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SUMMARY. The notion of mixing is extended to flows of ?r-algebras. Suppose a sto 

chastic process is mixing in some sense. Conditions under which this process, observed 

at random times, inherits mixing property are discussed. Moment inequalities for mixing flows 

of <r-algebras are obtained. Applications to random fields are studied. 

1. Introduction 

The concept of strong mixing for sequences of random variables was 

introduced by Rosenblatt (1956) to study long range dependence or indepen 
dence. This concept was generalized and several applications are discussed 

in the literature. Our aim here is not to give a survey of these results but 

to study a more general concept of mixing for <r-algebras. For a nice survey 

of mixing sequences and their properties, see Roussas and Ioannides (1987). 

In order to motivate the reason for developing the noting of mixing for 

cr-algebras (not be be confused with mixing transformations on measure spaces), 

let us consider the following problem. 

Suppose {X(t), t > 0} is a stochastic process defined on a probability 

space (Q, &, P) and the finite dimensional distributions of the process are 

determined by a parameter 6. If the process X is continuously observable 

over [0, T], asymptotic properties of maximum likelihood estimator and other 

types of estimators of d are studied for certain classes of processes by several 

authors. For instance, see Basawa and Prakasa Rao (1980), Kutoyants 

(1984), Grenander (1981) and Karr (1986). Nonparametric inference for 

stochastic processes, based on continuous realization of X over [O, T], is 

discussed in Prakasa Rao (1983). In practice, the entire sample path is not 

available and suppose the process is observed only at random time points 

{rn}. The problem is to infer about the characteristics of X based on 

{X(t?), 1 < i < n}. In general, {X(r?), i > 1} does not possess all the infor 

mation about X. For instance, if rn+1 > Tn-\-s for all n and some s > 0, then 
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it might not be possible to get information about (X(0), X(s)) unless some addi 

tional information on the process X is available. This problem has been 

considered earlier by several people. We will discuss nonparametric and 

parametric inference aspects of this problem in a separate publication. 

The problem of interest in this paper is to find out whether a mixing condi 

tion on a process X is inherited by the sequence {X(Tn), n > 1}. In general, 
it need not hold. We extend the notion of mixing to flows of cr-algebras and 

obtain some consequences. We restrict our attention to extending the notion 

of ^-mixing (or some times referred to as uniform mixing). Other concepts 
of mixing can be developed and studied in this larger frame work of cr-algebras. 

2. Mixing for flows 

Let (?2 ̂, P) be a probability space. Let {&t> t > 0} be an increasing 
flow of cr-algebras contained in & and {??, t > 0} be a decreasing flow of 

cr-algebras contained in &, that is, 

&t C &s if 0 < t < s < oo, 

and CO & if 0 < t < s < oo. 

Definition 2.1 : The increasing flow {<?t} is said to be ^-mixing weakly 

with the decreasing flow {?$}, if for every A e &t, t ̂  0, 

\P(AC\B)-P(A)P(B)\<<?>(\s-t\)P(A) 
... (2.1) 

for every B e ?$, s^ 0 where (?)(u) J, 0 as u?? oo. 

Definition 2.2. For any real-valued non-negative random variable t, 

defined &x to be the cr-algebra generated by sets A e & such that A ?\ [r < t] 

e &u t > 0 when {&t} is an increasing flow of cr-algebras and ?t to be the 

cr-algebra generated by sets B e & such that B Q [r > s] e ?s, s > 0 when 

{?$} is a decreasing flow of cr-algebras. 

Definition 2.3 : Let {rn, n > 1} and {Sn, n > 1} be increasing sequences 

of non-negative random variables. The increasing flow {&t} is said to be 

^-mixing strongly with the decreasing flow {??} with respect to {rn} and {Sn} 
if, for every A e &x n > 1 and B e ? , 

\P(AQB)-P(A)P(B)\ <E{4(\Tn-Sm\)}P{A) ... (2.2) 

and E{<?>( \ rn? Sm \ )}-> 0 whenever | rn? Sm | A oo as m -? oo. 

Definition 2.4 : If the increasing flow {&t} is (^-mixing strongly with 

the decreasing flow {?s} with respect to every pair {rn} and {Sn} of increasing 
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sequences of non-negative random variables, then the increasing flow {&t} is 

said to be ^-mixing strongly with the decreasing flow {?$}. 

Definition 2.5 : Let {X?, ? > 0} be a stochastic process defined on a 

probability space (Q, &, P). Suppose {Xt, t > 0} is progressively measurable 

and {rn, n > 1} is an increasing sequence of non-negative random variables. 

Define <yf and ?? as in Example 2.1 given below. If {&*%} is ^-mixing 

strongly with the flow {?J[} with respect to {rn}, then {Xt} is said to be ^-mixing 

strongly with respect to {rn}. 

Example 2.1 : Let {Xt, t > 0} be a stochastic process defined on a 

probability space (Cl,&, P). Define 

&f 
= 

cr-algebra generated by Xu, 0 <? u ^ t 

and ?? 
= 

cr-algebra generated by Xv, v ̂  s. 

Clearly {<^f} is an increasing flow and {?f} is a decreasing flow of 

cr-algebras. If {Xt, t > 0} is ^-mixing in the classical sense, then {<9*f} is 

^-mixing weakly with {?f} in the sense of Definition 2.1. 

Example 2.2 : Suppose {Xt, t > 0} is a stationary ^-mixing stochastic 

process defined on a probability space (?2, ̂ J?). Let {rM, n > 1} be an 

increasing sequence of non-negative random variables defined on (?2, &, P) 

independent of {Xt, t ̂  0}. We assume that {XTn, n > 1} is well-defined and 

\rn?Tn+m\ -A oo as m?? oo for every n > 1. Further assume that the condi 

tional distributions indicated in the following exist. For any n > 1, 

P(XXk < *, X,i+n < y) 

= ? P(Xxk < *, Xx < y |Tt 
= ?, ta+? = S)d/i (?, 5) 

where /?T T is the joint probability measure of (rk, rk+n). 
k, k+n 

Hence 

P(XZk < x, Xtk+n < y) 

= 
J (PXt <!x,X?^y\Tk 

= t, Tk+n 
= 

s) dfiTk Tfc+n(i, s) 

B% 
= J P(Xt < z, Xs < y) ^ TkJ, s) 

(by independence of {Xt} and {r?}) 
= J [P(Xi < a;) P(XS < y)+ir(s, t ; *, y)] d/i^ nJ, s) 

B+ 
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where 

Ii?r(s, t ; x, y)\ < (?>(\s?t\ )P(Xt < x) (since X is ̂ -mixing) 

= <?>( I s?11 )P(X0 < x) (by stationarity of X). 
Therefore 

I P(Xn < x, 
Xrk+n < </)-P(X0 < x) P(X0 < y) | 

< 
{ SJ(\s-t\)dvTkTkJ,s)}P(X0^X) B+ 

= 
JB[#(|7i-7?+1,|)]P(Z0<Sc). 

... (2.3) 

Note that, for any k > 1, 

P(XTfc<x)= / PiZ^ < a: |t* = 
0^(0 

= J P(XtKx\Tk = 
t)d/lTk(t) 

= J P(X{<z)<^(?) 

= 
J?(I?<^/?t?(?) 

= 
P(X0^x). ... (2.4) 

(2.3) and (2.4) imply that 

\P(XTk < x, 
Xn+n < t/)-P(XTs < x)P(Xrk+n < y) | 

<P(XTfc<x)^(|T*-Tfc+n|)]. 
... (2.5) 

Observe that 

E[<f>(\Tk?Tfc+?j )]?> 0 as n->oo for fixed k > 1 

by monotone convergence theorem since 0(-) J, 0 and |t&?7fc+w| ?? oo as 

n ?? oo. It can now be shown that, for any A e &* and Be?x 

I P(? H B)-P(A)P(B) I < P(4)2?[?K | Tk-rt+n | )] 

where E[<?>( \ Tic?Th+n | )]-? 0 as n->co. Hence {Xt} is ^-mixing strongly 
with respect to {rn}. 

Example 2.3 : Suppose {Xt, t > 0} is a stationary ^-mixing process 
defined on a probability space (?2, <?, P). Let {rn, n > 1} be an increasing 

sequence of non-negative random variables defined on (Q, &,P). Let ?7f 
be the cr-algebra generated by Xu, 0 ^ u < ? and ?? be the cr-algebra generated 

by sets of the form [r^ > s], & > 1. Suppose the flows {<?f, ? > 0} and 

{tj, s > 0} are ^-mixing in the sense that 

\P{A\B)-P{A)\^f{\t-s\)P{A) 



MIXING FOB FLOWS OF (T-ALGEBBAS 5 

for all J. e &f and B ec? and i/r(s) ?> 0 as s ?> oo. With the same notation 

as in Example 2.2, let us compute, for n ^ 1, 

= J" P(X? < a;, Zs < y | Tk = i, Tfc+? = s) dp (t, s) 

= J [P(Xt <x,Xs< y)+H1(t, s ; x, y)]dpTk (t, s) ... (2.6) 

where | ff^i, s ; *, y) | < f ( \ t-s | ) P(X* < a;, Xs < y). 

Similarly 

P(Zts < x) = ? P(Xt < x | t, = t) dpjf) 

= I [P(Xt < x)+Ht (t ; a?)] dpn(t) 
... (2.7) 

R+ 

where | #2 (t ; a?) | < jftO) P(X* < a?). ... (2.8) 

By stationarity and ?i-mixing properties of stochastic process X, it 

follows that 

\P(Xt < z, Xs < y)-P(Xt < x) P(X, < y) | 

<4>{\t-s\)P{Xt<x) 
= 

<f>(\t-s\)P(X0<x), 
... (2.9) 

\H1(t,s;x,y)\ 

< f ( I t-s | ) [P(X, < g) P(XS < y)+?5( | t-s | ) P(X0 < x)] 
= 

f(\t-s\)P(X0<x)P(X0^y)+i/r(\t-s\)^(\t-s\P(X0^x). 
... (2.10) 

Relations (2.7) and (2.8) prove that, for any Tc > 1, 

P(Xfk < a;) = 
P(X0 < x)+Hs(x), ... (2.11) 

where | H3(x) | < f (0) P(Z0 < a;). 
Relations (2.6), (2.9) and (2.10) show that 

P(XTk<x,XTk+n<y) 
= j [P(x0 < x) P(x0 < y)+#4(i,s ; *> s/)+#i& ? ; x, y)1 dp <t*,*) 

... (2.12) 

where |H4(t, s;x,y)\ < <?>(|t-s|) P(X0 < a;). ... (2.13) 
Hence 

P(ZTt<a;,XT;t+n<y) 
= 

P(X?<a;)P(X0<y)+55(a:,y) 
... (2.14) 

where 

I #5(*> 2/) I < J 0(1*-? I ) P&o < x)+f( \t-s\) P(X0 < x) P(X0 < y) 

-rV( I *-* I ) 4> ( I ?-* I ) ^o < *)} 4%,, ̂?fr ?) 

<P(X0<a;)JE?[7?(|ri-Ti;+J)] ... (2.15) 

where r? 
= 

<f>-\-i?r-\-ijr<j>. 
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Note that, from (2.11), 

P(X0 < x) P(X0 < y) = 
[P(XTk < *)-ffa(*)] [P(Xtk < y)-fr,(y)] 

= 
P(Xt& 

< x) P(Xtk < 2/)+if6(^ y) .... (2.16) 

where 

| H?x, y) | < | ?? | + | H3(y) | + | #,(*) Hs(y) \ 

< f (0) [P(X0 < x)+P(X0 < 2/)+^(0) P(X0 < x) P (X0 < y)}. ... (2.17) 

Relations (2.14)?(2.17) show that 

P(XTt < x, 
XTk+n < tf-P^ < ar)P(XTft+B 

< y) 

= 
H7(x, y), 

where 

\H7(x,y)\<\H5(x,y)\ + \H6(x,y)\ 

< P(X0 < X) E[V(Tk-Tk+n)] 

+i/r(0) [P(X0 < x)+P(X0 < 2/)+^(0)P(X0 < *)P(X0 < y] ... (2.18) 
Hence 

|P(XTft < X,XTk+n < yJ-PiZ^ < x)P(Xn+n < y)| 

< {P(X < *)-H3(*)} ? I n-T | )] 

+t/r(0)[P(X0 < z)+P(X0 < y) 

+f (0)P(X0 < 2/)P(X0 < y)]. ... (2.19) 

If, in addition \?r{0)~ 0, then Ha(x) 
= 0 and 

I P(XTk < z,X Tfc+n < y)- P(XTk < x)P(XTfc+n < y) | 

< P(ZT& < x) E[V( | r*-r*+n | )] ... (2.20) 

where r? 
= 

</>+ifr-\-<pi?r. 

This proves that X is ^/-mixing strongly with respect to {rn} provided ijr(0) 
= 0. 

Example 2.4 : Let [Xt, t > 0} be a stationary ?$-mixing process and 

n 

Tn= 2 Y i where Yi are i.i.d. non-negative random variables independent of 

{Xt, t > 0} with E(Yi) > 0. Then {Xt , i >1} is ^-mixing strongly with res 

pect to {rw}. Assume that the conditional distributions in the following 

exist. 
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Note that 

P(Xn<*>Xn+n<y) 
= 

J"2 P<Zr* <X> XrkHi <y\T* = t> T*+n = ?) <K, T,+? ?> ?) 

= 
J P(Xt <x,Xs^y\rk 

= t, rk+n 
= 

0) ?/6Tfc> Tfc+n (i, 5) 
R+ 

= J P(X, < *, X, < y) ^ n+n (t, s) 

(By independence of {Xt, t > 0} and {rw}) 
= J P(Xt <x,Xs< y) dp k (t, s-t) 

R% 
= J P(Xt < a;, Xs < y) dp (t) dp (s-t) 

B% 

(By independence of {7?}) 
= J P(X0 < x, Xs_t < y) dprk (t) dpTk+n_Tk (s-t) 

B% 

(By stationarity of X) 
= J {P(X0 < x,) P(XS_, < y)+0(<f>( \s-t | )P(X0 < a?)} 

B% 

dpTk(t)dpTk+n__Tk(s~t) 

(By ?i-mixing property of X) 
= P(X0 < x)P(X0 < y)+P(X0 < x)0{E <Pi(\n+n-rk\)]} 
= 

P(Xrs < *WT/t+? < y)+P(XTjfc < x)0{E[<f>(\rk+n -7*|)]} 

P(XT4 < a?) = J P(X < x | r* = ?) dpTk (t) 
B+ 

= J P(X,<ar|T? 
= 

?)?*/*,,(*) 

= J P(X,<a:)rf/* (?) 

= J P(X0 < x) dp it) 
B+ 

Tie 

= P(X0 < x) 

for all k > 1. Hence 

|P(XTt < *, XTk+n < y) -P(XTft < a:)P(XTt+B < y)\ 

<P(Z. <a?)^(|T1+n-T*|)]. 
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Since Tk+n 
? 

rk -^ oo as n ?> oo for any fixed k and <f> (s) J, 0 as s ?> oo, an 

application of monotone convergence theorem implies that 

{XT>, i ̂  1} is ^-mixing strongly with respect to {rw}. 

Definition 2.6 : A process {Xt, t > 0} is said to be ^-mixing stably if, 
for every set E with P(E) > 0, and for every A e &f and B e ?f, 
0 < t < s < oo, 

|P(iinJi|?)-P(il|?)P(B|?)| <0(|t-?|)P(?|J&) 
where ?^(-) 4< 0 as s?? oo and ^(?) not depending on E. 

Example 2.6 : Suppose {Jl?, t > 0} is a progressively measurable stationary 

stochastic process adapted to an increasing flow {&t} of cr-algebras defined 

on a probability space (Q, S-, P). Let {rn, 
n ^ 1} be an increasing sequence 

of discrete-valued non-negative stopping times adapted to {&t}- Further 

suppose that, for all a > 0, 

P(Xtk ^x\rk 
= 

a) 
= 

P(Xtk<x) 

and 
P(Xrk+n < y S T*+" > t* |r* 

= a) = 
P(^Tfc+n < 2/) 

Assume that {Xt} is ?5-mixing stably in the sense of Definition 2.6. Then 

{Xx , k > 1} is ^-mixing strongly with respect to {rn}. 

As in the earlier examples, let us consider 

= 
f P(XTk ^x,Tk 

= a; 
XTk+n 

< y, rk+n > Tk\rk 
= 

a) d^ (a) 

(here /? ( ) is the probability measure of Tk) 

= 
J P(Xa <tx,Tk 

= a; X < y, rk+n ^a\rk 
= 

a) d/i (a) 
R+ 

Tlc+n 
^ *" ^'" ^ ' * ' ' 

xk 

= 
f P(Za < z, ta; = 

a|T& 
= 

a)P(X < y ; ̂+? > a\rk 
= 

a) d/iJk (a) 
R+ 

+ S { S 0(<f>( | b-a | ))P(Xa < *, t* = a) d/iri+n | XkJb)} dfirk ( a) 
R+ R+ 

= J P(XTk < x\rk 
= ?)P(X < y, Tk+n >rk\Tk 

= a) d/i^ (a) 
B+ 

+ H J O0( | b-a | ))P(Xrft < ? | rk = a) ^ | nJb)} dpn (a) 
i?+ R+ 

= P(X <z)P(X <</) 

+ { f 0{E[<?>{ | Tk+n-a | ) | r? = a]) d/iTk (a)}P(XTk < x). 
R+ 

= 
P(XTv < *)P(XT_ < y)+0?( | t^-t* | )]) P(X. < *). 
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Remarks : If the process X in Example 2.6 is ^-mixing but not necessarily 

^-mixing stably, it is not clear how to relate the finite dimensional distributions 

of stopped sequences and the original process. One expects the mixing to 

hold for stopped sequene if | rk j < Kc < oo a.s. and lim-^- > d > 0 a.s. 
n 

We have not been able to formulate the result under these conditions. 

3. Moment Inequalities 

Theorem 3.1 : Suppose {<^} is an increasing flow and {?$} is a decreasing 

flow of cr-algebras defined on a probability space (?2, &, P). Further assume 

that {&i\ and {?*} are (p-mixing weakly in the sense of Definition 2.1. Let ? 
be 3-t-measurable and 7/ be ^-measurable real valued random variables such that 

E\Z\p < oo, E\7?\* < oo with 1/p+l/q = 1, p > 0. Then 

\E(l7i)-E(l)E(ri)\ ^2[<f>(\t-s\)rHE\^\P)yp(E\7,\^. ... (3.1) 

Remarks : Proof of this theorem is the same as the classical proof for 

^-mixing processes as the standard proof does not make use of the fact that 

the cr-algebras under consideration are generated by a stochastic process 

{Xt, t > 0}. For ^-mixing processes {Xt, t > 0}, see Theorem 5.1 in Roussas 

and Ioannides (1987). We now give a sketch for completeness. 

Proof : Let 

k k 
I = 2 li IA, At e &u P(Ai) > 0, 1 < i < k, 

i 
and r? = 2 r?j Ibj, Bj e ?s, P(Bj) > 0, 1 < j < Z, 

where \\ and r/j are real numbers and I a denotes the indicator function of a 

set A. Note that 

\E(tr,)-E(l)E(ri)\ 
= iss^p^n^)-^^)^^)}! 

= 
\^^iVjP(Ai)[P(Bj\Ai)-P(Bj)]\ i i 

= 
IS liyiP(Ai) j (where yt = S Vj[P(Bj\Ai)-P(Bj)]) 

= \E(ZY)\(whereY= ?ytIAi 

<E\IY\ 
< (E\l\P)1^(E\YQ)1^. ... (3.2) 

a 1-2 
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It can now be checked by arguments similar to those given in Theorem 5.1 

of Roussas and Ioannides (1978) that 

(E\Y]<)V* < 2[<f>(\t-8\)]Vp(E\V\Q)W ... (3,3) 

and, hence from (3.2) and (3.3), it follows that 

\E(lr,)-E(l)E(r,)\ < 2[c?>(\t-s\ )]Vp (E\l |*)Vj> (E\V\^. 

This proves the theorem a for simple ^?-measurable random variable ? and a 

simple ^-measurable random variable t/. The general case again follows 

from Lemmas 4.1 and 4.2 of Roussas and Ioannides (1987). 

Theorem 3.2 : Suppose {^} and {?s} are <?>-mixing weakly as in Theorem 

3.1. let \ and r? be &i-measurable and ^-measurable real valued random vari 

ables respectively such that 

\l\ ^Mxa.s., \<q\ <M2a.s. 
Then 

\E<?V)-E(&)E(ti)\<2M\t-8\)M1Mr ... (3.4) 

Remark : Proof of this theorem is same as that of Theorem 5.2 in Roussas 

and Ioannides (1987) by replacing &\ by &t and &k+n by ?s. A more general 
version of Theorem 3.2 is as follows. 

Theorem 3.3 : Suppose an increasing now {&t} a^d <*> decreasing flow 

{?s} are <?>-mixing weakly as in Theorem 3.1. 

Further suppose that 

?i is &% -measurable, 

Ci is &trmeasurahle 
and ?8 .-measurable for 2^i^ n?1, 

and \n is 
?g -measurable 

where fy f and Si |. Assume that 

\li\ < Mi a.s., 1 < i < n. 

Then \E(lxl,... ln)-E(ix) E&2)... E&n)\ 

<2? ^ (?>(\si+1^h\\ ft Mt. ... (3.5) 
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and 

Hence 

Proof : The result holds for n ? 2 by Theorem 3.2. Suppose it holds 

for n?1. Then 

\E(l1l,...ln)-E(l1)E(l,)... E(ln)\ 

< \E(lxl2...ln)-E(l1U...ln_i)E(ln\ 

+E\tn\ \E(^ ... l^-E&J ... E(ln^)\ 
= 

Ix+I, (say). 

Observe that 

?i---?n-i ^s 
&t _ -measurable, 

\n is 
?g -measurable. 

h^<t>(\sn-tn-i\)E\lx\E\l%..S,n\ 

<2<f>(\sn-tn_1\)M1M2...Mn. 

By induction argument, 

l^i-^-i)-^i)-^n-i)l < 2 
?2^(\si+1-ti\)\M1...Mn_1. I i=l 

' 

Hence J2 < 2? sV(\si+x-h\)\ MxM2...Mn. 

Combining (3.6)?(3.9), we have 

\E(?xl,...ln)-E(t1)E(^)...E(tn)\ 

< 2 
|"s 

?5( | s<+1-i( | ) j J^jtf,.. . J/n. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Theorem 3.4 : Suppose the flows {^t} and {?s} are as defined in 

Theorem 3.3. Define \%, 1 <; i < n as before. Further suppose that 

2? I 
EI It IM < oo, i?j > 1 cmcZ 2 ? = 1. 

Lei rm 
= max (pv ..,&?) T?en 

\E(l1...ln)-E(lx)...E(ln)\ 

< 2? 
sVd^-iii))1"-? 

n {^i?*!**}11**. ... (3.11) 
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Proof: Clearly the theorem holds for n = 2 by Theorem 3.1. Assume 

that the theorem holds for n?l. Then 

\E{lU-ln)~E{ll)E{^)...E(ln)\ 

< \E{Ui...ln)-E(lx)E{li...ln)\ 

+E\l1\\E{l2...ln)-E{t2)...E{tn)\ 
= 

/,+/. (say). ... (3.12) 
Note that 

h < 2[?HK-i1|)]1 Vl^ilWl^-^I^Vhere 1/p+lfo = 1) 

< 2[^(|?,-t1|)]1Vl?iri)1V|Ca|f4)1/1',...(?|5n|,,?)l/'n 
... (3.13) 

by Holder's inequality. On the otherhand 

\Egz...ln)-E{^)...E{ln)\ 

<2^{[^(l^-?il)}1""--1 n {E\U\qi)1,qt ... (3.14) 
i = l i=2 

by induction hypothesis where r"n_x 
? max (q2, ..., qn), qt = ?, 2 < i < n 

(note that 1 \q2+... +1 ?qn 
= 1 ). Observe that r*_x < rn. Furthermore 

^1^1 <(E\^\PlfPl - (3.15) 
as i?x > 1. Hence 

^<2{nfji>(\^-k\)frn}(E\i1\^yI\..(E\i^y'^ 
... (3.16) 

Relations (3.12)?(3.16) prove the result since rn > pv 

In the light of Theorems 3.1 to 3.4 obtained, it is clear that one can obtain 

the following results for flows of cr-algebras {&t\ and {?s} which are ^-mixing 

strongly with respect to sequences {rn} and {Sm} 
as defined in Definition 2.3. 

We omit the proofs. One has to replace <?>(\t?s\) by E(j)(\rn?Sm\) at the 

appropriate step in the argument. 

Theorem 3.5 : Suppose {rn, n > 1} and {Sn, n > 1} are increasing 

sequences of non-negative random variables and the increasing flow {&t} is 

^-mixing strongly with the decreasing flow {?$} with respect to {tu} and {Sn} in 
the sense of Definition 2.3. 
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Let ? be <^r -measurable and n be ?? -measurable real-valued random n Sm 
variables such that 

E\1\p < oo, E\tj\Q < oo,p > 0, ?+?= 1. 

Then 

\E(l7,)-E(l)E(r,)\ < 2(E[<f>(\rn--Sm\WlP(E\Z\P)ilP(E\V\Q)^ 

Theorem 3.6 : Suppose {c?t} is ^-mixing strongly with {?s} with respect 
to sequences {rn} and {Sm} as in Theorem 3.5. Further suppose that ? and r/ 

are &r measurable and ta -measurable real valued random variables such that n Sm 

|?| <ii1a.s. and \y\ < M2 a.s. 

Then | E(It?)-E(1) E(l) | < 2 E{<?>( \ rn-Sm | )} MxMt. 

Theorem 3.7 : Suppose {&t} is ^-mixing strongly with {?$} with respect to 

{rn} and {Sm} 
as in Theorem 3.5. Further suppose that 

5i is <?x -measurable, 

E,i is &T-measurable and ? -measurable for 2 < i ^ n?1, 

and \n is 
?s -measurable. 

Further suppose that 

\li\ < Mi a.s. 1 < i <; n. 

Then \E(lU-Zn)-mi).--E(ln)\ 

n-l 

< 
2\nZE{<t>(\Si+1-Ti\)}} 

n Mt 

Theorem 3.8 : Suppose the flows {&t} and {?s} are as defined in Theorem 
3.7. Define {?$} as in Theorem 3.7. Suppose that 

E\li\Vi <cc,pi>l, 

and n 1 
S ?= 1. 
?=i Pi 

Let rn 
= 

max(pv ...,pn). Then 

\E(l1...ln)-E(li)...E(ln)\ 

< 2 21 {E<?>(\S(+1-Tt\)fr* ? (E\^\Vi)VPi. 
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4. Remarks on mixing for flows indexed by directed sets 

Let (??, <^, P) be a probability space. Let {&t, tel} and {?s, sel} be 

indexed families of sub cr-algebras of &. Suppose / has a partial ordering 
< such that 

*tl C &x% 
if rt < t2 and 

^ T) ?tg 
if rx < r2 

and d(v) is a metric on I. {&t, tel} is said to be an increasing flow and 

{?8, sel} is said to be a decreasing flow of cr-algebras. 

Definition 4.1 : The increasing flow {&t, tel} is said to be <?>-mixing weakly 

with the decreasing flow {?s, sel} if for every A e &t, t e I, 

\P(A?\B)-P(A) P{?) j < <?>(d(t, s)) P(A) 

for every B e ?s where <j)(d(t, s)) | 0 as d(t, s)-> oo. 

Example 4.1. Let I = 2&, d > 1 denote the set {z 
? 

(zl5..., za) '-?i 
= 

{0, ?1, ...}, i = 1, ..., cZ equipped with the maximum norm ||z|| 
= max Zi. 

For ?<? ==(#>, ...,??>) and z<2> = 
(zf, ...,zf) in sfi, define z<1J < z<2> if 

zj1* < 42) for 1 < i < ?. Let X = 
{XZ: z e 

?&} be a family of random variables 

defined on a probability space (?, &, P). X is called a d-dimensional random 

field. For any z e ?a, define &z to be the cr-algebra generated by Xu, u <z 

and ?z be the cr-algebra generated by Xv, a > z. The c?-dimensinal random 

field X is said to be m-dependent if for any finite subsets U, V (Z 2&-> ̂ e 

set {Xu, u e U} is independent of {JTW, vef} when \\u?v\\ > m for all ueU 

and veF. It is clear that {&z} is ^-mixing weakly with {?2} where 

(?>(\\u\\) = 0 if INI > m. 

Remarks : It is easy to see analogues of Theorem 3.1 to 3.4 hold for 

the flows [&t, Ie 1} and {?s, sel} whenever they are ^-mixing weakly. In 

particular, one can obtain the following moment inequality for random fields. 

Discussion of analogues of other results is left to the reader. 

Theorem 4.1 : Define {&z, Z e 3^} and {^z,ze3Cd} as in Example 4.1. 

Suppose {&z, z e 2?d} is ^-mixing weakly with {?z, z e ??&} in the sense of 

Definition 4.1. Let \ be &u-measurable and t? be ̂ -measurable such that 

E\l\P < oo and E\tj\Q < oo, l/p+l/q 
= 1, p > 0. 

Then 

\E&V)-E(l)E(V)\ < 2W(\\u-v\\)]Vp(E\1\p)Vp(E\V\?)^ 
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5. Remarks 

We have generalized the concept of mixing and obtained some moment 

inequalities. The problems of obtaining moment inequalities for sums of 

random variables measurable with respect to cr-algebras which are ^-mixing 

strongly, central limit theorems, Berry-Esseen type bounds etc. remain open. 

We hope to come back to these problems in a future publication. 
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