Real Analysis Exchange
Vol. 20(1), 1994/95, pp. 347-349

B. V. Rao, Stat-Math Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, INDIA (e-mail: bvrao@isical.ernet.in)
S. M. Srivastava, Stat-Math Unit, Indian Statistical Institute, 203 B. T. Road, Calcutta 700 035, INDIA (e-mail: smohan@isical.ernet.in)

AN ELEMENTARY PROOF OF THE BOREL ISOMORPHISM THEOREM

Abstract

In this note we present a very elementary proof of the Borel isomorphism theorem (Corollary 6). The traditional and more well known proof of this theorem uses the first separation principle for analytic sets. A proof of this avoiding the first separation principle is also known ([1, p. 450]). Our proof is perhaps the simplest. A Polish space is a second countable, completely metrizable topological space. The Borel σ-field of a metrizable space X will be denoted by $\mathcal{B}(X)$. The space $\{0,1\}^{\omega}$ of sequences of 0 's and 1 's will be denoted by C. Equipped with the product of discrete topologies on $\{0,1\}$, it is a compact metrizable space. A bimeasurable map from a measurable space (X, \mathcal{A}) to a measurable space (Y, \mathcal{B}) is a measurable map $f:(X, \mathcal{A}) \rightarrow(Y, \mathcal{B})$ such that $f(A) \in \mathcal{B}$ for every $A \in \mathcal{A}$. A Borel subset of a Polish space will be called a standard Borel set. It is assumed that a standard Borel set is always equipped with its Borel σ-field. Two standard Borel sets X and Y are called isomorphic if there is a bjection $f: X \longrightarrow Y$ which is bimeasurable.

Lemma 1 ([1, page 348, Theorem 3]) If X is a metrizable space, then $\mathcal{B}(X)$ is the smallest class \mathcal{B} of subsets of X such that

i) every open set in X belongs to \mathcal{B};
ii) if B_{0}, B_{1}, \ldots are pairwise disjoint and belong to \mathcal{B}, then so does $\bigcup_{n} B_{n}$; and
iii) if B_{0}, B_{1}, \ldots belong to \mathcal{B}, then so does $\bigcap_{n} B_{n}$.

Key Words: standard Borel set, Borel isomorphism
Mathematical Reviews subject classification: Primary: 03E15, 04A15, 54H05
Received by the editors March 10, 1994

Proof. If $\mathcal{C}=\{A \in \mathcal{B}: X \backslash A \in \mathcal{B}\}$, then \mathcal{C} satisfies conditions i) - iii). Hence \mathcal{C} is closed under complementation and so equals $\mathcal{B}(X)$. This completes the proof.

The next result can be found in ([1, page 448, Theorem 1]). However, our proof is significantly simpler than the one given in ([1]).

Proposition 2 If X is a Polish space, then for every Borel set B in X there is a Polish space Z and a continuous bijection $f: Z \rightarrow B$. Moreover, for every Borel set A in $Z, f(A)$ is Borel in B.

Proof. Let \mathcal{B} be the class of all Borel sets in X satisfying the above property.
i) Let U be an open set in X. As U is Polish we take $Z=U$ and f the identity map. This shows that $U \in \mathcal{B}$.
Let B_{0}, B_{1}, \ldots belong to \mathcal{B}. For each n, fix a Polish space Z_{n} and a continuous bijection $f_{n}: Z_{n} \rightarrow B_{n}$ which is bimeasurable.
ii) Set $Z=\left\{\left(z_{0}, z_{1}, \ldots\right) \in \prod_{n} Z_{n}: f_{0}\left(z_{0}\right)=f_{1}\left(z_{1}\right)=\cdots\right\}$ and define $f: Z \rightarrow X$ by $f\left(z_{0}, z_{1}, \ldots\right)=f_{0}\left(z_{0}\right),\left(z_{0}, z_{1}, \ldots\right) \in Z$. Then Z is Polish and $f: Z \rightarrow X$ is a continuous injection such that $f(Z)=\bigcap_{n} B_{n}$. It is also clear that f is bimeasurable. Thus, $\bigcap_{n} B_{n} \in \mathcal{B}$.
iii) If, moreover, B_{0}, B_{1}, \ldots are pairwise disjoint, then let Z be the direct sum of Z_{0}, Z_{1}, \ldots and $f: Z \rightarrow X$ be defined by $f(z)=f_{i}(z)$ if $z \in$ $Z_{i}, i \in \omega$. This shows that $\bigcup_{n} B_{n} \in \mathcal{B}$. We get the result from Lemma 1.

The following result is a measurable analogue of the Schröder-Bernstein theorem and is a part of folklore. A sketch of the proof is given for the sake of completeness.

Proposition 3 (Schröder-Bernstein) : If there exist injective bimeasurable maps $f:(X, \mathcal{A}) \rightarrow(Y, \mathcal{B})$ and $g:(Y, \mathcal{B}) \rightarrow(X, \mathcal{A})$, then there is a bimeasurable bijection $h:(X, \mathcal{A}) \rightarrow(Y, \mathcal{B})$.

Proof. Inductively we define sets A_{0}, A_{1}, \ldots in \mathcal{A} by $A_{0}=\emptyset$ and $A_{n+1}=$ $X \backslash g\left(Y \backslash f\left(A_{n}\right)\right)$. Set $A=\bigcup_{n} A_{n}$. Then $A \in \mathcal{A}$ and $A=X \backslash g(Y \backslash f(A))$. Now, define $h: X \rightarrow Y$ by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \\ g^{-1}(x) & \text { if } x \in X \backslash A\end{cases}
$$

Clearly h is a desired bimeasurable bijection.
We shall need one more well known result for our proof.

Proposition 4 ([1, p.444, Theorem]) Every uncountable Polish space Z contains a homeomorph of \mathbf{C}.

Theorem 5 If B is an uncountable standard Borel set, then B is isomorphic to C.

Proof. Let D be the set of all dyadic rationals (including 0 and 1) in $I=$ $[0,1]$ and E the set of all eventually constant sequences $\left(x_{n}\right) \in C$. Define $f: I \rightarrow \mathbf{C}$ by $f \mid D$ to be any bijection from D to E and for $x \in I \backslash D, f(x)=$ $\left(x_{n}\right)$ where $x=\sum_{0}^{\infty} x_{n} \cdot 2^{-n-1}$. Note that $f \mid(I \backslash D)$ is a homeomorphism from $I \backslash D$ onto $\mathbf{C} \backslash E$. Thus I is isomorphic to \mathbf{C}. It follows that the Hilbert cube $H=I^{\omega}$ is isomorphic to C^{ω} which is homeomorphic to C. Since B is homeomorphic to a Borel subset of H, it is isomorphic to a Borel subset of \mathbf{C} On the other hand, by Proposition 2, there is a Polish Z and a continuous bjection $g: Z \rightarrow B$. Since B is uncountable, so is Z. By Proposition $4, Z$ contains a homeomorph of \mathbf{C} and, hence, so does B.

Our result follows from Proposition 3.
Corollary 6 (The Borel Isomorphism Theorem): Two standard Borel sets X and Y are isomorphic iff they are of the same cardinality.

References

[1] K. Kuratowski, Topology, Vol I, Academic press, New York, San Francisco, London, 1966

