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Abstract

In this paper we consider the optimal prediction of finite population total and variance under location
model with measurement errors. Bayes predictors of population total and variance under a class of priors
have been derived and a minimax predictor for population total has been obtained. Under regression
superpopulation model with measurement errors, an optimal predictor of population total has been
derived. A Bayesian approach for this model shows the linear regression predictor to be a Bayes predictor.
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1. Introduction

In practical sample survey situations the true values of the variables are rarely
observed but values mixed with measurement errors, We consider, in this paper,
problems of estimation of finite population total and variance when the survey data
contain observations mixed with random measurement errors.

Consider a finite population % of a known number N of identifiable units labelled
L,...,i,...,N. Associated with i is a value y; of a study variable y. We assume that y;
cannot be observed correctly but a different value Y; which is mixed with measure-
ment errors is observed.

We also assume that the true value y; in the finite population is actually a realisa-
tion of a random variable %;, the vector % =(%, ..., %y) having a joint distribution
model {. However, both y; and #; are not observable and we cannot make any
distinction between them. Our problem is to predict the population total T=y"  y;
or the population variance SZ=1/(N—1)¥"_ (y;— )% y=T/N by drawing a sample

i=1
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s according to a sampling design p with selection probability p(s) and observing the
data ¥,=(i, Y;; ies). A combination of a sampling design and a predictor is called
a sampling strategy. We shall often confine to the class p, of sampling designs with
fixed size n, p,={p: p(s)>0=>n(s)=n}, n(s) denoting the size of the sample s.

In Section 2 we obtain the optimal strategies for predicting 7 or j and S? under the
simple location model with measurement errors. Bayes predictor of 7 under a class of
priors along with their Bayes risks is obtained. A minimax predictor of T has been
derived. A Bayes predictor of S7 has also been obtained.

In Section 3 we obtain an optimal strategy for T under simple regression model
with measurement errors in both variables. We have obtained the Bayes predictor of
T under this model when only the observations on the regressor variable are mixed
with errors.

A general treatment for inference problem under measurement error models has
been considered in Fuller (1987, 1989). Prediction in finite population under measure-
ment error models has been considered in Bolfarine (1991).

2. The location model with measurement error

Consider the simple location model with measurement errors
yi=ute, E@)=0, E(e})=0c?, E(ee)=0, (i#i), (1a)
Yi=yi+u;, E(u)=0, E@?)=c2, E(;u})=0, E(eu;)=0
Lj=1,...,N, (1b)

where u, a2 (>0), 62 (>0) are constants. Note that e;’s are random variables due to
superpopulation distribution of %, whereas u;’s are due to measurement errors. We
shall use the same symbols E, ¥ and C to denote expectation, variance and covariance
respectively, with respect to joint or marginal distribution of e; and u;.

The models (1a) and (1b) are the simple location error-in-variable superpopulation
models and have been considered by Bolfarine (1991). In Section 2.1 we consider the
optimal strategies for predicting j and S} under this model. Section 2.2 derives Bayes
predictor for T and S? under a class of priors. A minimax predictor of T is also
obtained.

2.1.

Consider the class of linear predictors

e(sﬂ Ys)zbs+ Z bks Yks (2)

kes

where by, by, are constants not depending on Y-values.
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A predictor g is said to be a design-model (pm-junbiased predictor of 8(y) (or
pm-unbiased estimator of E(6(y)) where y=(yy,..., yy)) if

E,E(g(s, Yy))=E(0(y) (3)

when E, and V, denote, respectively, expectation and variance with respect to the
sampling design p. Hence, e(s, ¥;) will be pm-unbiased for y iff

EpE <bs+ Z bkx Yk>=E()7)=,u’

1e. iff '
E,(b,)=0, (4a)
E,,(Z bks)=1. (4b)
kes

Following the usual variance-minimisation criterion, a predictor g* wili be said to be
optimal in a class of predictors G for predicting 6(y) for a fixed p, if

E,E(g*~0)*<E,E(g—0)* 5)

for all geG.

To find an optimal pm-unbiased predictor of y, we consider the following theorem
on UMVU-estimation (Rao, 1973). Let C denote a class of pm-unbiased estimators of
7 and C, the corresponding class of pm-unbiased estimators of zero.

Theorem 1. A predictor g* in C is optimal for = iff for any fin Cq, E,E(g*f)=0.
From the above theorem, Theorem 2 readily follows.

Theorem 2. Under models (1a) and (1b), optimal pm-unbiased predictor of y in the class
of all linear pm-unbiased predictors, where pep,, is given by Y,. Again any pep, is
optimal for using Y.

If ¥~ denotes the variance operator with respect to models (1a) and (1b) and sampling
design p,
V (X~ 9)=EV(Y,~ )+ V,E(Y,— )
=E,V(Y,~7)
=E,[V(Y)+V(5)—2C(¥,— )]

t 1\ , ol
—<?1_N> O, +7. (6)

Equation (6) actually gives the value of E(Y,— 7)? which is the risk corresponding to
Y;, assuming a squared-error loss function.
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Theorem 2 states that any FS(n—) design including a purposive sampling design
(p(s*)=1 for s*, a specified set of n units) is optimal for predicting y. However, for
purpose of robustness under model failures one should consider (as shown in a differ-
ent context by Godambe and Thompson (1977)) a probability sampling design pep,
along with Y.

We now consider optimal prediction of S7. For this we shall confine to the class of
pm-unbiased quadratic predictors

eq(s, )/s)zbs"'zbksylf'*_ Z bkk'chY}',
kes k#k’'es

where by, by by, are suitable constants that do not depend on ¥,.

Assumption A. We assume that y;’s are identically distributed with finite fourth-order
moments and that the conditional distributions of Y;, given y;, are identical with finite
moments of fourth order.

Under these assumptions, all moments of the joint distribution of ¥;, ¥}, 1}, etc., are
constants, depending only on the order of moments.
By virtue of Theorem 1 the following result can easily be verified.

Theorem 3. Under models (1a) and (1b) and under Assumption A
1 _
Y,—Y)?
(n_ 1) IZ:S ( * )

is an optimal predictor of S? in the class of all pm-unbiased quadratic predictors for any
given pep,. Again any pep, is optimal for using si.

si=

2.2.

We now consider Bayes prediction of T under different priors for (¢,52). E and
V will denote throughout expectation and variance with respect to different prior
distributions, posterior distributions, etc.

2.2.1

Assume that 2,02 are known. As the distribution of a large number of variables
including socioeconomic variables is (at least approximately) normal in large sample,
we consider a normal prior N (0, 6?) for u. On the assumption that the errors e;, u; are
independent normal variables, the likelihood of ¥, given p, is

L(Yslu)ocew[—%(i—u)z], (7)

where
6’=0cl+0l (8)
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The posterior distribution of p is, therefore,

2092
N< nY,0? o20 ) o)

nf2+o%’ nh*+o0?

Again, likelihood of Y, given y,=(y;, i€s), is

1
L(Y|y)ocexp| —5— 2. (Yi~y)* |- (10)
26u ies
Hence, posterior distributions of y;’s, given (Y, u), are independent:
Yioi+pay alos)
yl~N< 0'2# ’ 0_2 (I¢S)9 (11)

yi~N(p03) (igs).

We shall assume throughout a squared-error loss function. Therefore, Bayes predictor

of Tis
N
foer (§ )i (3,1
i i=1

_[o2 (N—n)g2+Ng? .
=anI:Z—2— (—&Z—(’HW] (using (9) and (11)). (12)

=

I
-

The variance of the posterior distribution of T is independent of ¥,. Hence, Bayes risk
of Ty is the posterior variance of T and is given by

V(T Y)=E{V(T|u, Y)} + V{E(T|p, ¥)| ¥}

nolol ne2\? o262
= +<N‘")“3+(N“?> prENp
=r(Tp) (say). (13)
As 68— o0,
” N(N— NZ
rg(TB)ﬂ—(—n—n)a§+To,f
=rqy (say). (14)

Now we consider two theorems connecting Bayes estimate and minimax risk estimate.

Theorem 4 (Lehmann, 1950). If {A,} is a sequence of a priori probability distributions,
{r.} the sequence of associated Bayes risks and if r,—r as n— oo, and if there exists some
predictor & for which the risk R(8, T)=E(5— T)? <r, whatever be the value of T, then
0 is a minimax predictor.

Theorem 5 (Aggarwal, 1959). If § and r are a minimax procedure and minimax risk,
respectively, assuming that the observations Y, follow any probability distributions
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weQ* and if Q% c Q is a space of distributions for which the risk associated with § does
not exceed r, then § is a minimax procedure and r the minimax risk for all distributions of
Y, in Q.

It is seen from (6) that the risk of the predictor NY, is given by ro. Hence, NY, is
a minimax predictor of 7" under the assumption of normality of the distribution of e;’s
and u;’s as considered above. Again, since expression (6) was obtained without any
assumption about the form of the distribution, the predictor N Y, is minimax in the
general class of distributions (not necessarily normal) which satisfy models (1a) and
(1b). Hence, we have the following theorem.

Theorem 6. The predictor NY, is a minimax predictor of T under the general class of
prior distributions of errors (e;’s and u;’s) which satisfy models (1a) and (1b).

2.2.2.

We now assume t=1/c2 is unknown. Also assume that 1/gZ=kr, where k is
a known positive constant.

If we assume a normal-gamma prior for (4,7) (e.g. Broemeling, 1985) with para-
meters (v, o, ),

P(p,tyoct*” 2 exp {—% [(u—V)2+2/3]},

ueR, 1>0, >0, >0, veR,, (15)

marginal posterior distribution of p is a Student’s ¢-distribution with (n+ 2a) d.f. and
posterior mean and variance given, respectively,

v+ngY,
E(u/Y,)= , 16
W)= (162)
VAL
28+qY, Yi2+v2_(_vjﬂ_5)_
LI A —— (ot na) (16b)
HIEI= (1 +nq)(n+22) ’
where g=k/(k+1). It is assumed that n> 1.
Marginal posterior distribution of 7 is a gamma with parameters
*=n+2rx
o 7
(17

(v +nq¥,)?

ﬂ*=ﬁ+ﬁ+gz Yi- .
2 2 Y 2(1+ng)

ies
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Here Bayes predictor of T is

T%“:E {E (Z yz+z yi/.u9t’ Y;)/Ys}

_kn(N+1) o N+k(N—n)
Tk(n+1D)+1 7 k(n+1)+1

(18)

To use T4 one needs to know only the value of k=02/a2.

We note that when n=N, T\ # Y and hence T4} is not a consistent estimator in
Cochran’s sense (Cochran, 1977, p. 21). This is, however, not surprising since f’ﬁ,“ was
derived under a prior distribution for (u, 7).

2.2.3.
We now consider Jeffrey’s (1959) noninformative prior

1
P(u,r)oc;, peR,, 1>0. (19)

Bayes predictor of T is

nu+kn¥,
k+1

Posterior variance of T is

V(T/Y)=E{V(T/Y,,n,0)/Y,} + V{E(T/Y, 1,7)/Y,}

N [

_N(k+1)—nk , 2k(n—1) Nk+1) nk
k+12 Y| Thy3

_NPk+12—nk2 n-1_,
~ (it 17 sy | assuming 3

=E(T/YS)=E{ +(N— n)u/Ys}

=r(T3) (say). 1)
In particular, for k=1,
., 4N*—n?

Result (20) was also obtained by Bolfarine (1991) for non-informative prior distribu-
tion of u. We, however, considered here a non-informative prior joint distribution for
(¢, 7) and as a result the expression for posterior variance of T in (21) differed from his
expression. His result is the same as expression (6) in the present paper.
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2.24.
Under Jeffrey’s prior, (19), Bayes predictor of §7 is
Si=E(S}/Y.)
k* n(N+n—-2) 72 ks? l:k'*‘ k(N —n)

Tk+1?2 N@m-1) T k+12|" T N(N—-1)
2n—1)
N ((N—n)(k+1)+1)]. (23)

Under non-informative prior distribution of u, Bolfairne obtained a different Bayes
predictor of S (equation (5) of his (Bolfairne (1991)) paper). However, we considered
joint non-informative prior for (u,7) and as such the expression (23) depends only on
the value of k and does not require the knowledge of both ¢2 and o 2.

3. Regression model with measurement errors

We assume that, associated with each i, there is a true value x; of an auxiliary
variable x closely related to the main variable y. The values x;’s, however, cannot be
measured without error and instead some other values X,’s are observed. It is
assumed that X,,..., Xy are known fixed quantities. We assume, further, that the
unknown true value y; of the study variable y is a realisation of a random variable y;
obeying a superpopulation model such that

vi=Bo+Bixi+e:;, E(e)=0, E(e?)=0Z, E(e;-e;)=0, i#i" (24a)

Again
Xi=x;4+v;, EXiyx)=x;, V(Xi/x)=02, E(X;X/Xi,Xi)=XiXis
e (24b)
Yi=yi+u, E(Yi/y)=yi V(Yify)=ai, E(Y.Yi/viy:)=yiye,
i#i, (24c)

where e;,v;,u; are assumed to be mutually independent and Y;’s are as defined in
Section 1.

Here fo, B1,02,062% 02 are constants. Distributions of e;’s are due to superpopula-
tion model &, whereas conditional distributions of Y;(X;), given y;(x;), are due to
measurement error. The operators E, V and C will denote expectation, variance and
covariance, respectively, with respect to joint or marginal distribution of y;, X, ¥..

3.1.

We shall first consider optimal prediction of j under the models (24a)—(24c). The
following result follows from Theorem 1.
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Theorem 7. Under models (24a)—(24c) the best linear optimal pm-unbiased predictor of
v for any given pep, is

N -1

(4% Yk

e¥ = — =, (25)
! (kgl Zk) Es Zk

where

Zi=Bo+ B1xy-
Again,
E,E(ef~fo— B, %)

N B
n*+(Biol+ol+al) Y —"3 ~-Z2

1
ZN E’i 2|: k=1Zk
k=1Zk

=0, (say),

a constant dependent only on n. Hence, any pep, is an optimal sampling design for using
the optimal predictor e¥.

Note I: Inderiving e¥ it is assumed that f,, 8, are all known. However, in practice,
the parameters f,, §; will remain unknown and require to be estimated. For this we
take recourse to the following procedure.

In addition to assumptions (24a)-(24c) we assume that e;,v;,u; are
independent normal N(0,6%), N(0,02), N(0,02), respectively. Further, x;’s are as-
sumed to be independently normally distributed (u,,02) and independent of ¢;, v, u,
(i,j,l,t=1,..., N). Under these assumptions (Y;, X;) has a bivariate normal distribu-
tion with mean vector

r“Y]:[:BO_"ﬁl#x]
L“X Hx
and dispersion matrix

2.2 2 2 2
ﬁlax+6u+ae Blax
Bi03 oi+o; |

We denote by mxyx,myy,myy the sample variances of X and Y and covariances of
(X, Y), respectively. By, 8, are estimated in the following situations.

Case a. The ratio 62/c%=k,,, called the reliability ratio, is known:

Here

where
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Case b. The measurement error variance o2 is known:

5 Mxy

=_—E'
Myx—0,

Case c. The ratio (62+02)/oc2=0 is known:

~ 1
ﬁ=m [myy—Omyy +/(Myy — Omyy)* +40m3%y].
X

In all the cases f,= }_’s—ﬁi s The above derivations follow from Fuller (1987).

Note 2: In case, X;’s are known only for kes, e¥ may be replaced by

T
Zkes Z

1 H
Zkei Z_k

(26)

et =

which is a Ha’jek (1959) type predictor. The predictor e’* is pm-biased.
3.2.

We now consider Bayes prediction of 7. For simplicity, we assume that x’s can be
measured without error so that models (24a) and (24b) only are relevant. We also
assume that e;’s, u;’s are independently normally distributed with the parameters as
stated and ¢2,02 are known. Suppose also that x,, k=1,..., N, are all known
quantities.

We assume that the prior distribution of #=(f,, )" is bivariate normal with mean
b°=(b3,b?)T and precision matrix gS8° (g=k/(k+1)), where S° is a 2 x 2 positive
semidefinite matrix. The posterior distribution of # given Y;, X; where X;=[1, x;;
kes],« 2 is normal (Raiffa and Schlaifer, 1961) with

E(B/Y,, X,)=b°"=8°""(Sb+ 5°°) (27a)

and dispersion matrix

DB/Y, X)) =S i =~

—($°+8)74, (27b)
gt

where
b=[Y,—bx,,b]",

b:Z(K_ Y;)(X,—fs)/z (xi_)zs)za

n Y Xy
= s . 28
s (stk stf> 29
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Again, assuming that the model errors e;’s are independent normal, Bayes predictor
of Tis

. nk \ oo [ nXs Voo 7kY,

rr_ _ N_ B b 0 ,

T3 (N k+1)b° +(k+1+( ")XS) e
where

<

Xs= z X /(N—n), §=u—

kes

In particular, if we assume a natural conjugate prior of f#so that =5, §°=§, then
b°°=p, and T%' reduces to

Ty =NY,—b(N—n)(X,—X;)

the linear regression predictor of T.
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