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Abstract
A convergence result for kernel type density estim ators, proved by 

Devroye and Gyrofi (1985), is extended to stationary Markov processess 
satisfying G 2 -condition introduced by Rosenblatt (1970).

1. INTRODUCTION

Xonparametric density estimation for independent and identically distributed 
observations is extensively studied and a comprehensive survey of various 
methods of density estimation and the properties of estimators is given in 
Prakasa Rao (1983). One of the main methods that has been extensively used 
m practice is the kernel type density estimation. Silverman (1985) gives sev
eral examples. Since the observations obtained over time are dependent in 
general, it is of interest to study density estimation in the stochastic processes 
frame work. Prakasa Rao (1977, 78, 79, 83) discussed generalization of kernel 
type methods and orthogonal series methods etc. for density estimation to 
stationary stochastic processes which are Markov or mixing in some sense. 
More recent work in the area is due to Bradley (1983), Hart (1984), Ioannides 
and Roussas (1987) and Tran (1989 a,b, 1990). For earlier work and more



references, see Prakasa Rao (1983). Yakowitz (1989) discussed nonparamet- 
ric density and regression estimation for Markov seqauences without mixing 
assumptions.

It has been observed that the standard kernel type density estimator i= 
not recursive in nature. Acquisition of additional observations necessitate 
computation of the estimator all over again. In order to avoid this prob
lem, recursive kernel type density estimators were studied for the case of de
pendent and identically distributed observations. For a detailed survey, see 
Prakasa Rao (1983), Chapter 5. It turns out that these type of estimators are 
amenable to analysis in the dependent case and have been found applicability 
in the recent literature on nonparametric inference for time series analysis 
See Prakasa Rao (1994). More work in the area of recursive type density esti
mation for stationary processes is due to Nguyen (1979, 1981), Bosq (19;71. 
Abdul-Al (1988), Isogai (1989), Tran (1989, 1990), Gyorfi and Masry (1990'. 
and Hernandez-Lerma (1991) among others, Gillert and Wartenburg (19S4 
studied density estimation for non-stationary Markov processes.

In his study of density estimation for stationary Markov processes, Rosen
blatt (1970) introduced the G 2-condition. Density estimation for continu
ous time stationary Markov processes was discussed in Nguyen (1979) and 
Prakasa Rao (1979). Chapter IV in Gyorfi et al. (1988) discusses recursive 
estimation when the stationary stochastic process satisfies a mixing condi-

Our aim in this paper is to extend a result on strong L \-consistency of 
recursive kernel type density estimators, obtained by Devroye and Gyorfi 
(1985) in the i.i.d. case, to the case of stationary Markov process when the 
Markov process satisfies the Rosenblatt’s G 2-condition. Proofs are analogous 
to those in Devroye and Gyorfi (1985), p. 194.

Suppose Yi, 1 <  i <  n are independent and identically distributed obser
vations with a common density function / .  One type of recursive estimator 
of the density /  based on Y{, 1 <  i < n is of the form

where K (-)  is a suitable kernel and hn is a suitable bandwidth sequence with
0 <  hn —> 0 as n —> oo (cf. Prakasa Rao (1983)). Deheuvels (1974) proposed 
a variation of this estimator of the type

tion.

2. PRELIMINARIES
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and studied its properties (cf. Prakasa Rao (1983), p. 314).

Devroye and Gyorfi (1985), p. 194 investigated certain equivalence rela
tions on Lj-convergence of the estimator f n.

Here we propose to obtain a similar result for stationary Markov processes 
satisfying the G2-condition.

Let {X n, n > 1} be a stationary process and define the transition operator 
Hn by

(Hng)(x) =  E [g(X n+l) |X, =  x] 

where g is any bounded measurable function defined on the real line. Define

|ffn|2 =  sup E l/2(Hng)2/E1/2(g2)
[S:£7S(A-1)=0]

(cf. Prakasa Rao (1983), p. 322).

Definition 2.1. The transition operator Hn is said to satisfy G2(m ,a ) 
condition of Rosenblatt if there exists a positive integer m such that 
IHm\2 <  a  with 0 < a <  1.

If { X n} is a stationary Markov process satisfying the condition G2(m , a), 
then it can be checked that

HmHn — HnHm

and for every n > m > 1,

# n |2 < /9n/a  where j3 =  a 1/"1 £ (0,1).

It is well known that if a process satisfies G2-condition, then it is expo
nentially strong mixing (cf. Rosenblatt (1971)). Moment bounds for strong 
mixing sequences have been discussed recently in Kim (1993).

3. M AIN RESULT

Let {X n} be a strictly stationary Markov process. Let /(•) be the one
dimensional marginal density of X x assuming that it exists. Suppose the 
process is observed up to “time” n. Then f (x )  can be estimated by a recursive 
estimator of the type



/ „ M  =  X > ' ( ^ ) / i >
;=1 \ ri, / t=1

where K  (■) is a bounded density and {hn} is a bandwidth sequence decreasing 
to zero.

Theorem 3.1 : Suppose the process X n is a strictly stationary Markov 
process satisfying the condition G2(m ,a ). Further assume that A (-) is a 
bounded density function satisfying the condition

OO

/ 'y(u)du < oo where 7 (1*) =  supAr(x),u  >  0 (3.0
J lr|>uo 1

and the sequence {hn} satisfies the condition

n
hn J, 0 and — nr where 3/4 < r < 1

Z=1

as n —> oo. Then the following statements are equivalent :

(A) f n(x ) —> f ( x )  almost surely, almost all x, all /  ;

(B) f n(x ) —>■ f ( x )  in probability, almost all x , some /  ;

n n
(C) lim ^2 hil{hi >  c)/'ŝ2lhi =  0 for all e >  0;

t=i
DO

(D) /  | f n(x ) — f(x)\dx —y 0 almost surely, all /  ;
— OO

CO

(E) /  lfn(x) — f(x)\dx —> 0 in probability, some / .
— OO

We first state and prove some lemmas which will be used in the sequel.

Lemma 3.1 : If K  is a bounded density function satisfying (3.0) and hn j  0. 
then

b
K' f(x) J  K p(y)dy as n —y oo

K

for almost all x and all p >  0.

Proof : See Devroye and Gyorfi (1985), p. 195.

Lemma 3.2 : Let Vr(i) =  K  ( ^ )  -  E [K  ( ^ ) J  , 1 < i  < n and



ffin ) =  E ^ 1'- Suppose g(n ) ~  nr as n —» oo where r >  3/4. Then

. w . ( 0  -  0 as n  —too almost surely,
■ffM ^  ;

for almost all x.

(3.1)

P r o o f  : We follow the technique employed by Loeve (1960), p. 487. Let
d1 <  n <  (d  +  l )2 and

^ ( " )  =  E ^ ( 0 -9Kn)
Then

9 {n ,w ( n ) - w ( d ^ )  =  - J -  £  y , ( o
,= *+i

=  r(<f2,n ) (say).

Let

Hei

U{di ) =  sup |y(d2,n)|
d2<n<{d+l)2 

1 (d+1)2

s  m  S , K < *

92(d2)

(rf+i)2
E 1̂ (01 
i=d2

i  . f(rf+i)2

(<(+l)2 (rf+l)̂  'j 
+ E E e \v *(i ) vx(j )\ .

>---p j =<p  j

(ti+1)2 (d+l)2
+ E E (£|K(OI2£|KO')I2)1/2 

i=d2 j=<p
! f(rf+i)2 ^

E {var(K (i) ) } 1/2

<

(3.2)



Note that
I<

hi
(3.3

and the term on the right side of (3.3) has a limit as i —► oo for almost all 
by Lemma 3.1. Hence there exists a function L2(x) < oo a.e. such that

— var(T4(0) — L2(x) < 00 a-e- f°r /i,'
(3.4'

Here a.e. refers to that the statement might not hold in a set of Lebesr;e 
measure zero. Therefore, it follows from (3.2) and (3.4) that

E\U(d2)\2 <
9 2(d2) 

<  — -—  
-  g 2( d ^

L \ x ) 

L \ x )

\d+1)2 '
E h\
k=i2

\d+1)2
E ^  [(rf + l)2 ~ d2]
k=cp

(By Cauchy-Schwartz inequality) 
L \ x ) .

92{d2)
[g((d +  l)2) - g ( ^ ) } [ ( d + l Y - d 2}

<  c^ x )

<  C2(x)

L2{x )(2 d + l)d 2r- 2{2 d + l)
d4r

L2(x)
d 2r

for some functions Ci(x)  and c2( x )  depending on x for almost all x  and hence

Y,E\U(d2)\2 <  oo 
d=l

since r > | by hypothesis.

Therefore by Tchebysheff’s inequality and Borel-Cantelli lemma, it follow 
that

£/(<**)-> 0 a.s. as d —> oo 

for almost all x. In particular it follows that

ffO)
g(d2)

W (n) — W (d 2) —> 0 a.s. as d —> oo.

Now,

1 d2
E £ | w V ) l 2 =  E ^ ^ l E ^ O I 2
d=i d=i y va ) i=i



oo I  ( d? d?

-  £ 5w { S S O T t m  V- U 1)

But there exists a function L0(x) <  oo a.e. such that

cov(V'I(i), Vx(j) )  < /3['~3lL0(x) for all i and j

by computations similar to those described in Prakasa Rao (1983), p. 323- 
324. since the process {X n} satisfies the G2 (rn,a) condition and K (-)  is a 
bounded kernel. Hence there exists a function L\(x) < oo a.e. such that

Y,E\W(<P)\2 <
d= 1

oo -j ( d2 d2

Lx{x)

d4r
K d= 1 u  )

which is finite, provided 4r — 2 > 1 or r >  3/4, for some function L2(x) < oo 
a.e.

It is now easy to see as before that

W (d2) —> 0 a.s. for almost all x as d —» oo. (3-6)

Relations (3.5) and (3.6) imply that 

din)
9 { d 2)

Since

W {n ) —> 0 a.s. as d ^  oo.

g(n) - i——  -> 1 as d —+ oo,
g{d2)

it follows that

W(ri) —> 0 a.s. for almost all i  as n. —> oo.

This proves the relation (3.1).

Lem m a 3.3 : Let f n be a density estimator and /  be a density on R. If 
f n ( x )  —> f (x )  in probability (almost surely) a s n - t o o  for almost all x, then00
1 Ifn(x) — f(x)\dx —+ 0 in probability (almost surely) as n —* oo.

— CC

P ro o f : See Glick (1974).

P roo f o f  Theorem  3.1 : Obviously (A) => (B). Lemma 3.3 shows that (B) 
=> (E). Hence (A) => (B) => (E). It follows again that (A) => (D) => (E). It 
is sufficient to prove that



(C ) => (A ) and (£ )  => (C). 

Assume that (C) holds. Let e > 0. Define

fn(x) =  E  K  (X h X ') hh.<')li2h'-i= 1 \ /l| / l=J

Then, it follows by (C) that

\Ux) - fZ(x)| < ------- = o(l)
Eft.
1=1

where M  is a bound on the kernal /i ( - ) . Note that

\fn(X) ~ f ( X)\

-1 I.’ ( X ~  X '

<

+

E ft , \ E {h - 'K (X—  
i= 1 '

J2hi 
i=1

- / ( * ) L(hi<e)

E ^

+ J 2 hi f ( X)I^.>c)/I2hi- 
t=l 1=1

2i +  T2 -f T3 (say).

Note that
T2 <  sup

and Lemma 3.1 implies that T2 —> 0 as n —> oo for sufficiently small 5 for 
almost all x. Condition (C) implies that T3 —> 0 as n —► 00. It is sufficient 
to prove taht Ti —> 0 a.s. for almost all x to conclude that (C) => (A ). Note 
that

T , =
£ v ; ( 0 -f(h.- < £)

J2hi
t=i

and the last term tends to zero a.s. by Lemma 3.2. This proves (C) =£■ (A) .



We complete the proof by showing that (E) => (C). The condition (C) 
is a consequence'of the arguments similar to those in Devroye and Gyorfi
19S5). p. 198 by noting that the characteristic function of E( f n) is

¥>»(*) =  — — 5 -------------- >

1 = 1

v.here ~p(t) is the characteristic function of the marginal density /  and f3(t) 
is the characteristic function of the kernel K (-). We omit the details.
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