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Abstract

Following Chatterjee and Chatterjee (Amer. Journal of Math. and
Mgmt. Sciences, 1987, 7T, 271-295), we address the problem of unbi-
ased estimation of the success probability P of a coin in a fized number
(n) of throws when the entire coin-tossing experiment is performed un-
der supervision of three observers. The observers are supposed to have
noted different segments of the results of the tosses, each one not know-
ing what the other two have observed. We investigate the problem of
most efficient unbiased estimation of P and related issue using the Best
Linear Unbiased Estimator (BLUE) based on the summary statistics
provided by the observers.
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1. Introduction

The key reference to this article is Chatterjee & Chatterjee (1987).
Henceforth we abbreviate it as C'C. This nicely written and highly in-
teresting paper is bound to provoke thoughts to a serious reader on
certain problems and issues discussed in it.

We address one such problem viz., Combining Expert Estimates
Which are Dependent. CC described a possible model for exhibiting
this dependence in relation to a coin - tossing experiment.

The problem is to estimate the success probability (P) for a coin
and several observers have noted different segments of the tosses - each
one NOT knowing what others have observed. The ith observer reports
the summary statistics : r; (the number of.heads) and n; (the number
of tosses), 1 <1 <k. .

In CC'the kind of dependence studied corresponds to the case where
there are 7n common tosses among all the observers. This fact is known
only to the planner and not to the observers. Furthermore, no specific
information as to the outcome of these tosses is known even to the
planner. Under this scenario, CC derived an expression for the BLUE
of P based on the outcomes as reported by the individual observers.

CC derived the following conditions on the plan parameters (n;, m)
in order to ensure non-negativity while three observers are in action

(k = 3):
n1 + n2 + n3 < minfnanz(2m + 1), n3n1(2m + n2), nyn2(2m +n3)]/1n]7:‘)"

It appears that there is a slight mistake in their computation. The
conditions should actually read as (see Appendix for details):

nanz(2m — ny) < m?(ng + ng — nl)
ning(2m — n3) < m?(ng + ny — n3)
mns(2m — ng) < m*(ny + ng — ny)° (1.2)

However, the conclusions drawn in Table 1.of CC in regard to the
signs of the coefficients in the BLUE seem to be valid.

In a general scenario with k& observers, it is easy to see that the
individual estimates of P, namely, 7;/n;, are dependent and that the
dispersion matrix of the estimates is given by X = P(1 — P)W where
the elements w;; of the matrix W can be written as

wij = Ny /nin; (1.3)

where n;; is the number of common tosses shared by the ith and jth
observers.
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It is also well known that the BLUFE of P corresponds to the co-
efficients of the individual estimators determined as W~11/1'W~11.
This, however, does not ensure non-negativity of the coefficents of the

individual estimators!
The algebraic complexity of the problems of (z) obtaining an explicit

expression of the BLUE of P, and (#7) examining the nonnegativity of
the coefficients of the BLUE in the general case of & observers is quite
deep since there are (2 — 1) possible cross-sectional studies.

In this paper we take up this investigation in the case of three
observers while they are involved in the most general form of depen-

dence with the following plan parameters: (n,, ny, ns, ny2, n13, N23, N123)-
Among other things, we examine the conditions on the plan parameters

in order to extract maximum possible information on the parameter P,
subject to a given total number of tosses n. It turns out that it is
indeed possible to attain the highest possible precision (least possible

variance) in a variety of situations.
We conclude with some further open problems.

2. BLUE of P and Variance Inequality

Here we discuss the details of the derivation of the BLUE of P and
establish the main variance inequality.

Writea =n3y, b=n13,c =143, d = N2, € = Ng3, f = Na3z, g = Nya3.
Define

n = a+bt-c+d+e+f+g, a = a+b+ctg, B = b+d+e+g, v = c+e-|-( f+
| 2.1
With the above notations, it is easy to verify that the three individ-
ual estimators of P are given by P, = /a, P, =15/8, and P; = 13/,
where 7, 7, and r3 are the observed outcomes of the three observers.
The dispersion matrix ¥ = (0;;) of these estimators obviously has the

following elements (apart from the multiplier P(1 — P)): oy; = 1/,
012 = (b+ g9)/afB, o3 = (c+g)/ay, 022 = 1/8, 023 = (e + 9)/ By
and o33 = 1/7. Note that in order for X to be pd, it is necessary that
g < n. Moreover, trivially, we must have: a > 0, 8 > 0, v > 0 and
furthermore, n > a +d+ f.

It 1s easy to show that

afy +2(b+ g)(c+ g)(e + g) — afle + g)* — B(c+ 9)% — y(b+ g)?
02 3272
(2.2)

We denote the numerator of (2.2) by A. Write =} = (a;;)/|Z|.
Routine calculations yield

|Z[ =

By — (e +g)?
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(c+g)(e+g)— (b+g)y

=
Pt
|
il

afy?
g, = Ltoletg)—(ctg)b
af*y
ay — (c+g)?
Q22 = a2
v = Lt)ctd)—alety)
: a?fy-
aff — (b+ g)?
033 s -——-ag—ﬁ—ﬁ-———)—— (2-3)
It is clear that
1's-17 = Q11 + Qoo + a3z + 2a;12 + 2013 + 2093 (2'4)

||
The numerator B of (2.4) simplifies to

B = [afy(a+B+7)—a’(e+9)’ - B (c+9)* - v’ (b+9)
+2a(c + g)(e + g) + 2av(b + g)(e + g) + 287v(b + g)(c + g)
~2afv(b + c + e + 3g)] /o’ 5%~ (2.5)

Using (2.2) and (2.5), we can compute the value of 1'S-11. It is
easy to verify that, as expected, this quantity is a symmetric function

of (a,d, f) on one side and of (b,c,e) on the other. Recall that the
variance of the BLUE of P is

1
1’211

We claim that the following is true. Recall that > 0, 8 > 0,
v > 0, and X is pd.

Theorem 2.1. var(ﬁuﬂe) > Q%F_'l’ with equality if and only if
eithern=q,orn=0,orn=7, unlessn=a+d+ f.

Proof. See Appendix.

Remark 2.1. It is indeed quite interesting to clearly point out the
practical significane of the conditions for equality as mentioned above.
The condition n = o indicates that the first observer makes a note of
the outcomes of all the n tosses. From (2.1), another implication of this
‘condition is that d = e = f = 0 which in turn implies 8 = b+ ¢ and

var (Pblue) =. (26)
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v = ¢ + ¢. In other words, when the first observer notes the outcomes
of all the tosses, observer 2 notes the results of outcomes in conjunction
with observer 1 alone (b > 0), or in conjunction with both the observers
1 and 3 (g > 0). Of course, a similar interpretation holds in respect of

observer 3 and in the other two cases (n = 8 and n = ) as well.

Appendix A
Proof of (1.2)

For k =3, writea=n,—m, b =ns—m, ¢ = nz3—m. It is easy to show

that the dispersion matrix X of (f’l, 132, 133)’ , apart from P(1 — P), can

be written as .
X =D+ ao (A.1)

where '
D = diag[a/(a + m)?, b/ (b+m)?, ¢/(c+m)?] (A.2)

 a=[Vm/la+m),vm/b+m),va/c+m]  (A3)
Recalling that (see Rao, 1973)

and

' Dlao/D™!
-1 _ p-1_
. 14 oDl O
we readily get |
1 . D ladD"'1
14 __ p-11 _
‘ 1 —P 1  +oD'a (A.5)
Straightforward computations yield
D1 = [(a+m)*/a,(b+m)?/b, (c+m)?/]
/D11 = \[n—%[a+m 3 b+m N c+m]
AT ‘
o/ D7'a = m[-+ T+ -]
a b ¢
Dla = ymEiT M et my (A.6)

The condition that the first component of ¥~'1 is nonnegative can
be expressed as

(0+m)? | mEgmiem 4 bR 4 o]

o 2 T iemI+l il (A7)
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‘The above condition in turn simplifies to

abc> m(bc — ab — ac) (A.8)
‘which is equivalent to
m?(ng + 3 — 1) 2 nana(2m — ny) (A.9)

Appendix B
Proof of Theorem 2.1

It is enough to show that 4 > 1 which is the same as proving

C =nA— B > 0. There are many steps in the proof. We show that C,
which can be expressed as a polynomial in g of degree four, is essentially
linear in g with nonnegative coefficients!

Step 1. We first simplify C as

C=(a+b+c+d+e+ f+g)lafy+2(b+g)(c+g)(e+g)
—ale+ g)? - Bc+ g)* — (b + 9)°) — afy(a+ B+ )
+a?(e+ 9)% + B*(c+ 9)2 + V(b + 9)® + 20Bv(b + ¢ + e + 3g)
—-206(c+ g)(e + g) — 2av(b+ g)(e + g)
~2Bv(b+ g)(c+ g) (B.1)

The coeflicient of afy in the above can be simplified as

a+b+c+d+e+f+g
—-a—-b—-c—g—-b—-d—e—g—c—e—~f—g
+2b 4 2¢ + 2e + 6g
=b+c+e+4g (B.2)

Thus, C can be written as

C = terml+term2 —term3 —termAd — term5 — term6 — term?7 — tt(zgr;s
where term 1 (= terms involving af7) is given by |

terml = (b+c+e+4g)(a+b+c+g)(b+d+e+g)
X(c+e+ f+9)
=4¢* + P[b+c+e)+4(a+b+c)+4(b+d+e)
+4(c+ e+ f)]
+@°[(b+c+e){(a+b+c)+(b+d+e)+(c+e+f)}
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+4{(a+b+c)(b+d+ e)+(a+b+c)(c+e+f)

+(b+d+e)(c+e+ f)}]
+g9[(0+c+e){(a+b+c)b+d+e)+(a+b+c)(c+e+ f)

+(b+d+e)ct+e+f)}+4(a+b+c)(b+d+e)c+e+ f)]
+(b+c+e)(a+b+c)(b+d+e)(c+e+ f)

= 49* + g°[4a + 4d + 4f + 9b + 9c + 9¢]
+9°[(b+c+e)(a+20+2c+d+2e+ f)+4{(a+b+c)(b+d+e)
+(a+b+c)c+e+ f)+(b+d+e)(c+e+ f)}]
+gl(0+c+e){la+b+c)b+d+e)+(a+b+c)(c+e+ f)
+(b+d+e)c+e+ )} +4(a+b+c)(b+d+e)(c+e+ f)]
+(b+c+e)(a+b+c)(b+d+e)c+e+ f) (B.4)

term 2 (= terms independent of o, £, ) is given by

term2 =2(b+g)(c+g)le+g)(a+b+c+d+e+ f+y)
2" +2¢°[(a +b+c+d+e+ f)+ (b+c+e)]
+2¢°[(b+c+e)(a+b+c+d+e+ f) + (bc + be + ce)]
+2g/(bc + be + ce)(a + b+ c+ d+ e+ f) + bee]

+2bce(a +b+c+d+e+ f)

29" + 2¢°[a + d + f + 2b + 2¢c + 2]
+2g°[(b+c+e)(a+b+c+d+e+ f) + (bc + be + ce))
+2g((bc + be + ce)(a + b+ c+d + e+ f) + bee]
+2bce(a+b+c+d+e+ f) (B.5)

term 3 (= terms involving o, o?) is given by

(a+b+c+9)(d+e+f)(ez+239+gz)

g’ l[d+e+ f]l+ g*[(a + b+ c+ 2¢)(d+ e+ f)]
+g[{e® +2e(a+b+c)}(d+e+ f)] .
+e®(a+b+c)(d+e+ f) (B.6)

term 4 (= terms involving g, §°) is given by

termd = (b+d+e+g)(a+c+f)(+2c9+9°)
Plat+c+ fl+g*((0+d+e+2c)((a+c+ f)]
+gl{c® +2c(b+d +e)}(a + c+ f)]
+c*(b+d+e)(a+c+ f) (B.7)

termd
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term 5 (= terms involving v, 4?) is given by

termd

(c+e+ f+g)(a+ b+ d)(b* + 2bg + ¢?)

= gla+b+dl+¢*[(2b+c+e+ f)(a+b+d)
+g[{* + 2b(c + e+ f)}(a + b+ d)]
+b%(a+b+d)(c+e+ f) (B.8)

term 6 (= terms involving af) is given by

termb = 2(c+g)(e+g)(a+b+c+g)(b+d+e+g)
29" +2¢°[c+e+a+b+c+b+d+ e
+2¢°[ce+ (a+b+c)(b+d+ e) +(ct+e)a+b+c+b+d+e)

+2glce(a+b+c+b+d+e)+(c+e)(a+b+c)(b+d+e)
+2[ce(a + b+ c)(b+ d+ e)]

2g4+2g3[a+26+2c+d+2e]
+2¢%[ce+ (@ +b+c)(b+d+e) + (c+e)fa+2b+c+d+e)

+2g[ce(a+2b+c+d+e)+ (c+e)(a+b+c)(b+d+e)
+2[ce(a + b+ c)(b+ d + e)] (B.9)

term 7 (= terms involving ay) is given by

term7 =2(b+g)(e+g)(a+b+c+g)(c+e+ f+g)
29" +2¢°b+e+a+b+c+c+e+ f] o
+2¢°be+ (a+b+c)(c+e+ )+ (b+e)(a+b+c+c+e+f)

+2glbe(a +b+c+c+e+ f)+ (b+ e)(a+b+c)(c+e+ f)
+2be(a +b+c)(c+ e+ f)

2g* +2¢°[a + 2b + 2c + 2¢e + f]
+2g°lbe + (@ +b+c)(c+e+ f)+ (b+e)(a+b+2c+e+ f)]

+2glbe(a+b+2c+e+ f)+ (b+e)(a+b+c)(c+e+ f)]
+2be(a + b+ c)(c + e + f) (B.10)

term 8 (= terms involving fBv) is given by

term8 = 2(b+ g)(c+ g)(b+d+e+g)lc+e+ f+g)
= 2g4+2gs[b+c+b+d+e+c+e+f]

+2¢°lbc+ (b+d+e)(c+e+ f) + (b+c)b+d+e+c+e+ f)
+2g[bc(b+d+e+c+e+f)+(b+c)(b+d+3)(c+e+f)]
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+2bc(b+d +e)(c+e+ f)
= 29" +2¢°[2b+ 2¢c+ d + 2e + f]

+2¢°bc + (b+d+e)(c+e+ f) + (b+)(b+c+d+ 2+ f)]
+2g[bc(b+c+d+2e+ f) + (b+c)(b+d +e)(c+ e+ f))]
+2bc(b+d+e)(c+e+ f) (B.11)

We now search for the coefficients of various powers of g in C. Our
choice of the factor g rather than the others is a matter of convenience
along with the fact that g is the odd term! All other factors appear in
a symmetric fashion (as mentioned after (2.5)).

Step 2. Coefficient of ¢g* in C = 0.

Step 3. Coefficient of ¢° in C = 0 because the coefficient of each
factor a, b, ¢, d, e and f is 0.

Step 4. To determine the coeflicient of g2, first note that this is a
quadratic in the rest of the factors (a — f). We now separata this into
two parts: terms involving a and those independent of a. For the first
type, we simplify the coeflicients of terms like ab, ac,....,af, and each
of the coefficients is 0. The various terms independent of a are now
collected and arranged in different groups. First, terms involving b,
be, bd, be and bf are simplified, resulting in 0. Next, terms involving
c¢?, cd, ce and cf are simplified, and again these are all 0. Finally, we
have terms involving e?, de, ef and df. All these are 0.

Hence the coefficient of g2 is 0.

Step 5. We now determine the coeflicient of g. Clearly this is a
cubic in the factors (a,---, f). We start by collecting terms which are
various powers of b such as b, b%, b, and lastly terms independent of b.

Coefficient of b° = 0.

Coefficient of b* = 0.

Coefficient of b involves many terms. We arrange them in powers of

Coefficient of ¢ = 0.

Coefficient of ¢ simplifies tod + e+ f.

Constant terms simplify to a(d + e + f) + f(d + e).

Finally, the terms independent of b are simplified as follows. We ex-'

p;:ess them in powers of c such as c3, ¢2, c and lastly terms independent
of c.

Coefficient of ¢3 = 0.

Coefficient of ¢2 = 0.

Coefficient of ¢ has many terms. We express them in powers of d
and get the coefficient of d° as 0, coefficient of d as a+e+ f, and finally
the term independent of d as a(e + f). Thus, the total contribution
from this part is: cd(a + e + f) + ca(e + f).
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We now collect and simplify terms which do not involve ¢. There
are many terms here, and we express them in powers of e such as e?,

2, e and lastly terms independent of e.
Coefficient of e = 0.
Coefficient of €2 =0.
Coefficient of e simplifies to ad + af + df.

Terms independent of e simplify to 4adf.
Collecting all the above terms, we get the coeflicient 0, of g as

6, = be(d+e+f)+ba(d+e+ f)+bf(d+e)+ acle + f)
+cd(a + e+ f) + e(ad + af + df) + 4adf (B.12)

Step 6. We now determine the terms in C which are independent
of g. We do this by collecting terms in powers of a.
() Coefficient of a* = 0.

(i) Coeflicient of a = (b+c+e)(b+d+e)(c+e+ f) + 2bce — *(d+

e+ f)—cA(b+d+e)—b(c+e+ f)—2ce(b+ d+e) —2be(c+ e+ f).
In the above,
coefficient of ¥ = 0.

coefficient of b = (c+e+ f)(c+d+2e)+2ce—c?—2ce—2e(c+e+f) =
cd + ce + cf + de + df.

term independent of b = f(cd + ce + de).
(i27) terms independent of a: we simplify them in powers of b.

coefficient of b° = 0.
coefficient of b = 0.
coeflicient of b = cde + cdf + cef.
term independent of b = cdef.
) Combining all the above terms, we get d; (= terms independent of
g) as

02 = ab(cd+ce+cf +de+df) + af(dc+ de + ce)

+b(cde + def + cef) + cdef (B.13)
Thus, C eventually simplifies to

which is > 0. This completes the proof of the first part of the Theorem.

For the conditions for equality, we carefully examine the quantities
d; and d2. For C to be 0, we must have both 951 and 05 to be 0. It 18
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not difficult to verify that, under the conditions implying nonsingularity
of ¥, this happens only when one of the conditions mentioned in the
Theorem holds, and this is also sufficient. Incidentally, we exclude the
possibility of n = a +d + f since this would totally nullify the spirit of
constrained supervision! This completes the proof of the Theorem.

3. Concluding Remarks

A simple proof of Theorem 3.1 (along with a study of ‘=’) has so
far eluded us. For k > 3 supervisors, the algebra will be extremely
cumbersome and a direct algebraic proof of an appropriate version of
Theorem 2.1 would be almost impossible. Cost consideration (on the
part of the supervisors) and variance estimation would be other inter-
esting directions for future study. '
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