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Abstract: Postu lating  a  super-population  regression m odel connecting  a  size variable, a  cheaply 
m easurable variable and  an  expensively observable variable o f interest, an asym ptotically  optim al 
double sam pling strategy to estim ate the survey p o pu la tion  to tal o f the third variable is specified. 
To render it practicable, unknow n m odel-param eters in the optim al estim ator are replaced by 
appropria te  statistics. The resulting generalized regression estim ato r is then show n to have a  m odel- 
cum -asym ptotic design based expected square erro r equal to  th a t of the asym ptotically  optim um  
estim ator itself. An estim ator for design variance o f  the estim ato r is also proposed.
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1 Introduction

We consider double sampling with varying probability in both phases from a 
finite population in order to estimate the to ta l of a variable y  of interest. Earlier 
Rao and Bellhouse (1978) considered, taking a first phase sample utilizing known 
size-measures, w’s and observing the values for it on an auxiliary variable x. 
Their second phase sample is a sub-sample from the first and its selection 
probability utilizes w’s but not x ’s. Postulating a linear regression model 
connecting y, x  and w of which the first two are treated as stochastic and the 
third as non-stochastic, they derived an optim al estim ator for the to ta l of y  as a 
generalised difference estim ator involving unknow n param eters within a class of 
non-hom ogeneous linear unbiased estim ators. C haudhuri and A dhikary (1983, 
1985) treated the same design set-up and superpopulation  model but obtained a 
model parameter-free optim al estim ator w ithin a severely restricted class of 
design unbiased estim ators. M ukerjee and C haudhuri (1990) extended the class 
of designs perm itting the second phase sample selection-probabilities to depend 
on both x and w-values, the latter know n for the entire population. They 
consider the regression estim ator which is design-biased and hence resorted to 
studying its asym ptotic design-based properties. Also postulating an appropri
ate super-population model slightly different from the earlier one they estab



lished certain m odel-cum -asym ptotic design-based properties of the regression 
estim ator and  specified optim al two-phase designs. Their study is based on the 
asym ptotics of Robinson and Sarndal (1983) which is a follow-up of Isaki and 
Fuller’s (1982) and Fuller and Isaki’s (1981) asym ptotic approach. In the present 
work Sarndal’s (1980) generalised regression (greg) estim ator in one phase sam 
pling is extended to  two-phase sampling with Rao-Bellhouse (1978) design, free 
of x ’s. Its properties following Brewer’s (1979) asym ptotic approach applicable 
to greg estim ators are examined postulating linear regression model as in 
M ukerjee and C haudhuri (1990) and extending exact theories of G odam be and 
Joshi (1965) and G odam be and Thom pson (1977) a m odel-cum -asym ptotic 
design-based optim um  estim ator is first derived. This involves model param e
ters. A class of optim al two-phase designs is noted and then shown that the 
double sampling regression estim ator itself shares the same property with the 
optim al one. Finally we present a m ethod of estimating the approxiate design 
variance of the two-phase regression estim ator following Sarndal’s (1982) and 
Sarndal, Swensson and W retm an’s (1992) technique of estimating the approxi
m ate variance of greg estim ator in single-phase sampling. The main reason for 
this presentation is to take advantage of simpler analysis by Brewer’s (1979) 
approach com pared to  the m uch tougher one treated by M ukerjee and 
C haudhuri (1990).

2 Asymptotically Optimal Double Sampling Strategy

We consider a finite population U = (1 , . . . ,  i , . . . ,  N)  of N  units labelled i 
(=  1 , . . . ,  N). O n it are defined three variables w, x and y with values vv; know n 
and positive with total W, x i unknown but ascertainable at little cost with to tal 
X  and Y; unknow n and ascertainable a t a high cost with total Y. The problem 
is to  estimate Y. F o r this sample of size with probability is taken from 
U and from sample s2 of size n2 is to be draw n with a conditional probability 
Pi(s2 \s i)- The over-all two-phase sample s =  (s1; s2) has then the selection p rob
ability p(s) =  Pi(Si). p2($2 1̂  1 )• The designs p lf p 2, P are perm itted to involve 
elements of W  =  (w1, . . , , w f, . . . ,  wN) but not those of X  =  (x j , . . . ,  x (, . . . ,  x N) or
I  = ( y u - - - , y h - - - , y N)-

F o r design p 1, we suppose the inclusion probabilities £  P i t a )  =  and
Si 3 i

X  Pi(s i) — n nj  are positive. F o r design p2 also the conditional inclusion
S, 9 O’
probabilities, for each held fixed, namely £  P2(s2 ls i) =  nn (s i) and

S2 si
Y, !^i) =  ^ 2ij(^i)are assumed to be positive. The survey data are denoted

s2 3 i , j
by d — (s, x,, y'j\i e s l , j  e s2). By an estim ator we mean a real-valued function of 
d w hich is free of any x, for i $ s l and of any yj for j  $ s2. It is to  be noted



throughout tha t s2 is a subset of To em ploy a serviceable estim ator t =  t(d) 
for Y  we “first” postu late a model M  connecting W, X,  Y  of which the first one 
is a  vector of know n positive constants bu t the latter are treated  as random  
vectors. By Em{Vm, Cm) we denote the opera to r of expectation (variance, 
covariance) over the jo in t distribution of Y  and  X.  By E ^V ^ ,  C x) we denote the 
operator of expectation (variance, covariance) over the conditional distribution 
of Y  given X  and  by E 2(V2, C 2) th a t over the d istribution of X.  F o r M  we 
postulate the following:

E A y J X ,  W)  = Pj X, +  p 2wt 

V1(yi\ X , W )  = a*i , E 2(ofi) =  ipf ,

E 2(x , \W)  =  p 3 Wit V2(x, \W) = a l  , i = \ , . . . , N

Further, y?s are ‘independent’ conditionally on X  and  x /s  are ‘independent’. We 
shall write 0 =  P iP 3- “Secondly”, we adop t the asym ptotic analysis o f Brewer 
(1979). This stipulates th a t U  along with W, X ,  Y, m ay be supposed to  reporduce 
itself T  (>  1) times leading to  the following entities:

UT = ( U ( l ) , - . . , U ( j ) ....... U(T)) ,

where

U{j )  = ( ( } - l ) N + l , . . . , { i - W  + N)  , 

where

X(j) — (^O -D JV  + U  •••) yy-UN + i’ •••> y ( j - l ) N + N )  » 7

such that units i , N  + i, . . . ,  ( j  — l ) N  + — 1 ) N  + i are same separately
for every i =  1 , . . . ,  N  and  y ( =  yNH =  • • • =  y u - i )N+i = ••• = y ^ - m + t  for i =  1, 

N  and similarly for WT, X T. F rom  each U(j) ,  samples of the type s are 
independently draw n according to  p and  am algam ated. F rom  such pooled 
samples, estim ators t are calculated so as to  estim ate T Y  ra ther than  Y  itself. 
Calculating the expectations with respect to  the resulting designs limits are taken 
allowing T  to  tend to  infinity. Such limits are denoted by lim Ep. Utilizing 
Slutzky’s theorem  (cf. C ram er (1966)) ab o u t limits of functions of several



sequences highly convenient simplifications are available under such limiting 
operations. W ith these preliminaries we shall seek estim ators t = t(d) for Y  
which are asym ptotically design unbiased (ADU) satisfying

lim Ep(t - Y )  = 0 (2.1)

F or such A D U  estim ators of Y  we have the following theorem.

Theorem 1: Assuming tha t Ep and Em commute, under M,

M(t) =  £ „ l t a £ , ( l -  Y f

1 X^li s,Bi^2iySl) /  1 v^li /

=  Em lim £ p(t0 -  Y f  

=  M (t0), say, where 

=  t0(d)

= I (yj ~ Pi*i ~ Piwj)lnijn2j{sl) + Pl X (xi-P3Wi)/nu
J€s 2 iesi

+ (e + P2) £ w i

Sketch of a proof: W riting A m{t) = Em(t -  Y) and extending G odam be and 
Thom pson’s (1977) analysis relevant to  t(d) subject to Ep(t(d) — Y) =  0, we 
easily simplify, using com m utativity of Ep, Em, to get

M(t)  =  lim EpVJt )  +  lim EpA 2m(t) -  V J Y )  . (2.2)

Next let h  =  h {d) =  X  ) + Pi ( l  ~  -  X  ^ T ? T ) ) -  Then
JSS2 n ljn 2j\s l) v e s i  n li jes2 n \jn 2j\s \)J

Ep(h )  =  Y- Hence lim E ^ t ,  -  Y) =  0. Let h =  h(d) be an “A D U  estim ator for 
0” i.e. lim Ep(h) =  0. Then we may write t =  t x +  h. Then, extending Godam be 
and Joshi’s (1965) approach so as to verify that lim EpCm(t1, h) =  0, the in
equality in Theorem  1 easily follows, on further noting th a t (i) Km(Y) =



Z  K,(yi) =  Z  W'? +  (») Cm(yt -  jSjjci, p xx t) =  0 and  (iii) lim E p Vm(t,)  =  

' " * l (  y  i ‘M \  + e i y  ( ° 1V I L  V  n 2 y  ___

r n 2l \ . f l i n 2t(s1)J Pl2r \ n J '
To get rid of the second term  in M(t)  in  (2.2), following G odam be and 

Thompson (1977) again an easy way is to  choose h =  h(d) as h0 =  h0(d) where

N w,N

l isst n \ i /  \  1 jes2 K\ j7!:2j(s l).

yielding t0(d) =  t ^ d )  + h0(d). Then, noting tha t V J h 0) =  0 and  A m{t0) =  0, the 
Theorem 1 finally follows.

The optim um  design p  for employing t0, the optim al estim ator for Y, is given 
by the following theorem .

Theorem 2: M 0(t) >  M , +  p where A/j =  ^Z ^  — Z +

(  \ ( N  \ 2  N \
/?i ^ — I Z  <?2i )  ~  Z  a2 iJ and p->  0 asymptotically in Brewer’s sense and  this

lower bound is attained for a sampling design for which (i) 7t2i(s i) =  n 2 ^ J n id

I n

Z  W l / X l l )  f o r  ' i n  S1 a n d  (“ ) n l i  =  ” i ^ 2 i / Z  ° 2 i

Sketch of a proof: To choose 7r2;(s i) so as t0  minimise M 0(t) we require to
N \I/? p (s )

minimise Z ~ t~  Z  ——^  subject to  Z  ^ 2;(s i) =  ni- The choice (i) is imme-
r  7cfi s f t i 7 t 2i(Sl) ies,

diate. To choose n u we then need to  minimise



asym ptotically in Brewer’s sense, p - *  0. So it is desirable to choose n u 's so
1 ( N  \ 2

tha t A 0 is minimal. Now using Cauchy-Schwarz inequality A 0 > —  I £  +
n 2 \ i /02 /  N \ 2  I

Z  ° 2 i j  » with equality if and only if n u  = n l a2ij Y J o2i. Hence follows the 

Theorem  2.

3 Asymptotic Optimality of Regression Estimator

The optim um  design is of course not applicable because a2i, ip; cannot be know n 
in practice. F o r any design with pre-assigned n u , n 2i(sl ) also tQ is not practicable 
because ( j  = 1,2, 3) are unknowable. So let szu =  £  z{ut, where z t, ut stand

ies2
for wi( Xj, y t, i e U. Then, we suggest estim ating /? =  (/?!, (i2)’ by b =  (bu  b2)  
where

and 0 by 6 =  —  -  b2. Then it may be checked that E J b )  =  /?, Em0 )  =  6 and  

so Em(tl  — Y) = 0. Here

t* =  y  yj + b j  y  —  -  y  Xj ^
jes2 ftljKljiSi) \ ‘ ®*i J 'e s j  n \jn 2j{s l))

+ b4 ^ w‘~ I  i n r s i )  + d( ^ w' -  £  r )V 1 J6S2 n l j n 2j \ Sl ) /  \  1 ie*i n l i /

So it is easy to  check that lim Ep(t$ -  Y) =  0 i.e. t* fulfils (2.1). F urther it is not 
difficult to  check applying Slutzky’s theorem  according to  requirements, that

Em lim Ep( tt  -  Y) =  Em lim Ep(t0 -  Y)2 .

D etails are om itted to save space and may be obtained on request from the 
authors if one needs.



4 Variance Estimation

We may recall th a t in one-phase sam pling the well-known H orvitz -  Thom pson 
(1952) estim ator has Yates -  G rundy (1953) variance estim ator. If the form er is 
replaced by Sarndal’s (1980) greg estim ator a Yates -  G rundy type variance 
estim ator for the la tte r is available from Sarndal (1982) and  Sam dal, Swensson 
and W retm an (1992). D raw ing analogy to  these in the present double sampling 
situation, we propose, following these estim ators, an  estim ator for an  approxi
m ate design variance of the regression estim ator t* as

v =  y y  ( Uu7Zlj~ nui] ( y i~ ('t>2 + )̂W| yj ~ ~ +
i < j e s 2 \  K l i j n 2ij(S l )  /  \  ^ 1  i ^ 1  j  /

y y  ^2.(^l)^2j(^l) ~  ^2 i j ( S l )h i  -  bjXj  yj  -  M j V

i< je s 2 ^ 2 i j ( * l )  \  ^ l i  ^ l j  J
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