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1. Introduction

C. A. M cC arthy proved  in [7], am ong several o ther results, the following 
inequalities for S chatten  p-norm s of H ilbert space operators:

2 ( M | | ^ + | | B | | ? ) ^ M  +  5 | | p + M - B | | ^ 2 ' ' - 1( M | | ^ + | | B | | 3  (1)

for 2 ^ p <  oo, and

2 p _ 1 ( M l l p +  l l - B | | p ) ^  M  +  5 | l p +  \\A — B\\PP^2(\\A \\^,+  | |B ||*D ( 2 )

for 1 p ̂  2.

These are non-com m utative analogues of some inequalities of C larkson for the 
classical B anach spaces and  constitute one half of the “C larkson-M cC arthy 
Inequalities.” These estim ates have been found to  be very powerful tools in 
operator theory and  in m athem atical physics. (See, e.g., Simon [11].)

H ere we form ulate and  prove a m ore general version of these inequalities. O u r 
analysis extends these inequalities to  a wider class of norm s which includes the 
p-norms and  a t the sam e tim e leads to  a proof w hich is m uch sim pler th an  
M cCarthy’s original p ro o f or some later proofs. Indeed, it appears to  be sim pler 
and m ore elem entary than  any other p roof of which we are aw are; see the 
discussion in [11].

Let ) denote the space of all bounded linear operators on a H ilbert space 
J f .  F o r convenience, we take to  be infinite-dimensional. If an  opera to r A  is 
compact, we enum erate the eigenvalues of the positive operator {A*A)111 as 
S j^ )  ̂  s2(A)  ̂ . . . .  These are called the singular values of A.  An opera to r A  is said to

CO

belong to  the class J p if £  {Sj{A))p< co, where p is a real num ber, 1 r g p <  co. If 
j= i

A e J p then the Schatten p-norm  of A  is the num ber ||,4||p =  (£ ( s j(,4))p)1/p. I t is well 
known tha t , / p is an  ideal in ■'M(ff), that \\A\\P defines a norm  on it, and  th a t it is



com plete w ith respect to  this norm . See G ohbcrg  and  K rein [5], Schatten [10], 
o r [11].

These norm s are special exam ples o f symmetric norms o r  unitarily invariant 
norms each of which arises as a “symmetric gauge function" o f the  singular values. 
(See [10] for definitions.) Each such norm  ||| • ||| is defined on a natural subclass 
J'm . in of ̂ ( J f )  called the norm ideal associated w ith the norm  ]|] • ||| and  satisfies the 
invariance property  ] ||f //lF ||| =  |]|j4|]| for all A  in this ideal and  for all unitary 
operators U, V. The usual o p era to r no rm  || ■ || is also such a norm  defined on all of 
& ( j f )  and, for com pact A,  ||^4|| = s t (i4). It is hence conventional to  denote \\A\\
by M IL -

Let 2 ^ p ^ o o  and  let r = p /2 .  N ote  tha t \\A\\l = \\A*A\\r. This is a special 
instance of a m ore general phenom enon. We say th a t a (unitarily  invariant) norm  
HI • HI is a Q-norm if there exists som e o ther unitarily  invarian t norm  ||| • |||' such that 
III,4HI2 =  |||y4*^|||'. See B hatia [2 ] for m ore exam ples of such norm s and  for an 
approxim ation  theorem  involving them.

W e also recall th a t each sym m etric gauge function has an  “associate” [10] o r a 
“conjugate” [5] sym m etric gauge function and  th rough  this duality  each unitarily 
invarian t norm  has a conjugate norm  associated w ith it. The norm  || • ||p is 

1 1
conjugate to  || • |L if -  +  -  =  1. W e will say tha t a unitarily  invarian t norm  is a 

P i
Q*-norm if it is conjugate to  a Q-norm. The class o f such norm s includes the 
p-norm s for l ^ p ^ 2 .

The following questions are thus natural. If an  inequality \\A\\p^c \ \B \ \p holds 
for 1 ^ p ^  oo (with the sam e constan t c) then does it hold for all unitarily  invariant 
norm s? If  such an inequality holds for 2 ^  p 5S oo then does it hold  for all Q-norm s 
and if it holds for 1 5 S p ^ 2  then  does it hold for all g*-norm s? There are several 
well-known results in o p e ra to r theory (see, e.g. M arshall and  O lkin [6]) where the 
first question has a positive answer. See [2] for a recent result in which the second 
question has a positive answer.

W e will obtain  extensions of (1) and (2) to  g -no rm s and <2*-norms respectively. 
However, to do this we need to  recast them  in a form  such th a t the constan ts 
occurring in them  become independent of p. We will see th a t such a recasting also 
leads to  a better understanding  of the original inequalities.

2. Main Results

Let R “  be the space of all sequences of positive real num bers. G iven tw o elements 
{Xj} and  {yj} of this space define ano ther elem ent by setting { x j  v  {y,} 
= { x l , y l , x 2, y 2, . . .} .  Let ||| • ||| be any unitarily invariant norm  on and  let 4> 
be the associated sym m etric gauge function on  IR” , i.e., |||/4||| =  ^({s/^)}).

G iven tw o operators A  and  B  we define

IM © B |||=4K {s/4)}v{s j(B )}).

This quantity  is simply the ||| • |||-norm  of A @ B  regarded as the opera to r I 1 
in N ote th a t '

M © B ||= m a x (M ||,||jB ||) , 

l|^4©-B||p=(M||p+ ||J5||p1/p for l g p < o o ,



and  in particular
\\A®A\\p^ 2 li’, \\A\\p for l ^ p < c » .

Extensions to  direct sums involving m ore than two opera to rs are obtained in the 
same way. If the operator ideal is norm ed by the sym m etric gauge function 
then so is by the above procedure.

The proof of (1) and  (2) in [7] goes via the following inequalities, which are of 
independent interest. If A, B  are  positive operators in J p for any pSi 1, then

2 ^ n A  + B r p^ \ \ A r p+ \ \ B \ \ ^ \ \ A  + B\\p . (3)

Note that in the notations defined above this can be rew ritten as

i | P  +  B )© (^  +  B)||p^ M © B ||p;S||(.4 +  B )© 0 ||p . (4)

Thus the following theorem  (its history is outlined in the next section) includes 
a generalisation of (3).

Theorem 1. Let A ,B  be any two positive operators belonging to the norm ideal 
associated with a unitarily invariant norm ||| • |||. Then

* | |P  +  B)©(,4 +  B)||| ^  p © B | | |  g  | | P  +  B)© 0||| • (5)

To recast (1) and (2) in a sim ilar m ould we need to  go to  quadruplets instead of 
pairs. Thus, for example, the second inequality in (1) can be rew ritten first as

2Vr{\\A + BVp + \ \ A - B \ \ ^ ' ^ 2 { \ \ A V p+  || U||£)1/p

and then as

||M + B )© (/t +  B ) © ( ,4 - B ) © ( ^ - B ) | |; < 2 ||,4 © 0 © B © 0 ||p 

for 2 ^ p <  oo.
N ote  tha t the first inequality in (1) can be obtained from  the second one by 

replacing A  and B  by A  + B  an d  A  — B  respectively, and  vice versa. Sim ilar 
considerations apply to  the pair o f inequalities in (2). The following tw o theorem s, 
then, are the promised generalisations of (1) and (2).

Theorem 2. Let A  and B be two operators belonging to the ideal , / Q associated with a 
Q-norm || • ||Q. Then

! P  +  B)©(,4 +  B ) © ( ^ - B ) © ( .4 - B ) ||Q^ 2 |M © 0 © B © 0 ||Q. (6)

Theorem 3. Let A  and B  be two operators belonging to the ideal associated with a 
Q*-norm || • ||e». Then

2 |M © 0 © B © 0 ||a .g ||( i4  +  5)ffi(i4 +  B )© ( i4 -B )© (A -B ) ||e. .  (7)

3. Proofs of the Results

In finite dimensions Theorem  1 is a restatem ent of a m ajorisation result due to  
Thom pson [12], O ne p ro o f of T hom pson’s result given in A ndo [1 ] goes through, 
without any change, to  infinite dim ensions. F o r the convenience of the reader we 
reproduce this short and  elegant proof.



To prove the first inequality  in (5) w rite (A + B)(&(A + B) = (A®B)+(B(&A)  
and  note  th a t the tw o term s on the righ t-hand  side have the sam e norm . To prove 
the second, w rite

Then note

A  + B  0 \  ( A 112 B i/2\
0 o h ™  ' ^ r e  X = {  0 0 ) '

A  A'<2B'>2 
\ B l/2A 112 b

By general properties o f un itarily  invarian t norm s (see, e.g., [5]),

III X Y * III =  |||X*X||| and  ^ , being a “pinching” o f X * X ,  has smaller norm

th an  X * X .  This proves the second inequality  in (5).
Recently, in  [3], we have begun a study of “weakly unitarily  invarian t” norms. 

These are  norm s on spaces of finite-dim ensional opera to rs th a t are  invariant under 
un itary  conjugations A  -> U*A U. The pinching inequality  extends readily to  these 
norm s and, in  a finite-dim ensional setting, X * X  and  X X *  are unitarily  conjugate. 
Thus the p roo f above shows th a t the inequalities (5) are valid for this extended 
class of norm s. Such a norm  x' gives rise to  a unitarily  invarian t norm  r  by the same 
procedure as we have used to  define Q-norm s: t(A) = (t’(A*A))1/2 (provided this x 
satisfies the triangle inequality). O n  this basis analogues of Theorem s 2 and  3 may 
be form ulated and  proved in  the new setting.

W e now  tu rn  to  the proofs o f Theorem s 2 and 3. Since A* A  © 0  and  B * B ®  0  are 
positive operators, the first inequality  of (5) shows tha t, for any  unitarily  invariant 
norm  ||| • |||,

2 |||(A M  +  B *B )© 0© (.4M  +  B * B )® 0 |||^ 4 |||i4 M ® 0 © B * fl© 0 |||.  (8)

By unitary  invariance an d  the relation 2 (A * A + B * B ) = C + + C~  w here 
C += (A + B )* (A  + B), C ~ = ( A - B ) * ( A - B ) ,  the left side of (8) is ||[((C+ © C +) 
+ (C ~ © C ~ ))© (0 © 0 )|||. By the second inequality of (5) this is no t less than  
|||C + © C + © C ~ © C ~ |||.  T hus we have

|||C + © C + © C - © C - | | |  g  |||4 ^ M © 0 © 4 B * f l® 0 |||,

for every unitarily  invarian t norm . Hence, the inequality (6) is true  for all ()-norm s.
W e shall ob tain  (7) from  (6), by duality. I t is a central result of the Schatten 

theory  (see [10]) th a t j Q* is the Banach space dual of J Q under the bilinear pairing

<T, S> =  trT S . We apply this to  operators in ;# =  . F o r  TeiM  let A{T)

T + T  T + T  T _T  T __T
=  -1 - - - ©  — — l  @ - -  -  -3 @ -1- - j  , where the Tk are the diagonal blocks in

the 4 x 4  opera to r block m atrix  corresponding to  T. Clearly A  is a linear m ap on  'M 
and we claim th a t it is contractive with respect to  || ■ ||Q. To see this note th a t the 
pinching inequality ensures th a t || T\\Q^  ||T, © r 2© T 3© 7 4jiQ, while this is the 
sam e as || ©  -  T2 ©  T3 ©  — T41| Q by unitary  invariance. Hence each is no less than  
^ © O S T jS O H q  which dom inates |M (T)||Q by (6). O n general grounds, then , the 
ad jo in t A*  is also contractive (with respect to  || • ||Q»).



N ow  we claim tha t A*((A + B)® (A  + B)®(A —B )® (A  — B)) = 2 A ® 0 ® 2 B ® 0 .  
To see this we m ust check th a t for all T e J a

tr T{2A® 0@ 2B®  0) =  tr  A(T)((A  +  B)®(A + B ) ® ( A -  B)® (A -  B )), 

that is tr(2 ’T1̂ © 0 ® 2 T 3B® 0)

= tr ( ( ~ i )  W + (-4 + B)

Bearing in mind that tr(® X * )=  £ trX * , verification of this is routine. Since A*  is 
contractive, the inequality (7) follows. We have proved all the theorem s stated  in 
Sect. 2.

We recall that the inequalities

2{\\A\\PP+ \ \ B \ \ ? r ^  \\A + BVp+ \ ] A -B \ \“P (9)

(  1 1 \  f o r 2 < p < o o ; -  +  - =  l , and
V P q J

\\A + B \ \ l+ \ \A - B \ \ l ^ 2 ( \ \A \ \p+\\B\\p)‘>'p (10)

(for l < p ^ 2 )  complement (1) and  (2) to  form the com plete set of “C larkson- 
M cC arthy inequalities.” W e rem ark  that, while (1) and (2) are com m only proved 
separately, they follow from (9) and  (10) simply by the convexity properties of the 
pow er functions. Thus (1) is a consequence of (9) and  the convexity of t -* tPlq. It 
would therefore be doubly w orthw hile to  find a m ore direct p roo f (perhaps along 
the lines of our treatm ent of (1) and  (2)) for the inequalities (9) and  (10).

4. On an Inequality of Phillips

In [8] Phillips proved the following theorem , which is related to  m aterial in the 
preceding sections.

Theorem 4 (J. Phillips). Let A } t B 7 z 0 and t ^ l .  Then

W A ^ - B ^ r a W A - B W , .  (11)

W hen t =  2, this is a special case of the Powers-St0rm er inequality [9] which is 
valid for any two positive opera to rs A  and B. Phillips gave an in tricate proo f of (11) 
and noted tha t a  sim pler p ro o f w ould be possible if one had  the inequality 
tr(A‘ +  B ‘) ^  tr(y4 +  B'f for all positive operators A ,B  and  real num bers f ^ l .  But 
this is a fact proved by M cC arthy  in  [7]. Indeed, the inequalities (3) are equivalent 
to  the inequalities

2 1 ~p tv {A +  B)p ^  tr  A ” + tr Bp S  t r (4  +  B)p (12)

for all positive operators A , B  an d  for all p^> 1.



L et us now  indicate a sh o rt p ro o f o f (11) following Phillips. The m ap A -*Ar is 
o p e ra to r m ono tone  for 1 on the class of positive opera to rs (see Donoghue
[4]). So, the condition  A  implies A 1/17zBllt^ 0  for all 1. U sing (12) write

t rA  =  tr  ( A l,‘ — B 11' + ^  t r (A 1/( — B l/')' +  tr  B .

I.e., tr(A  — B ) ^ t r ( A I/l—B 1̂ )', which is the same as the inequality (11).
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