B. V. Rao, Stat-Math Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, INDIA (e-mail: bvrao@isical.ernet.in)
S. M. Srivastava, Stat-Math Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, INDIA (e-mail: smohan@isical.ernet.in)

AN ELEMENTARY PROOF OF THE BOREL ISOMORPHISM THEOREM

In this note we present a very elementary proof of the Borel isomorphism theorem (Corollary 6). The traditional and more well known proof of this theorem uses the first separation principle for analytic sets. A proof of this avoiding the first separation principle is also known ([1, p. 450]). Our proof is perhaps the simplest.

A Polish space is a second countable, completely metrizable topological space. The Borel σ -field of a metrizable space X will be denoted by $\mathcal{B}(X)$. The space $\{0,1\}^{\omega}$ of sequences of 0's and 1's will be denoted by \mathbb{C} . Equipped with the product of discrete topologies on $\{0,1\}$, it is a compact metrizable space. A bimeasurable map from a measurable space (X,\mathcal{A}) to a measurable space (Y,\mathcal{B}) is a measurable map $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ such that $f(A)\in\mathcal{B}$ for every $A\in\mathcal{A}$. A Borel subset of a Polish space will be called a standard Borel set. It is assumed that a standard Borel set is always equipped with its Borel σ -field. Two standard Borel sets X and Y are called isomorphic if there is a bijection $f:X\longrightarrow Y$ which is bimeasurable.

Lemma 1 ([1, page 348, Theorem 3]) If X is a metrizable space, then $\mathcal{B}(X)$ is the smallest class \mathcal{B} of subsets of X such that

- i) every open set in X belongs to B;
- ii) if B_0, B_1, \ldots are pairwise disjoint and belong to \mathcal{B} , then so does $\bigcup_n B_n$; and
- iii) if B_0, B_1, \ldots belong to \mathcal{B} , then so does $\bigcap_n B_n$.

Key Words: standard Borel set, Borel isomorphism Mathematical Reviews subject classification: Primary: 03E15, 04A15, 54H05 Received by the editors March 10, 1994 PROOF. If $C = \{A \in \mathcal{B} : X \setminus A \in \mathcal{B}\}$, then C satisfies conditions i) – iii). Hence C is closed under complementation and so equals $\mathcal{B}(X)$. This completes the proof.

The next result can be found in ([1, page 448, Theorem 1]). However, our proof is significantly simpler than the one given in ([1]).

Proposition 2 If X is a Polish space, then for every Borel set B in X there is a Polish space Z and a continuous bijection $f: Z \to B$. Moreover, for every Borel set A in Z, f(A) is Borel in B.

PROOF. Let \mathcal{B} be the class of all Borel sets in X satisfying the above property.

- i) Let U be an open set in X. As U is Polish we take Z = U and f the identity map. This shows that $U \in \mathcal{B}$.
 - Let B_0, B_1, \ldots belong to \mathcal{B} . For each n, fix a Polish space Z_n and a continuous bijection $f_n: Z_n \to B_n$ which is bimeasurable.
- ii) Set $Z = \{(z_0, z_1, \ldots) \in \prod_n Z_n : f_0(z_0) = f_1(z_1) = \cdots \}$ and define $f: Z \to X$ by $f(z_0, z_1, \ldots) = f_0(z_0), (z_0, z_1, \ldots) \in Z$. Then Z is Polish and $f: Z \to X$ is a continuous injection such that $f(Z) = \bigcap_n B_n$. It is also clear that f is bimeasurable. Thus, $\bigcap_n B_n \in \mathcal{B}$.
- iii) If, moreover, B_0, B_1, \ldots are pairwise disjoint, then let Z be the direct sum of Z_0, Z_1, \ldots and $f: Z \to X$ be defined by $f(z) = f_i(z)$ if $z \in Z_i$, $i \in \omega$. This shows that $\bigcup_n B_n \in \mathcal{B}$. We get the result from Lemma 1.

The following result is a measurable analogue of the Schröder-Bernstein theorem and is a part of folklore. A sketch of the proof is given for the sake of completeness.

Proposition 3 (Schröder-Bernstein): If there exist injective bimeasurable maps $f:(X,\mathcal{A})\to (Y,\mathcal{B})$ and $g:(Y,\mathcal{B})\to (X,\mathcal{A})$, then there is a bimeasurable bijection $h:(X,\mathcal{A})\to (Y,\mathcal{B})$.

PROOF. Inductively we define sets A_0, A_1, \ldots in \mathcal{A} by $A_0 = \emptyset$ and $A_{n+1} = X \setminus g(Y \setminus f(A_n))$. Set $A = \bigcup_n A_n$. Then $A \in \mathcal{A}$ and $A = X \setminus g(Y \setminus f(A))$. Now, define $h: X \to Y$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g^{-1}(x) & \text{if } x \in X \setminus A. \end{cases}$$

Clearly h is a desired bimeasurable bijection.

We shall need one more well known result for our proof.

Proposition 4 ([1, p.444, Theorem]) Every uncountable Polish space Z contains a homeomorph of C.

Theorem 5 If B is an uncountable standard Borel set, then B is isomorphic to \mathbb{C} .

PROOF. Let D be the set of all dyadic rationals (including 0 and 1) in I = [0,1] and E the set of all eventually constant sequences $(x_n) \in \mathbb{C}$. Define $f:I \to \mathbb{C}$ by f|D to be any bijection from D to E and for $x \in I \setminus D$, $f(x) = (x_n)$ where $x = \sum_{0}^{\infty} x_n \cdot 2^{-n-1}$. Note that $f|(I \setminus D)$ is a homeomorphism from $I \setminus D$ onto $\mathbb{C} \setminus E$. Thus I is isomorphic to \mathbb{C} . It follows that the Hilbert cube $H = I^{\omega}$ is isomorphic to \mathbb{C}^{ω} which is homeomorphic to \mathbb{C} . Since \mathbb{B} is homeomorphic to a Borel subset of \mathbb{C} . On the other hand, by Proposition 2, there is a Polish \mathbb{Z} and a continuous bijection $g: \mathbb{Z} \to B$. Since \mathbb{B} is uncountable, so is \mathbb{Z} . By Proposition 4, \mathbb{Z} contains a homeomorph of \mathbb{C} and, hence, so does \mathbb{B} .

Our result follows from Proposition 3.

Corollary 6 (The Borel Isomorphism Theorem): Two standard Borel sets X and Y are isomorphic iff they are of the same cardinality.

References

[1] K. Kuratowski, *Topology, Vol I*, Academic press, New York, San Francisco, London, 1966.