On enumeration of catastrophic fault patterns ${ }^{\text {T }}$

Soumen Maity ${ }^{\text {a }}$, Bimal K. Roy ${ }^{\text {b }}$, Amiya Nayak ${ }^{\text {c,* }}$
a Stat-Math Unit, Indian Statistical Institute, Calcutta-35, India
${ }^{\text {b }}$ Applied Statistics Unit, Indian Statistical Institute, Calcutta-35, India
c School of Computer Science, Carleton University, Ottawa, ON, Canada, K1S 5B6

Received 4 April 2000
Communicated by F. Dehne

Keywords: Catastrophic fault patterns; Combinatorial problems; Random walk

1. Introduction

Let $A=\left\{p_{0}, p_{1}, \ldots, p_{N}\right\}$ denote a one-dimensional array of processing elements (PEs). There exists a direct link (regular link) between p_{i} and $p_{i+1}, 0 \leqslant i<$ N. Any link connecting p_{i} and p_{j} where $j>i+1$ is said to be a bypass link of length $j-i$. The bypass links are used strictly for reconfiguration purposes when a fault is detected. The links can be either unidirectional or bidirectional.

Given an integer $g \in[1, N], A$ is said to have link redundancy g, if for every $p_{i} \in A$ with $i \leqslant N-g$, there exists a link between p_{i} and p_{i+g}. Let $G=$ $\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$, where $g_{j}<g_{j+1}$ and $g_{j} \in[1, N]$. The array A is said to have link redundancy G if A has link redundancy $g_{1}, g_{2}, \ldots, g_{k}$.
A fault pattern for A is a set of integers $F=$ $\left\{f_{0}, f_{1}, \ldots, f_{m}\right\}$ where $m \leqslant N, f_{j}<f_{j+1}$ and $f_{j} \in$ $[0, N]$. An assignment of a fault pattern F to A means that for every $f \in F, p_{f}$ is faulty. The width W_{F}

[^0]of a fault pattern $F=\left\{f_{0}, f_{1}, \ldots, f_{g-1}\right\}$ is defined to be the number of PEs between and including the first and the last fault in F, that is, $W_{F}=$ $f_{g-1}-f_{0}+1$. At the two ends of the array two special PEs called I (for input) and O (for output) are responsible for I/O functions of the system. It is assumed that I is connected to $p_{0}, p_{1}, \ldots, p_{g_{k}-1}$ while O is connected to $p_{N-g_{k}}, p_{N-g_{k}-1}, \ldots, p_{N-1}$ so that all PEs in the system have the same degree and reliability bottlenecks at the borders of the array are avoided.

A fault pattern F is catastrophic for A with link redundancy g if the array cannot be reconfigured in the presence of such an assignment of faults. In other words, F is a cut-set of the graph corresponding to A.

Characterization of catastrophic fault patterns (CFPs) and its enumeration have been studied by several authors, e.g., in [3-6]. Enumeration of CFPs for $G=\{1, g\}$ has been done in [2] for bidirectional case and in [9] for unidirectional case. A method of enumeration of CFPs in the more general context is given in [8], but no closed form solution has been obtained. In this paper, we consider only bidirectional case and use random walk as a tool for such enumeration. We provide a simple proof for the case $G=\{1, g\}$ and then enumerate for $G=\{1,2, \ldots, k, g\}, 2 \leqslant k<g$.

2. Preliminaries

For $G=\left\{g_{1}, g_{2}, \ldots, g_{k}\right\}$ with $g_{1}=1$, CFPs with exactly g_{k} faults are considered because of its minimality [6]. A fault pattern $F=\left\{f_{0}, f_{1}, \ldots, f_{g_{k}-1}\right\}$ is represented by a Boolean matrix [4] W of size $\left(W_{F}^{+} \times g_{k}\right)$ where $W_{F}^{+}=\left\lceil W_{F} / g_{k}\right\rceil$
$W[i, j]= \begin{cases}1 & \text { if }\left(i g_{k}+j\right) \in F, \\ 0 & \text { otherwise } .\end{cases}$
Notice that $W[0,0]=1$ which indicates the location of the first fault. Let $W\left[h_{i-1}, i-1\right]$ and $W\left[h_{i}, i\right]$ both be 1 and define $m_{i}=h_{i-1}-h_{i}$.

Proposition 1 (Pagli and Pucci [7]). Let $\left\{m_{1}, m_{2}, \ldots\right.$, $\left.m_{g-1}\right\}$ be a sequence of moves such that
(1) $m_{i}=-1,0$ or 1 , for $1 \leqslant i \leqslant g-1$,
(2) $S_{k}=\sum_{i=1}^{k} m_{i} \leqslant 0$ for any $1 \leqslant k \leqslant g-2$,
(3) $S_{g-1}=\sum_{i=1}^{g-1} m_{i}=0$.

Then, any such sequence corresponds to a minimal CFP and vice versa when $G=\{1, g\}$.

Definition 1 (Feller [1]). A random walk is a se quence $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \ldots\right\}$ where each $\varepsilon_{i}=+1$ or -1 .

The sequence is normally represented by a polynomial line on a $X-Y$ plane and whose k th side has slope ε_{k} and whose k th vertex has ordinate $S_{k}=$ $\sum_{i=1}^{k} \varepsilon_{i}$; such lines are called paths. For example, the row $\{1,-1,-1,1,-1,-1\}$ is represented by a path from $(0,0)$ to $(6,-2)$, with intermediate points $(1,1)$, $(2,0),(3,-1),(4,0),(5,-1)$ in the given order.

Definition 2. A subsequence $\left\{\varepsilon_{s+1}, \varepsilon_{s+2}, \ldots, \varepsilon_{s+r}\right\}$ of $\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right\}, r \geqslant 1$, is called a run of length r if $\varepsilon_{s} \neq \varepsilon_{s+1}=\varepsilon_{s+2}=\cdots=\varepsilon_{s+r} \neq \varepsilon_{s+r+1}$.
R is referred to as the number of runs in $\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots\right.$, $\left.\varepsilon_{n}\right\}, \rho_{1}$ and ρ_{-1} as the number of runs whose elements are 1 and -1 , respectively ($R=\rho_{1}+\rho_{-1}$).

Notations.

$E_{n, m}$: A path from (0, 0) to (n, m).
$E_{n, m}^{R}$: An $E_{n, m}$ path with R runs.
$E_{n, m}^{R+}: ~ A n E_{n, m}^{R}$ path starting with a positive step.
$E_{n, m}^{R-}$: An $E_{n, m}^{R}$ path starting with a negative step.
$E_{n, m}^{R+, t}: \quad$ An $E_{n, m}^{R+}$ path crossing the line $y=t$, $t>0$ at least once.
$E_{n, m}^{R-, t}: \quad$ An $E_{n, m}^{R-}$ path crossing the line $y=t$, $t>0$ at least once.
$N(A): \quad$ The number of all A paths, e.g.,

$$
N\left(E_{n, m}\right)=\binom{n}{(n-m) / 2} .
$$

Theorem 1 (Feller [1]). Among the $\binom{2 n}{n}$ paths joining the origin to the point $(2 n, 0)$ there are exactly $\frac{1}{n+1}\binom{2 n}{n}$ paths such that $S_{1} \leqslant 0, S_{2} \leqslant 0, \ldots, S_{2 n-1} \leqslant 0, S_{2 n}=$ 0.

Theorem 2 (Vellore [10]). For $m \leqslant t<(n+m) / 2$,
$N\left(E_{n, m}^{(2 r-1)+, t}\right)=\binom{\frac{n-m}{2}+t-1}{r-2}\binom{\frac{n+m}{2}-t-1}{r-1}$,
$N\left(E_{n, m}^{2 r-, t}\right)=\binom{\frac{n-m}{2}+t-1}{r-2}\binom{\frac{n+m}{2}-t-1}{r}$.

3. Main results

Theorem 3 (Nayak [2]). For $G=\{1, g\}$, the number of CFPs for bidirectional links is given by

$$
\sum_{n=0}^{\lfloor(g-1) / 2\rfloor} \frac{1}{n+1}\binom{2 n}{n}\binom{g-1}{2 n} .
$$

Proof. Number of catastrophic fault patterns is equal to the number of catastrophic sequences $\left\{m_{1}, m_{2}, \ldots\right.$, $\left.m_{g-1}\right\}$ satisfying conditions of Proposition 1. We take random walks from $(0,0)$ to ($2 n, 0$) such that $S_{1} \leqslant 0, S_{2} \leqslant 0, \ldots, S_{2 n-1} \leqslant 0, S_{2 n}=0$ and "plug" ($g-1-2 n$) zeroes in the $2 n+1$ "distinguishable places" (intermediate $2 n-1$ places and two more places before and after the sequence) of each such path. Clearly for a given path there are $\binom{g-1}{2 n}$ (negative binomial coefficient) ways of plugging zeroes.

Proposition 2. Necessary and sufficient conditions to have that $\left\{m_{1}, m_{2}, \ldots, m_{g-1}\right\}$ is the catastrophic sequence of a minimal CFP for a bidirectional linear array with link $G=\{1,2, g\}$ are:
(1) $m_{g-1}=0$,
(2) $m_{j}=-1,0,+1$ for $j=1,2, \ldots, g-2$,
(3) $\sum_{j=1}^{k} m_{j} \leqslant 0$ for $k=1,2, \ldots, g-3$,
(4) $\sum_{j=1}^{g-2} m_{j}=0$,
(5) $m_{i}+m_{i+1}=-1,0,+1$ for $i=1,2, \ldots, g-3$.

That is, two or more consecutive +1 's or -1 's are not allowed.

In general, we have the following characterization.
Proposition 3. Necessary and sufficient conditions to have that $\left\{m_{1}, m_{2}, \ldots, m_{g-1}\right\}$ is the catastrophic sequence of a minimal CFP for a bidirectional linear array with link $G=\{1,2,3, \ldots, k, g\}$ are:
(1) $m_{g-1}=m_{g-2}=\cdots=m_{g-k+1}=0$,
(2) $m_{j}=-1,0,+1$ for $j=1,2, \ldots, g-k$,
(3) $\sum_{j=1}^{k} m_{j} \leqslant 0$ for $k=1,2, \ldots, g-k-1$,
(4) $\sum_{j=1}^{g-k} m_{j}=0$,
(5) $m_{i}+m_{i+1}+\cdots+m_{i+s}=-1,0,+1$ for $s=$ $1,2, \ldots, k-1$, for $i=1,2, \ldots, g-k-s$.

The characterizations described in Propositions 2 and 3 are easy to visualize and hence their proofs are omitted.

Lemma 1. The number of paths from origin to the point $(2 n, 0)$ such that $S_{1} \leqslant 0, S_{2} \leqslant 0, \ldots, S_{2 n-1} \leqslant$ $0, S_{2 n}=0$ and have $2 r$ runs is
$\binom{n-1}{r-1}^{2}-\binom{n-1}{r-2}\binom{n-1}{r}$.
Proof. Clearly there exist exactly as many admissible paths as there are paths from $O_{1}=(1,-1)$ to $N_{1}=$ $(2 n, 0)$ which do not cross the X-axis and have $2 r$ runs.
The number of such paths is equal to
$N\left(E_{2 n, 0}^{2 r-}\right)-N\left(E_{2 n, 0}^{* 2 r-, 0}\right)$,
where $E_{2 n, 0}^{* 2 r-, 0}$ is an $E_{2 n, 0}^{2 r-}$ path crossing the line $y=0$ at least once (please note that $E_{2 n, 0}^{2 r-, t}$ do not assume $t=0$). It is known that
$N\left(E_{2 n, 0}^{2 r-}\right)=\binom{n-1}{r-1}^{2}$
(see Wald and Wolfowitz [11]). Now our aim is to enumerate $N\left(E_{2 n, 0}^{* 2 r-, 0}\right)$. Translating the origin to O_{1}, we now consider the paths from the new origin to the point N_{1} (which has the new co-ordinates $2 n-1$
and 1) which cross the line $y=1$ (with respect to new X-axis) at least once and have $2 r$ runs if the path starts with a negative step and have $(2 r-1)$ runs if the path starts with a positive step. Number of such paths equal
$N\left(E_{2 n-1,1}^{2 r-1}\right)+N\left(E_{2 n-1,1}^{(2 r-1)+, 1}\right)$.
It can be shown that there exists a 1:1 correspondence between such paths and an $E_{2 n, 0}^{* 2 r-, 0}$ path.

Take an $E_{2 n-1,1}^{2 r-1}$ (or an $E_{2 n-1,1}^{(2 r-1)+, 1}$) path and add a negative step before it. The resulting path is an $E_{2 n, 0}^{* 2 r-, 0}$. Hence

$$
\begin{align*}
N & \left(E_{2 n, 0}^{* 2 r-, 0}\right) \\
& =N\left(E_{2 n-1,1}^{2 r-, 1}\right)+N\left(E_{2 n-1,1}^{(2 r-1)+, 1}\right) \\
& =\binom{n-1}{r-2}\binom{n-2}{r}+\binom{n-1}{r-2}\binom{n-2}{r-1} \\
& =\binom{n-1}{r-2}\binom{n-1}{r} . \tag{3}
\end{align*}
$$

The lemma follows from (1), (2) and (3).
Theorem 4. Let $G=\{1,2, g\}$. Then the number of catastrophic fault pattern $\gamma(1,2, g)$ for bidirectional link is given by

$$
\begin{gathered}
\gamma(1,2, g) \\
=1+\sum_{n=1}^{\lfloor(g-2) / 2\rfloor} \sum_{r=1}^{n}\left[\binom{n-1}{r-1}^{2}-\binom{n-1}{r-2}\binom{n-1}{r}\right] \\
\times\binom{ g-2(n-r)-2}{2 n} .
\end{gathered}
$$

Proof. Number of catastrophic fault patterns is equal to the number of catastrophic sequences $\left\{m_{1}, m_{2}, \ldots\right.$, $\left.m_{g-2}\right\}$ satisfying conditions of Proposition 2. Let the number of -1 's (and so the number of +1 's) in the sequence be n. Clearly then the number of zeroes is $g-2-2 n$. We start with a path of length $2 n$ such that $S_{1} \leqslant 0, S_{2} \leqslant 0, \ldots, S_{2 n-1} \leqslant 0,\left(S_{2 n}=0\right)$ and have $2 r$ runs. R (run) $=1+$ number of change either of the type $(-1,+1)$ or $(+1,-1)$.

So, the number of paths having $(2 r-1)$ changes either of the type $(-1,+1)$ or $(+1,-1)$ and satisfies $S_{1} \leqslant 0, S_{2} \leqslant 0, \ldots, S_{2 n-1} \leqslant 0,\left(S_{2 n}=0\right)$ is
$\binom{n-1}{r-1}^{2}-\binom{n-1}{r-2}\binom{n-1}{r}$.

All the above paths have $2 n-1-2 r+1=2(n-r)$ identical pairs of the type $(+1,+1)$ or $(-1,-1)$. So, to satisfy condition (5) of Proposition 2, we have to plug in a zero between every two consecutive +1 's and every two consecutive -1 's. So the number of zeroes plugged in are $2(n-r)$. The remaining positions $g-2-2 n-2(n-r)=g-4 n+2 r-2$ are also to be filled up with 0's. There are $(2 n+1)$ distinguishable positions in which $(g-4 n+2 r-2)$ 0's can be distributed in $\binom{g-2(n-r)-2}{2 n}$ ways. Since n can vary from 1 to $\lfloor(g-2) / 2\rfloor$, the total number of such paths is

$$
\begin{gathered}
\sum_{n=1}^{\lfloor(g-2) / 2\rfloor} \sum_{r=1}^{n}\left[\binom{n-1}{r-1}^{2}-\binom{n-1}{r-2}\binom{n-1}{r}\right] \\
\times\binom{ g-2(n-r)-2}{2 n} .
\end{gathered}
$$

Note that these paths do not include the trivial path corresponding to the sequence $(0,0, \ldots, 0)$. Hence the theorem.

Theorem 5. Let $G=\{1,2,3, \ldots, k, g\}$. Then, the number of catastrophic fault patterns $\gamma(1,2,3, \ldots$, k, g) for bidirectional link is given by

$$
\begin{aligned}
& \gamma(1,2,3 \ldots, k, g) \\
&=1+\sum_{n=1}^{\lfloor(g-k) / 2\rfloor} \sum_{r=1}^{n} {\left[\binom{n-1}{r-1}^{2}-\binom{n-1}{r-2}\binom{n-1}{r}\right] } \\
& \times\binom{ g-k-2(n-r)(k-1)}{2 n} .
\end{aligned}
$$

Proof. The number of catastrophic fault patterns is equal to the number of catastrophic sequences $\left\{m_{1}\right.$, $\left.m_{2}, \ldots, m_{g-k}\right\}$ satisfying conditions (2)-(5) of Proposition 3. Proof is similar to the proof of Theorem 4. Here to satisfy condition (5) of Proposition 3, we have to plug in $(k-1)$ O's between every two consecutive +1 's and between every two consecutive -1 's.

4. Conclusion

A method of enumeration of CFPs for an arbitrary link configuration G was discussed in [8], but no closed form solution was obtained. In this paper, we used the random walk as a tool for such enumeration. We provided a simple proof for the case $G=\{1, g\}$ and a closed form expression for $G=$ $\{1,2, \ldots, k, g\}, 2 \leqslant k<g$ in the case of bidirectional links.

References

[1] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 2nd edn., Wiley, New York, 1957.
[2] A. Nayak, On reconfigurability of some regular architectures, Ph.D. Thesis, Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada, 1991.
[3] A. Nayak, L. Pagli, N. Santoro, Combinatorial and graph problems arising in the analysis of catastrophic fault patterns, in: Proc. 23rd Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing, 1992; Congr. Numer. 88 (1992) 7-20.
[4] A. Nayak, L. Pagli, N. Santoro, Efficient construction of catastrophic patterns for VLSI reconfigurable arrays, Integration: VLSI J. 15 (1993) 133-150.
[5] A. Nayak, L. Pagli, N. Santoro, On testing for catastrophic faults in reconfigurable arrays with arbitrary link redundency, Integration: VLSI J. 20 (1996) 327-342.
[6] A. Nayak, N. Santoro, R. Tan, Fault-Intolerance of reconfig urable systolic arrays, in: Proc. 20th Internat. Symp. on Fault Tolerant Computing, Newcastle upon Tyne, 1990, pp. 202209.
[7] L. Pagli, G. Pucci, Counting the number of fault patterns in redundant VISI arrays, Inform. Process. Lett. 50 (1994) $337-$ 342.
[8] P. Sipala, Faults in linear arrays with multiple bypass links, Research Report No. 18, Dipartimento di Informatica, Università degli Studi di Trieste, Italy, 1993.
[9] R. De Prisco, A. De Santis, Catastrophic faults in reconfigurable systolic linear arrays, Discrete Appl. Math. 75 (2) (1997) 105-123.
[10] S. Vellore, Joint distribution of Kolmogorov Smirnov statistics and runs, Studia Sci. Math. Hungar. 7 (1972) 155-165
[11] A. Wald, J. Wolfowitz, On a test whether two samples are from the same population, Ann. Math. Statist. 11 (1940) 147-162.

[^0]: * This work was supported in part by Natural Sciences and Engineering Research Council of Canada under Operating Grant 9167.
 * Corresponding author.

 E-mail addresses: res $9716 @$ isical.ac.in (S. Maity), bimal@isical.ac.in (B.K. Roy), nayak@scs.carleton.ca (A. Nayak).

