n}{n}$ paths joining the origin to the point (2n, 0) there are exactly $\frac{1}{n+1}\binom{2n}{n}$ paths such that $S_1 \leq 0, S_2 \leq 0, \ldots, S_{2n-1} \leq 0, S_{2n} = 0$.

Theorem 2 (Vellore [10]). *For* $m \le t < (n + m)/2$,

$$N(E_{n,m}^{(2r-1)+,t}) = {\binom{n-m}{2} + t - 1}{r-2} {\binom{n+m}{2} - t - 1}{r-1},$$
$$N(E_{n,m}^{2r-,t}) = {\binom{n-m}{2} + t - 1}{r-2} {\binom{n+m}{2} - t - 1}{r}.$$

3. Main results

Theorem 3 (Nayak [2]). For $G = \{1, g\}$, the number of *CFPs* for bidirectional links is given by

$$\sum_{n=0}^{\lfloor (g-1)/2 \rfloor} \frac{1}{n+1} \binom{2n}{n} \binom{g-1}{2n}.$$

Proof. Number of catastrophic fault patterns is equal to the number of catastrophic sequences $\{m_1, m_2, \ldots, m_{g-1}\}$ satisfying conditions of Proposition 1. We take random walks from (0, 0) to (2n, 0) such that $S_1 \leq 0, S_2 \leq 0, \ldots, S_{2n-1} \leq 0, S_{2n} = 0$ and "plug" (g - 1 - 2n) zeroes in the 2n + 1 "distinguishable places" (intermediate 2n - 1 places and two more places before and after the sequence) of each such path. Clearly for a given path there are $\binom{g-1}{2n}$ (negative binomial coefficient) ways of plugging zeroes. \Box

Proposition 2. Necessary and sufficient conditions to have that $\{m_1, m_2, ..., m_{g-1}\}$ is the catastrophic sequence of a minimal *CFP* for a bidirectional linear array with link $G = \{1, 2, g\}$ are:

1)
$$m_{g-1} = 0$$
,

(2) $m_j = -1, 0, +1$ for $j = 1, 2, \dots, g - 2$,

(3) $\sum_{j=1}^{k} m_j \leq 0$ for $k = 1, 2, \dots, g - 3$, (4) $\sum_{j=1}^{g-2} m_j = 0$,

(5) $m_i + m_{i+1} = -1, 0, +1$ for i = 1, 2, ..., g - 3. That is, two or more consecutive +1 's or -1 's are not allowed.

In general, we have the following characterization.

Proposition 3. Necessary and sufficient conditions to have that $\{m_1, m_2, \ldots, m_{g-1}\}$ is the catastrophic sequence of a minimal CFP for a bidirectional linear array with link $G = \{1, 2, 3, ..., k, g\}$ are:

- (1) $m_{g-1} = m_{g-2} = \dots = m_{g-k+1} = 0$,
- (2) $m_j = -1, 0, +1$ for j = 1, 2, ..., g k,
- (3) $\sum_{j=1}^{k} m_j \leq 0$ for $k = 1, 2, \dots, g k 1$,
- (4) $\sum_{j=1}^{g-k} m_j = 0,$
- (5) $m_i + m_{i+1} + \dots + m_{i+s} = -1, 0, +1$ for s = $1, 2, \ldots, k - 1$, for $i = 1, 2, \ldots, g - k - s$.

The characterizations described in Propositions 2 and 3 are easy to visualize and hence their proofs are omitted.

Lemma 1. The number of paths from origin to the point (2n, 0) such that $S_1 \leq 0, S_2 \leq 0, \ldots, S_{2n-1} \leq$ $0, S_{2n} = 0$ and have 2r runs is

$$\binom{n-1}{r-1}^2 - \binom{n-1}{r-2}\binom{n-1}{r}.$$

Proof. Clearly there exist exactly as many admissible paths as there are paths from $O_1 = (1, -1)$ to $N_1 =$ (2n, 0) which do not cross the X-axis and have 2rruns.

The number of such paths is equal to

$$N(E_{2n,0}^{2r-}) - N(E_{2n,0}^{*2r-,0}),$$
(1)

where $E_{2n,0}^{*2r-,0}$ is an $E_{2n,0}^{2r-}$ path crossing the line y = 0at least once (please note that $E_{2n,0}^{2r-,t}$ do not assume t = 0). It is known that

$$N(E_{2n,0}^{2r-}) = {\binom{n-1}{r-1}}^2$$
(2)

(see Wald and Wolfowitz [11]). Now our aim is to enumerate $N(E_{2n,0}^{*2r-,0})$. Translating the origin to O_1 , we now consider the paths from the new origin to the point N_1 (which has the new co-ordinates 2n-1

and 1) which cross the line y = 1 (with respect to new *X*-axis) at least once and have 2r runs if the path starts with a negative step and have (2r - 1) runs if the path starts with a positive step. Number of such paths equal

$$N(E_{2n-1,1}^{2r-,1}) + N(E_{2n-1,1}^{(2r-1)+,1})$$

It can be shown that there exists a 1 : 1 correspondence

between such paths and an $E_{2n,0}^{*2r-,0}$ path. Take an $E_{2n-1,1}^{2r-,1}$ (or an $E_{2n-1,1}^{(2r-1)+,1}$) path and add a negative step before it. The resulting path is an $E_{2n,0}^{*2r-,0}$. Hence

$$N(E_{2n,0}^{*2r-,0}) = N(E_{2n-1,1}^{2r-,1}) + N(E_{2n-1,1}^{(2r-1)+,1}) = {\binom{n-1}{r-2}}{\binom{n-2}{r}} + {\binom{n-1}{r-2}}{\binom{n-2}{r-1}} = {\binom{n-1}{r-2}}{\binom{n-1}{r}}.$$
(3)

The lemma follows from (1), (2) and (3). \Box

Theorem 4. Let $G = \{1, 2, g\}$. Then the number of catastrophic fault pattern $\gamma(1, 2, g)$ for bidirectional link is given by

$$\begin{split} \gamma(1,2,g) &= 1 + \sum_{n=1}^{\lfloor (g-2)/2 \rfloor} \sum_{r=1}^{n} \left[\binom{n-1}{r-1}^2 - \binom{n-1}{r-2} \binom{n-1}{r} \right] \\ &\times \binom{g-2(n-r)-2}{2n}. \end{split}$$

Proof. Number of catastrophic fault patterns is equal to the number of catastrophic sequences $\{m_1, m_2, \ldots, m_n\}$ m_{g-2} satisfying conditions of Proposition 2. Let the number of -1's (and so the number of +1's) in the sequence be n. Clearly then the number of zeroes is g - 2 - 2n. We start with a path of length 2n such that $S_1 \leq 0, S_2 \leq 0, \dots, S_{2n-1} \leq 0, (S_{2n} = 0)$ and have 2r runs. R(run) = 1 + number of change either of the type (-1, +1) or (+1, -1).

So, the number of paths having (2r-1) changes either of the type (-1, +1) or (+1, -1) and satisfies $S_1 \leq 0, S_2 \leq 0, \dots, S_{2n-1} \leq 0, (S_{2n} = 0)$ is

$$\binom{n-1}{r-1}^2 - \binom{n-1}{r-2}\binom{n-1}{r}.$$

All the above paths have 2n - 1 - 2r + 1 = 2(n - r)identical pairs of the type (+1, +1) or (-1, -1). So, to satisfy condition (5) of Proposition 2, we have to plug in a zero between every two consecutive +1's and every two consecutive -1's. So the number of zeroes plugged in are 2(n - r). The remaining positions g - 2 - 2n - 2(n - r) = g - 4n + 2r - 2 are also to be filled up with 0's. There are (2n + 1) distinguishable positions in which (g - 4n + 2r - 2) 0's can be distributed in $\binom{g-2(n-r)-2}{2n}$ ways. Since *n* can vary from 1 to $\lfloor (g - 2)/2 \rfloor$, the total number of such paths is

$$\sum_{n=1}^{\lfloor (g-2)/2 \rfloor} \sum_{r=1}^{n} \left[\binom{n-1}{r-1}^2 - \binom{n-1}{r-2} \binom{n-1}{r} \right] \times \binom{g-2(n-r)-2}{2n}.$$

Note that these paths do not include the trivial path corresponding to the sequence (0, 0, ..., 0). Hence the theorem. \Box

Theorem 5. Let $G = \{1, 2, 3, ..., k, g\}$. Then, the number of catastrophic fault patterns $\gamma(1, 2, 3, ..., k, g)$ for bidirectional link is given by

$$\gamma(1, 2, 3..., k, g) = 1 + \sum_{n=1}^{\lfloor (g-k)/2 \rfloor} \sum_{r=1}^{n} \left[\binom{n-1}{r-1}^2 - \binom{n-1}{r-2} \binom{n-1}{r} \right] \times \binom{g-k-2(n-r)(k-1)}{2n}.$$

Proof. The number of catastrophic fault patterns is equal to the number of catastrophic sequences $\{m_1, m_2, \ldots, m_{g-k}\}$ satisfying conditions (2)–(5) of Proposition 3. Proof is similar to the proof of Theorem 4. Here to satisfy condition (5) of Proposition 3, we have to plug in (k - 1) 0's between every two consecutive +1's and between every two consecutive -1's. \Box

4. Conclusion

A method of enumeration of CFPs for an arbitrary link configuration *G* was discussed in [8], but no closed form solution was obtained. In this paper, we used the random walk as a tool for such enumeration. We provided a simple proof for the case $G = \{1, g\}$ and a closed form expression for $G = \{1, 2, ..., k, g\}, 2 \leq k < g$ in the case of bidirectional links.

References

- W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 2nd edn., Wiley, New York, 1957.
- [2] A. Nayak, On reconfigurability of some regular architectures, Ph.D. Thesis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1991.
- [3] A. Nayak, L. Pagli, N. Santoro, Combinatorial and graph problems arising in the analysis of catastrophic fault patterns, in: Proc. 23rd Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing, 1992; Congr. Numer. 88 (1992) 7–20.
- [4] A. Nayak, L. Pagli, N. Santoro, Efficient construction of catastrophic patterns for VLSI reconfigurable arrays, Integration: VLSI J. 15 (1993) 133–150.
- [5] A. Nayak, L. Pagli, N. Santoro, On testing for catastrophic faults in reconfigurable arrays with arbitrary link redundency, Integration: VLSI J. 20 (1996) 327–342.
- [6] A. Nayak, N. Santoro, R. Tan, Fault-Intolerance of reconfigurable systolic arrays, in: Proc. 20th Internat. Symp. on Fault-Tolerant Computing, Newcastle upon Tyne, 1990, pp. 202– 209.
- [7] L. Pagli, G. Pucci, Counting the number of fault patterns in redundant VISI arrays, Inform. Process. Lett. 50 (1994) 337– 342.
- [8] P. Sipala, Faults in linear arrays with multiple bypass links, Research Report No. 18, Dipartimento di Informatica, Università degli Studi di Trieste, Italy, 1993.
- [9] R. De Prisco, A. De Santis, Catastrophic faults in reconfigurable systolic linear arrays, Discrete Appl. Math. 75 (2) (1997) 105–123.
- [10] S. Vellore, Joint distribution of Kolmogorov Smirnov statistics and runs, Studia Sci. Math. Hungar. 7 (1972) 155–165.
- [11] A. Wald, J. Wolfowitz, On a test whether two samples are from the same population, Ann. Math. Statist. 11 (1940) 147–162.