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ABSTRACT

We propose to discuss certain aspects of Rank Set Sampling (RSS) vis-a-vis Simple Ran-
dom Sampling (SRS) in the context of a dichotomous population. Basu’s(1971) “Elephant
Example” provides an eftective means of demonstrating the superiority of RSS over SRS
from the point of view of representativeness of a sample. Next, we turn our attention to the
problem of estimation of the proportion, p, of individuals possessing a certain attribute in a
population. It is well known that the sample proportion from an RSS has a smaller variance
than the sample proportion from an SRS of the same size. However, it turns out that non-
negative unbiased estimate of the variance of sample proportion from an RSS is generally
unavailable. A natural, albeit biased, estimator is proposed to overcome the problem.

Key Words and Phrases: Binomial distribution; Censoring; Detection limit; Environ-
mental sampling; Simple random sampling.

1 Introduction

Ranked Set Sampling (RSS), like the better-known Simple Random Sampling (SRS), is
useful in environmental applications. The purpose of this paper is to highlight its key
features in the context of sampling from a dichotomous population. Below, we use Basu’s
(1971) “Elephant Example” to discuss our ideas.

Consider a herd of elephants consisting of Mothers and Babies in proportions g{= 1— p)
and p respectively. Let us examine the following two methods of estimating the average
weight for the entire herd. |

Simple Random Sampling (Case of n = 2): Draw a sample of elephants at random and
use their average weight as an estimate of the average weight for the entire herd. Suppose
the two elephants picked at random were both mother elephants (or both calves); it’s folly
to proceed to estimate the average weight of the herd from such a highly non-representative
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sample. Occurrence of such non-representative samples is more frequent than one would
normally desire. For the case of n = 2, chance of a non-representative sample is 100(p*+¢%)%
and the sample average would vary widely since 100p°% of the time it will be very high
(the mother-mother case) and 100g°% of the time it will be very low (the calf-calf case).

Ranked Set Sampling (Case of n = 2): Sample two elephants randomly in the morning.
Pick the smaller of the two and weigh it. Sample two elephants randomly in the afternoon.
Pick the larger of the two and weigh it. Use the average weight of the elephants chosen
in this way as an estimate. It is known that this estimate is again an unbiased estimate
of the average weight for the herd. It can be shown that the probability of arriving at a
non-representative sample under the RSS scheme is

100[¢*(1 - p*) + (1 — ¢*)p°)% = 100[p® + ¢* — 2p°¢") %, (1.1),

which is smaller than the corresponding probability under SRS (n = 2) given by 100[p? +
q*|%. A formula, applicable for an arbitrary sample size is given later in equation (11) of
section 2. Table 1 in the Appendix gives these probabilities for n = 2, 3,4, and 5, and for
»=0.1,0.2,0.3,0.4, and 0.5.

The above example captures the salient feature of RSS, namely producing less variable
and more representative samples. This is the reason why the sample mean from an RSS has a
smaller variance than the sample mean from an SRS of the same size. We refer the readers
to Patil, Sinha and Taillie (1994) and the references therein for a number of theoretical
results comparing RSS to SRS for various standard estimation problems. Another useful
reference is Ni Chuiv and Sinha (1998).

In this paper we focus on two issues. In section 2, we discuss the superiority of RSS over
SRS in obtaining more representative samples. In section 3, some disadvantages of RSS are
brought forth in the context of making inference regarding a Bernoulli parameter based on
an RSS. |

2 Inequalities Relating SRS and RSS

In this section, we first establish an inequality involving the probability of extreme values
under RSS and SRS. Second, we derive the probability function of the number of calves
in a ranked set sample of a given size. We give an algorithm to compute the probability
function. Third, we point out a natural connection between this probability structure and
censoring (see Remark 2, below). Finally, we conclude the section by giving a general result
involving tail probabilities under the two sampling schemes.

A ranked set sample of size n is obtained by first picking n independent simple random
samples, each of size n, and then visually identifying the i-th largest in size, E;;, from the
+-th simple random sample:

L_.(EillEl'gl"':Ein)-, ISiSﬂ.

Within each SRS the ranking is done from the largest in size to the smallest. Thus, the
ranked set sample consists of (E1), E(22), " * E(nn)), Where E(;, denotes the i-th largest
unit in the i-th SRS. Subsequent analysis will be based on the measurements made on these
units.
We now compare the probability of obtaining an extreme sample under RSS with the
corresponding probability under SRS. In the case of a herd of elephants consisting of only
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two sizes, namely, mothers and calves, let p denote the proportion of calves in the herd. Let
X denote the number of calves in a sample of size n, drawn either by SRS or RSS.
Under the SRS scheme, X is Binomial with parameters n» and p. Thus,

Psrs(X =2) = ( : ) pTq™ %, z=0,1,...,n. (2.1)
In particular, the probability of obtaining a sample containing only calves is
Psps(X =n) = p". (2.2)
On the other hand, under the RSS scheme [see Neerchal and Lacayo (1998)], .
Prpss(X =n) = H Z ( ? )plq“_l. (2.3)
t=1l=n—-1+1

Note that,

n
Prss(X =n) < Z ( ? )p'q“" =p" = Pgrs(X = n).

l=n

Similarly, for the probability of obtaining a sample consisting of only the adults,

Prss(X =0) = ﬁ {ﬂf( : )p‘q""‘}

1=1 \l=0

0
< ) ( i )p‘q“"‘ =q",

=90
or Pres(X=0) < Pgrs(X=0).

The above observation that RSS has a lower probability of producing the extreme observa-
tions is also true for sampling from an arbitrary continuous population as shown below.
Let F;)(y) denote the cumulative distribution function (CDF) of the r** order statistic
in a simple random sample of size n from a population given by the cumulative distribution
function F(y). As noted by Dell and Clutter (1972) [see, equation(1), p. 547], we have

Let Y(,) denote the maximum from an SRS of size n. Then
1 & "
P{Yw<s} = (FOI={13 Ro0)]
r=1

s H F(r) (y)
=1

Therefore, if we let Y(,)) denote the maximum from a ranked set sample of size n, then

P{¥ <} =[] Fo® < P{¥im <3}. 26

=]
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The inequality
P{Yy <y} < P{¥ay < v} (2.7)
involving the minimums, follows by a similar argument. We refer the reader to Theorem

2.8 of David (1981) for a general result of this type for the r*® order statistic.

Now, we derive a general expression for the probability function of the number of calves
in a ranked set sample of size n. Let X(;) be the indicator variable defined as follows:

Xy 1 if the i-th largest in the i-th SRS is a calf

0 otherwise

Since, each X;) is based on an independent SRS, we have thaf

Prss {Xu) = (1) "y K(n) = -'ﬂ(n)} = EPRSS {X(i) = “(i)}

Now, for each i, it can be shown that

PRSS{X(£)=1}‘= i (?)P(l " =m.

I=n—it1l

Therefore,
PRSS {X(i) = :L‘(,-)} — ﬂir'(i) (1 — wi)l"’(‘i, 9.‘:(;) =(Qorl. (2.9)

Thus, by summing over all possible combinations of z(;) 8 such that there are exactly k ones
and n — k zeros, we get

Prss(X=k)= ¥ ﬁ 7O (1 — m;) 120, (2.10)

XESE 1=1

where S = {(2‘:(1),3:(2), S :!7(“)) P2yt Tyt By = k}. Note that the number of
terms in the above summation grows rather rapidly as the sample size increases. However,
RSS is not recommended when n is large because of the practical difficulties of ranking a
large number of sampling units (elephants in the above example).

There is an easily implemented algorithm for computing Prgg(X = k) for a given n, k
and p. We start by computing

. Pﬂgs(x':— 0) = ﬁ(l — ‘Il'g),,
=1

and Prgs (X n) H s
For 0 < k < n, use the recm-sionl

Prss(X = k) = |
P {Zn—l X(t) k- 1} P{x(n) —-— 1} + P {Zn—l X(,) - k} P{(X(n) = 0} .

Note that 7; is a binomial tail probability and is readily available. Tables of probabilities
Prss(X = k) can be constructed using the above recursion algorithm. Readers can obtain
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from the authors an Splus code which implements this algorithm. To give a flavor of the
results, computations are reported for a few combinations of n and p in the Appendix

(p=0.1,0.2,0.3,0.4 and 0.5, and n=2,3, and 4). Upon examining the results in Table 1 of
the Appendix, we make the following remarks.

Remark 1. The calculated probabilities of extreme values are smaller under RSS than
in SRS. For every n and p there seems to exist an interval (I, ) such that for I < k< u

Prgs(X = k) > Psps(X = k)
and for k outside the interval (I, u),
Prss(X = k) < Psrs(X = k)

Remark 2. In analyzing environmental data one often has to deal with measurements
that are below detection limits (BDL). Suppose M denotes the detection limit and let p
denote the probability that a randomly chosen sample leads to a measurement below the
detection limit. Let X denote the number of BDL observations in a sample of size n.
Then, under the SRS scheme, X has a Binomial distribution and under the RSS scheme,
distribution of X is given by equation (11). It seems evident from Table 1 in the Appendix
and extensive calculations not reported here that extreme values of X outside an interval
(l,u) as in Remark 1, have lower probabilities under RSS.

We conclude this section by giving a general result relating the tail probabilities under
the two sampling schemes. By applying a result of Hoeffding (1956) [also see Marshall
and Olkin (1979, page 375)], one can obtain the following inequality involving the tail
probabilities under the two sampling schemes.

Prss(X < k)
Prss(X < k)

Psps(X < k) if 0<k<np-1,
Psps(X < k) if np < k < n.

VA

3 Inference for the Bernoulli Parameter

In the previous section, we discussed sampling from a dichotomous population in order to
demonstrate that under RSS, there is a higher probability of obtaining more representative
samples than under SRS. We also note that the discussion leads to an interesting analogue
of the binomial probability mass function where the successive trials are independent but
the associated success probabilities are not identical. It is natural to investigate the usual
inference problems such as estimation of p and its higher powers under the RSS scheme,
and compare with the well known results under SRS. In this section we present these results
mainly to point out that some of these results are somewhat different from those obtained
in the case of sampling from a continuous population. This sheds further light on the nature
of RSS. |

~ Suppose the characteristic of interest is the proportion (p) of study area plots where
the plutonium concentration (PC) exceeds a pre-determined level (PDL) based on health
concerns. PC are measured using laboratory analyses and are expensive to obtain. However,
prevalence of americium, can be measured on the field by hand-held instruments. In this
example, the Americium Concentrations (AC) can be used to rank the sampling units (study
area plots) and soil samples from the appropriate subset may be sent to the laboratory for
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determining the PC. Let E,, B, ..., E, constitute an SRS of size n and let X; = 1 if PC
exceeds PDL in field sample F; and X; = 0, otherwise. Let T,, denote the sample sum.
Then the “natural” estimator of p is given by:

p="T,/n="T, say. - (3.1)

On the other hand, for applicability of the RSS of size n, we sample n sets of n study area
plots {(E;1, Ei2,...,Ein)} and we order these study area plots in ascending order of their
AC values measured by the hand held instrument. From the i-th SRS, we identify the i-th

largest among the ordered plots and measure its PC value by a laboratory analysis. Then
we let X;,; = 1 if the PC value exceeds PDL in this study area plot and Xj.; = 0 otherwise.

Then {X1:1,Xa:2,...,Xnin} is the RSS of size n and an unbiased estimator of p is given by:
ﬁ - Z.X;:i/‘n = Tﬂ/n, say

With an SRS data, we are able to provide MVUE’s of all powers of p up to and including
p" and these are based on factorial moments of T;;,. Likewise, based on RSS data, we can
easily provide unigque unbiased estimators of all powers of p up to and including p®. These
are just linear in the observations!! Specifically, using factorial notations, we deduce that

E(TP /n®) = p* = B[} {i® — (i - )@} x0) /n®).

The second part in the above equation along with completeness property of the Family of
Binomial Distributions ensures that the linear combination of X;.;’s is unique for every
k=1,2,...,n. Further, it turns out that for k=1,2,...,n

Var(#)|RSS(n) = S [{(i — )® — iY2 R, B/ {n®))2, (3.2)

where Fj., = P[T, < j] and Fj., =1 — Fj,,5 =0,1,...,n — 1. Also, the above expression
18 symmetric in p about 0.5. It would be interesting to check if, for all k, it is concave in p
as well. Towards this, Li(1997) did some numerical computations for the case of k =1 and
the results are quite encouraging. An analytical proof has so far eluded us.

We now address the problem of variance comparison between SRS and RSS for unbiased
estimation of p*,k =1,2,3,---. It is well known that for all n > 1, uniformly in p,

Varpss(p) < Vargrs(p)

with strict inequality for all n > 2. For k = 2 as well, we have verified that for all n > 2
and for all p,

Vargss(#?) € Vargrs(5?).

with strict inequality for n > 2. However, it is not true uniformly in » for higher values of
k.

We conclude the article with .a. remark on the non-negativity of the estimator based on
RSS. With an SRS sample and n > 2, it is well-known that

V() =X(n-X)/n*n-1).

Thus the variance estimate based on SRS data is trivially non-negative. For the RSS data,
however, we observe that

E(Tr:f) = E[(Z Xi:i)2] = Z Fi1m+ Z Z E;l:nﬁ}'—lzn
= E Fi-lmﬁ'i—’l:n + (Z Fi-l:n)2 = Z ﬂ—lm-ﬁ'—lm +- (ﬂp)2
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Therefore,
V[T, /n) = [T3 — n*(3%))/n’
T3 - 2n{d) (i - )Xis/(n—1)})/n*

It now turns out that this variance estimate is rarely non-negativel! For example, when
T, =k, let us set

Xg;z — X3:3 = e = Xk+1:k+1 = 1 & all other Xi:i = (.

V(p)

Then the expression in (11) is non-negative iff

K > 2n[k(k +1)/2)/(n — 1)
iff (n — 1)k > n(k + 1) which is a contradiction!!

As a matter of fact, only when
X11=Xo=X33=...=Xx =1

we have non-negativity. To overcome this difficulty, one can use p in place of p in the
expression for V(p). Because of concavity of the variance as a function of p, it turns out
that the variance estimator thus formed is positively biased and trivially positive-valued.
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Appendix

Table 1. Probability distribution of number of calves

(Italics: RSS, Roman: SRS)

_Sample size k

2 0
2
3 0
3
4 0
4
5 0
5]

Prop ortion of calves in the herd

0.1
0.8100
0.8019
0.0100

0.0019

0.7290
0.7079
0.0010

0.0000

0.6561
0.6194
0.0001
0.0000

0.5805
0.5875
0.0001
0.0000

0.2
0.6400
0.6144
0.0400
0.0144

0.5120
0.4551
0.0080
0.0004

0.4096

- 0.8259

0.0016
0.0000

0.3277
0.2260
0.0003
0.0000

0.3
0.4900
0.4459
0.0900
0.0459

0.3430
0.2617

0.0270
0.0038

0.2401
0.1422
0.0081
0.0002

0.1681
0.0718
0.0024
0.0000

0.4
0.3600
0.8024
0.1600
0.1024

0.2160
0.1310

0.0640
0.0179

0.1296
0.0493
0.0256
0.0021

0.0778
0.0162
0.0102
0.0002

0.5
0.2500
0.1875
0.2500
0.1875

0.1250
0.0547
0.1250
0.0547

0.0625
0.0126
0.0625
0.0126

0.0313
0.0023
0.0313
0.0028
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