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Abstract

Postulating a simple regression model, asymptotic optimality is demonstrated 
for a class o f sampling strategies in two phases to estimate a survey population 
total.
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1. INTRO D U CTION

Rao and Bellhouse (1978) gave model-based optimal double sampling strategies 
to estimate a survey population total under appropriate super-population mod
elling. But these strategies involve unknowable model parameters. Chaudhuri 
and Adhikary (1983, 1985) gave alternatives free of model parameters but with 
drastically over-simplified modelling. Mukerjee and Chaudhuri (1990) resorted to 
asymptotic analysis to derive generalized regression estimators allowing flexibility 
to double sampling designs recommended by their predecessors. Chaudhuri and , 
Roy (1994) derived asymptotically optimal strategies on deriving Godambe-Joshi 
(1965) and Godambe-Thompson (1977) type lower bounds attained by ‘unknown ' 
parameter-based’ as well as by ‘parameter-free’ estimators. In this note we simplify 
Chaudhuri and Roy’s (1994) model and derive simplified strategies with estimators 
of both of the above two kinds attaining sharper bounds. In addition, we observe 
Chaudhuri and Adhikary’s (1983, 1985) simple two-phase strategies to constitute 
a sub-class of the above asymptotically optimal strategies. Chaudhuri and Roy 
(1994), to be abbreviated as CR (1994), is our key reference and we avoid repeating 
some of the discussions therein to save space. Sarndal and Swensson (1987) gave 
several results on double sampling with varying probabilities. Also, two recent texts 
by Sarndal, Swensson and Wretman (1992) and Chaudhuri and Stenger (1992) cover 
many relevant topics. The present work is a supplement to them.



2. TH E  SA M PLIN G  STRATEGIES, M ODEL A N D  O PTIM A LITY

Let U s= ( 1 , . . . ,  < denote a survey population of size N . Let si denote a first
phase sample of distinct units n i in number chosen with probability p1(s1) from U. 
Let «2 be a sub-sample of «i consisting of distinct units, n2(<  n i) in number chosen 
with the conditional probability P2(s2|®i)- The over-all “double sample” thus chosen 
in two phases is s =  (ai,s2) having the selection-probability p(s) =  pi(«i)p2(s2|«i)-

Let j/f, X{, Wi denote respectively values of variables y ,x , w for i £ U and let for 
every j ,  in U,

Pj =  E Pi(*i) > 0, R j(s i)  =  E P2(«2|s i)  >  0*1Bj >3

Qj =  E E P2(s2|«i>i(*i) >  0.

The survey data to be gathered may be denoted by d = (s , y;, Xj |i €  S2> j  € «i). 
The values Wi will be supposed to be known and positive with a total W  and may 
be used to specify the designs p i,p 2 and p. Our problem is to estimate the total Y  
of ju for £ 6 U using an estimator t based on d for which its value is t(d). Using 
notations and definitions given by CR (1994), to be mostly persisted with here, t is 
required to satisfy the condition of being ‘Asymptotically design unbiased’ (ADU) 
for y  in Brewer’s (1979) sense and thus be subject to

\im  Ep(t — Y) =  0 (2.1)

------the notation lim Ep stands for ‘limiting design expectation’ as conceived by
Brewer (1979) and applied by CR (1994).

CR (1994) postulated the super-population model, denoted by M{ff) which es
sentially stipulates the following. Writing Z_ =  ( z j , . .. ,z,-,.. .,zjv), where z,- = 
jfi,Xi,W i,i G U ,E1(V i),E 2(V2) the operators for expectation (variance) over distri
butions of 2L given W_ and of y  given X_, W , let

E i(xi\W ) =  pl wu E 2{yi \X ,W )  =  0Xi +  ftu* ,

V i ( * «  =  <r\u  V2{yi\X ,W )  =  4 , ^ i ( 4 K )  =  *,2.

Further, ttfj’s are ‘non-stochastic’, j/,’s are ‘independent’ conditionally on X_ and 
*1*8 are‘independent’. ^

CR (1994) have recommended double sampling strategies with certain desirable . 
properties under this model with 6, fii and /?2 unknown. Our purpose here is to show 
that a simplification with a higher efficiency is available if 0 is known. Assuming 6 to 
be known we shall take 0 as unity with no loss of generality because one may replace 
Xi above by x* =  O x, for i i n U  when 9 is known but different from unity. Though 
Sarndal, Swensson and Wretman (1992) in their Chapter 9 have discussed numerous - 
details about double sampling methods they have not presented any asymptotically 
optima! strategies as in CR (1994) nor as the ones here to  follow.



In this note with these preliminaries, we shall restrict to the special case A f(l). 
say, of M(9) taking 0 — 1 above. This will lead to (1) simplifications of strategies 
as well as (2) sharpening in the efficiency levels discussed below. By Em we shall 
denote over-all ‘model’ expectation.

I Our findings are enunciated in the following theorems and remarks.

Theorem  1.
♦

EmlimEp( t - Y )2 > ? [p? J, ie,(Sl) l )
■' <*■

+  E crjj (J f-  -  1^ =  Em\\mEp(to -  Y )2, where 

t0 = t0(d)=  E {(yj - X j  -  02W j)/PjRj(si)}
J6»3

+  E (xj — PiWj)lPj + (Pi +  ()2)W. 
j€»i .

P roof.
Omitted as it is an obvious special case of Theorem 1 in CR (1994) with'0 =  1.

T heorem  2.

pf  A i  R i M - Q i -  { )

P ro o f. Follows, on applying Cauchy inequality on

k  »■(**»(**)} (a

R em ark  I.
The inequality (2.2) reduces to equality if

Q iR j(s i)  — ■—  for every «i with ;  €  «i- (2.3)
i  -

A design p  for which (2.3) is satisfied will be denoted by po- For equal probability 
sampling in both the phases, (2.3) is satisfied. Chaudhuri and Adhikary (1983) 
showed the existence of ‘unequal probability’ sampling designs also satisfying (2.3). 
The class of sampling strategies (po,to) is then ‘asymptotically optimal* by virtue 
of



T heorem  3.
. £ mi im£p( * - y ) 2 > |  Q : - i )

+  E 4  Em UmEPa(t0 -  Y ) 2.

Proof. Follows from Theorems 1,2 and condition (2.3) on p.

R em ark  II.
We may observe that when based on po, to becomes

t 0 =  .2  (yj -  Xj -  P2Wj)/Qj +  £  (xj -  Piu>j)fPj +  ( f t  +  j32)W. 
j €82 j € 81

Yet <o is not usable. So, as in CR (1994) we proceed to replace unknown model
parameters in to by their estimators and derive as follows ‘a generalized regression’
type estimator to be used in practice in lieu of to itself. Let =  y* — saj, =
£  a'ib'i where a ■,b\ stand for £,•, w,-, u,-, i G U. Noting E m(ui) — fctVi, we take 

i € > 2

61,62 as estimators of given by 61 =  62 =  Clearly, E m(bj) = (3j , j  
= 1,2. Our proposed generalized regression type estimator for Y  is

*0 =  £  (yj -  xj -  b2uij)/Q j +  £  (Xj -  b1wj )/P j +  (61 +  b2)W,

which satisfies, as may easily be checked,

lim £ p(tS — Y) =  0 .

Next, we have 

T heorem  4.

E m Y x m E M - Y ?  =  |  * j ( i _ _ i ) + !  4 ( i - - l )

=  Em lim £ !Po(<0 — Y)2.

P roof. Easy and hence omitted; one may see p.360 in CR (1994).

R em ark  I II .
An alternative way to get to free of /?i, 02 is to impose the following restrictions 

on the class of designs Po:

Pi ~  for i  6 Sl and Qi = for 6 S2' (2A)
For the resulting sub-class, say, p^ of designs within the class of designs po 

subject to (2.4) we note that to reduces to



1i = . E  ( y . - - * j ) /Q j+  .£  X j / P j .  (2.5)
3 i€*i

This sub-class (pi,*i) of strategies within (po,*o) was earlier recommended by 
Chaudhuri and Adhikary (1983, 1985). Of course we have

Theorem 5.

Em limEpi(t! -  Y )2 =  E Q- -  l j  +  E ^  -  l j

provided Pj ,Qj  are subject to (2.4).

Remark IV.
In  spite of Theorem 5 justifying the use of (p i,ti)  we recommend the use, in 

practice, of (po,<o) in preference to (p i,ti)  in case M( 1) seems tenable, because the 
restriction (2.4) may curtail the efficiency level. -
Remark V. We omit a formula for an estimator of the mean square error of tg 
derivable analogously to the one given in Section 4 in CR (1994).
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