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Abstract: In this paper we study some order relations between the selection and the inclusion prob
abilities for PPSWOR Sampling Scheme. We also establish some interesting bounds on the inclusion 
probabilities in terms o f the selection probabilities.

1 Introduction

Consider a finite population U = {1 , . . . ,  N]  of N  identifiable units and a positive
valued size measure X  taking value X,  on unit i. We denote by p t the normed size

N
measure X t/  £  and by p  = (pu . .  - ,pN) the normed size vector. A sample of

i = l
size n is selected from the population using a probability proportional to size 
without replacement (PPSWOR) sampling design based on p.  For an arbitrary 
subset s of U  let n (s) denote the probability of including s in the sample. For 
s = [/}, 7i(s) will be denoted by nt. In many practical survey problems it is of in
terest to control the values of tt, (and also of n\i,j\) in order to get stable 
estimates or to obtain certain preferred samples. It is thus important to find out 
how the values of n, and nj are related for a given relationship between p, and pj. 
It is also possible that a transformation on the available size measure or an 
altogether different choice of a new size measure would lead to a more suitable 
choice of re, values, say n ] , under the PPSWOR scheme. In this paper we con
sider some questions relating to the behaviour of 7it values for a given p  as well 
as the behaviour of n\  and nt vis-a-vis the relationship between p\  and p h where
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N
p\  = X ' /  J  X'h X'j being the value on the unit i for the alternative choice of 

/= 1

the size measure. In the process we also establish some interesting bounds on 
7iIs in terms o f Pj s.

2 Main Results

For PPSWOR sampling scheme based on an initial selection probability vector 
p,  the probability of selecting an ordered sample
1 . . .  *  in^ N ,  is given by

p ( iu . . . , i „ ) = p i i . . . p in( l - p iy l . . . ( l - p i - . . . - p i ) - '  .
(2.1)

The probability of selecting an unordered sample (subset of size n ) s„ is obtain
ed by summing the probabilities of selection of n ! ordered samples given by the 
n \ permutations o f the elements of sn. Andreatta and Kaufman (1986) in their 
Theorem 4.1 obtained an interesting and useful integral representation of p(sn) 
given by

N

P(sn) = [  E
\ i =  1 ies„ J  0 ies„

ies„ J  0
(2 .2)

(on substituting t = e ' ^ iX‘).
For a given p,  we first prove certain inequalities connecting ti/s and cor

responding p t’s. We first have an order relation involving n/s  and /7,’s. More 
generally we prove the following.

Theorem 2.1: Let i J e U ,  i=tj,  s0 C U\\i , j \  with 0 < / =  |50| < n -  1, s l = s0 + (/j 
and s2 = So+ [/’)• Then 7r(5,1)>7r(s2) according to p t>pj.

Proof: Consider first / = « -  1 and assume without loss of generality / = 1, j  = 2. 
Then s, = {;,,i2, . .  s2 = S/i J i ,  ■ ■ ■ J n ! with /, = 1, j t = 2, iv = j v, 2 < v < n  and



|sj| = |j2| = n. We then have n ( s ^ - n ( s 2) = £  cT[Hz( p { ) - H T(p2)], where T„ 
is the set of all permutations r of { 1 , . . .  ,«}, rsTn

cT= n
v= 1

v - \1 - 1  Pi
 ̂= 1

-1

n  p f .
j.=1 
j  ̂ Vo

v - 1
H t (x ) =  x - n [ d v { t ) - x ] - x , rfB(r)=l- I  p * ,

V = Vq + 1 A = 1

t>„ = r “ 1 (1) and p *  = for v *  v0.
Since cT> 0  and H z\x)  is strictly increasing for 0 < x <  min d v(r) the 

assertion follows for I = n -  1. £'0+1 ~vSn
For general / ( 0 < / < « - l )  the assertion follows from the first case by noting 

that 7i(5 j) — 7i (s2) =  E [^(^i Us) - n ( s 2 £/s)], where S*  consists of all subsets s
s e S*

from U\(s0U{i,jj) containing exactly « - / -  1 elements.
As corollary we obtain

Corollary 2.1: If for any i and j , p t>pj  then n ^ T t j  and conversely.

Remark 2.1: Such order relation between 7r,’s and p,’s is trivially true for all 
71P S  sampling schemes, where nj = npj.  This is also obvious for Midzuno-Sen 
(Midzuno (1952), Sen (1952)) sampling scheme, for in this case

n - 1 N - n  
^ “ T r T  + T T T A  •

Rao (1961) and Seth (1966) considered the sampling scheme, where the first two 
units are drawn by PPSWOR and the remaining (n -  2) units of the sample by 
simple random sampling without replacement (SRSWOR). For this scheme, we 
have

... N - n  n - 2
7T, = 71,(2)——  + -

N - 2  N - 2

where 71,(2) is the inclusion probability of unit i in the first two draws. From 
Corollary 2.1, it follows that if p ^ p j  then 7t,(2)>7iy(2) and hence 7i ,> 7ry-.



For the case o f SRSWOR, we have p t = l / N ,  7r, = n / N V  i. When we deviate 
from the SRSWOR probability and consider a general p ,  we shall find out how 
the corresponding it fs  behave. We first establish the following theorem which 
provides some simple bounds on 7r,’ s in terms o f min (pt) and max (p,).

Theorem 2.2: Let ^ , z2e £/ with p t = min Pj and Pj = max p,  and let PjTr(i)
1 1 sisiV 2 IssisN

denote the probability of getting unit i in the rth draw, 1 1 < i s N .  Then

(a) Tr{i\) — Tr+1 (/])

(b) Tr(i2) > T r+i(i2) , l < r < n

(c) n p j ^ n j ^ n / N  and n / N < n i2< n p i2

(d) n p ii< n i^ n p h , / e , /2} .

Proof: We can write

where p(sr) denotes the probability o f obtaining a PPSWOR (N , r ) subset sr and 
Sr denotes the set o f all subsets of containing exactly r units. Now

-1
E p(sr_ , ) (  1 ~ Z  Pi E Pi

E Pi

x  E  E  Pi
sr Dsr_ t ieSr\Sr_, 

srESr

which proves (a). The part (b) follows by similar arguments.



The part of the inequalities in (c) with n / N  as a bound is easily established 
by contradiction. Let, if possible, nt > n / N .  Then, by Corollary 2.1,

1 N
7ij>n/N V/, which contradicts the relation that £  tt,- = n. Hence, we must

i
have nh < n/ N .  Similarly, it can be shown that >  n/N .

To prove the other part of the inequalities in (c) we note that 7r, =
n

Pi Z Tr{i), 7"i (/) = 1, whence the assertions follow by (a) and (b). The part
r= 1

(d) follows from (c) and Corollary 2.1.
Consider now a simple deviation from the SRSWOR given by the initial selec

tion probability vector

P = (P(1)........ P (' \  1 / N , . . . ,  1 / N , p (l\  . . .  , p (2)) ,

where p (])< \ / N < p {1). This situation may occur in practice when one has three 
different types of units homogeneous within each type and one wishes to select 
them with three different types of probabilities say p ^ \  1 / N  and If 7r(,) 
denotes the inclusion probability of /th type, i=  1,2,3, it follows from (c) of 
Theorem 2.2 that and n (y)< n p i2). However, it does not follow that
7T(2)> or < n /N .  It may thus be of interest to compare the values o f 7r(2) with 
n / N  and more generally, the value o f nt with n p t for a general p .

Towards this, we establish the following theorem giving lower bounds on 
7T,’ s in terms of corresponding p ? s.

Theorem 2.3: For a given p  = (pu . . .  ,pN),

n ^ p i c i p i )  , 1 < i < N  ,

where c(pt) is the value of 7r;//j, based on

0v ) = ( L z £ i  I z E i  n l ~ Pi

Proof: Without loss o f generality, take / = 1. We then have,



where 7^(1) is defined as in Theorem 2.2. Now, by Lemma A.2 o f the Appen-
N

dix, g(p2, . ■. ,Pn ) and hence, n /p ,  is minimum subject to £  Pi ~ ! ~P\
2 when

P2 = ■ ■ ■ = P n -  (1 — — 1. This completes the proof of the theorem.
It is easy to verify that c(pt) is decreasing in p t and that for p, = \ / N ,  

c(Pi) = n. From these, we immediately have the following.

Corollary 2.2: If p j < p i0, then n j^ p jc (p i0).

Corollary 2.3: If p t = 1 /N ,  then 7ij >  n/N.

Corollary 2.4: If p ,<  \ / N ,  then 7ij>npj.

Remark 2.2: For p { > \ / N ,  it is not, however, necessarily true that nl< n p l. The 
following is a counter-example.

Example 2.1: N = Z . p  = (0.01, 0.34, 0.65). Let n = 2. Here p 2> 1 / N =  0.3333. 
But :i2 = 0.9748 > 2 p 2 = 0.68.

Motivated by these results, we shall now ask the question whether for two ini
tial selection probability vectorsp  andp ' ,  the corresponding vector of inclusion 
probabilities n = . .  . , n N) and n ’ = ( n \ , . .  are related in the same way 
as p  and p '  are.

The following example shows that p i< p \  does not necessarily imply that 
7i,<  n'j even in the case where p \  is obtained as a simple transformation from p h 
namely p \  = a  + fipj.

Example 2.2: Let N =  3, n = 2, and p\  = 0.1/3 + 0.9p,. For p  = (0.1,0.2,0.7), 
p '  = (0 .37/3,0.64/3,1.99/3). Here p 2<p'2 but n2 = 0.6889>7^ = 0.6637.

Remark 2.3: In this connection we may note that such relation between p  and 
it is true if the scheme used is a n P S  one or the scheme due to Midzuno-Sen 
(1952) (see Remark 2.1).

Finally, we investigate whether the vector of inclusion probabilities n  is 
isotonic in p.  The specific question can be posed as follows. Let p  and p '  be two 
normed size vectors satisfying p < p '  and let n  and n'  be the corresponding vec
tors of inclusion probabilities underlying the PPSWOR desings each of size n. 
Is it then true that n  < n'7 Curiously enough, in general, this does not hold. A  
counter-example is obtained by taking



Example 2.3: N = 3 ,  n = 2, p  = (0.1,0.3,0.6) and p ' = (0.32/3,1.3/3,1.38/3),  
resulting in n = (0.2929,0.7833,0.9238) and n'  = (0.2791,0.8542,0.8667). It is 
readily seen that p  <p'  while n > n' .

However, the following theorem shows that if we compare any initial pro
bability vectorp  and the corresponding n  with the SRSWOR probabilities, name
ly Po = (1/M  . . . ,  1/A0 and n0 = ( n / N , . .  . , n / N ) ,  we always have p<Po  and
71 K 7Zq.

Theorem 2.4: For every normed size vector p  = (pu . . .  ,pN), P\<P~L< . . .  < p N 
we have

t t 
(i) 2  7i j < t n / N  V f> 1 and (ii) £  P j ^ t / N  V t>  1 . 

j= i J =i

Proof: For t = 1, (i) follows by (c) of Theorem 2.2. Suppose now (i) holds 
for t = t, but does not hold for t = t+  1. Then we must have n t + 1 > n / N  imply-

N r+!
ing by Corollary 2.1, n j > n / N  Vj  = t  + 2 , . .  . ,N .  This gives Y, 71 j  = £  nj

N (? + l)n ( N —t —l ) n  J=1 ■/=1+ E 7 T —----- — + --------------- = «, which contradicts the relation that
j - t+2 N  N

N

E itj = n. Hence, if (i) holds for t then it also holds for t+  1. As (i) holds for
j= i
t  = 1, it holds v / >  1.

It can be established by similar arguments (replacing 7tj by pj  and t n / N  etc. 
by t / N  etc.) that (ii) holds.

Appendix

Lemma A . l :  Let a>  1, c > 0  and integers r , k  with \ < r < k  be given. Define 

X = \ x  = {xu . . . , x k) e R k :Xi>:0, E x ,  =  c j and f p(a , x )=  £  £  H  1)/ = 1 J  l = 1 seS/ ies
for x e X ,  where St denotes the set o f all subsets of ( 1, . . . ,  k] containing exactly 
/ elements. Then for x * e X it holds that f ( x * )  = min f ( x )  iff x* = c /k ,  1 < i < k .

x e X

Proof: Since X  is a compact subset o f R k and / is continuous on X  there exists 
at least one x * e X  with f ( x* )  =  minf ( x ) .  Suppose now that one component of



x*  is not equal to c/k.  Then there are /i ,/2e { l , . .  . ,k}  such that x * < c / k < x * .
Let now e > 0 with x f  + e <  c / k  <  x f  -  e and define 21 l2

c  * X* , if ‘ *  i u h

x f  + e , if i = /j

. if / = i2

Of course x e X .  Now it is easy to show

/( * * ) - / ( * )  = b-a c(as - i ) - ( a x*2- a xh+e) , 

where b = £  II (a*' -  1) and S*  is the set of all subsets of ( 1 , . . . , fc}\{/l5/2}
s e S* ies

containing exactly r - 1 elements. Because o f b > 0, e > 0 ,  a>  1 and x * > x *  + e 
one would get f ( x * ) > f { x )  in contradiction to f ( x* )  = min/ ( x).  This completes 
the proof of the lemma. xeX

Lemma A.2: For PPSWOR (N , n ) sampling scheme with an initial selection prob
ability vector p  = (pu . . .  ,pN), let g(p2, ■ ■ ■ ,Pn ) be defined as in (2.3). Then g is

N
minimum subject to £  p, = 1 - p x when p, = (1 - p {) / ( N - 1) v /  = 2 , . . . , N.

( = 2

Proof: Observe that

g(p2, . . .  ,pN) = X £  p(sr) ( 1 - Y .  Pir=ls,eSr \ iesr

where p(sr) denotes the probability of a PPSWOR (N,r)  subset sr and Sr 
denotes the set of all subsets of CA{1 j containing exactly r units. Using the integral 
representation (2.2), we have

n -l 1 1
8(P2,--->Pn)= E E \ X i ^ ~ Pi-\)d t  = \ f n_ ^ \ / t , p 2, . ■ . ,pN)dt

r = 1 s Te S r 0 i e s r 0
/



in the notation of the function/ defined in Lemma A.I. By Lemma A.1, it now
1 &

follows that ■ ■ ■,Pn) >s minimum when p t = ------ - V2 < / < /V, for
N -1

every r e (0,1). Hence, the lemma follows.

Acknowledgement: The authors like to record their sincere thanks to the referee for suggesting the 
present proof o f Lemma A .l and for many other suggestions which considerably improved the presen
tation of the results.

The authors also thank Dr. S. Das Gupta and Dr. J. C. Gupta for their comments which led to 
Example 2.3 and Theorem 2.4.

References

1. Andreatta G, Kaufman GM (1986) Estimation of finite population properties when sampling is 
without replacement and proportional to magnitude. J  Amer Statist Assoc 81:657-666

2. Midzuno H (1952) On the sampling system with probability proportional to the sum of sizes. Ann 
Inst Stat M ath 3:99-108

3. Rao JNK (1961) On the estimate o f variance in unequal probability sampling. Ann Inst Stat Math 
15:67-72

4. Sen AR (1952) Present status of probability sampling and use in estimation of farm characteristics 
(abstract). Econometrica 20:103

5. Seth GR (1966) On estimators of variance of estimate of population total in varying probabilities. 
J Ind Soc Agr Stat 18:52-56

Received 29 November 1989 
Revised version 7 September 1990


	Some Order Relations Between Selection and Inclusion Probabilities for PPSWOR Sampling Scheme

	1	Introduction

	2	Main Results

	(2.1)

	(2.2)

	(a)	Tr{i\) — Tr+1 (/])


	x E E Pi

	0v)=(Lz£i IzEi n	l~Pi



