A NOTE ON THE ESTIMATION OF MEAN SQUARE ERROR

PULAKESH MAITI & T. P. TRIPATHI

In an earlier paper, Maiti and Tripathi (1981) obtained a biased Subclass in T_2 class of linear estimators, where the Well-known Horvitz-Thompson estimator fails to be better, better in the sense of having smaller mean square error than one belonging to the biased sub-class, of course, under some moderate conditions. In this note, we present the conditions under which the estimates of mean square error will be non-negative.

Introduction and result—Maiti and Tripathi(1981)revisited T_2 -class of liner estimators, $T_2 = \sum_{i \in S} \beta_i y_i$ for population total y in search of the

biased estimators better than the well-known Horvitz-Thompson estimator, $\hat{y}_{\text{H-T}} = \overset{\Sigma}{\sum} y_i/\pi_i$ and observed that there does not exist

UMMSE estimator for y in T_2 . However some biased estimators were detected to be better than Horvitz-Thompson estimator for Y in case of a family of sampling designs and in case some apriori information on co-efficient of variation C_y , as $C_{(1)} \leqslant C_y$ is available. In this note, we consider the problem of estimation of mean square errors of T'_2 and T_2 * defined in (2.5) and (3.1) on pages 54 and 56 of Maiti and Tripathi (1981). From (1.2) of Maiti and Tripathi (1981), it may be shown that

$$M (T_2) = \sum_{j=1}^{N} \sum_{j=1}^{N} y_i y_j (\beta_i \beta_j \pi_{ij} + 1 - 2 \beta_j \pi_j)$$
 (1.1)

An unbiased estimator of (M (T2) is given by

$$\stackrel{\wedge}{M} (T_2) = \sum_{i \in s} \sum_{i \in s} y_i y_j (\beta_i \beta_j \pi_{ij} + 1 - 2 \beta_j \pi_j) / \pi_{ij})$$
(1.2)

and hence unbiased estimates for M (T_2) and M (T_2 *) can be obtained from (1.2) by replacing β_i by λ/π_i and λ^*/p_i respectively. (1.2) Let $y_i > 0$ for i = 1, 2, ..., N. A set of sufficient conditions for non-negativity of (1.2) would be

$$\beta_i \beta_j + (1 - 2 \beta_j \pi_j) / \pi_{ij} \geqslant 0 \text{ for } i, j = 1, 2, ..., N$$
 (1.3)

In fact, the condition (1.3) should hold only for $i\neq j$, because for i=j, the condition (1.3) reduces to

$$\beta_i^2 - 2\beta_i + 1/\pi_i \geqslant 0 \tag{1.3}$$

i.e, $(\beta_i - 1)^2 + \{(1 - \pi_i)/\pi_i\} \geqslant 0$

Which always holds true

Thus from (1.3), it is found that $M(T'_2)$ will be non-negative if for all $i\neq j$,

$$\lambda^2/\pi_i \, \pi_j + (1 - 2\lambda)/\pi_{ij} \geqslant 0 \tag{1.4}$$

The condition (1.4) will always be true, irrespective of the sampling design in case $\lambda \leqslant \frac{1}{2}$. Thus for all those populations with $C^2(y_{H-T})$

 \geqslant 1, $\stackrel{\wedge}{M}$ (T'₂) will be non-negative in case the optimum estimator $T'_{o2}(T'_2 \text{ with } \lambda = \lambda_o)$ is used. Further in case,

 $1 \leqslant C_{(1)}^2(\mathring{\gamma}_{H-T}) \leqslant C^2(\mathring{\gamma}_{H-T}), \lambda \text{ in T'}_2 \text{ is such that}$

$$1/(1 + C_{(1)}^2(y_{H-T})) \leqslant \lambda \leqslant \frac{1}{2}$$

 $M(T'_2)$ will be non-negative.

Further, the condition (1.4) may be expressed as

$$\frac{1}{\pi_i \pi_i} [\lambda^2 - \{(2\lambda - 1) \ \pi_i \ \pi_j / \pi_{ij}\} \geqslant 0$$

or
$$(\lambda - 1)^2 + \{(2\lambda - 1) (\pi_{ij} - \pi_i \pi_j) / \pi_{ij}\} \ge 0$$
 (1.5)

i. e. the same condition $\pi_{ij}/\pi_i\pi_j \geqslant 1$ for $i\neq j$ under

which $V(y_{H-T})$ is non-negative [(Horvitz and Thompson, (1952)] will make $M(T_2)$ also non-negative.

Similarly from (1.3) $\mathring{M}(T_2^*)$ will be non-negative

if
$$\left\{\lambda^{2}/p_{i}p_{j}\right\} + \left\{\left(1 - \frac{2\lambda^{*}\pi_{j}}{p_{j}}\right)/\pi_{ij}\right\} \geqslant 0$$
 for $i \neq j$ (1.6)

REFERENCES

Horvitz, D. G. and Thompson D.J. (1952): A generalisation of sampling without replacement from a finite universe. J. Ame:. Statist. Assoc. 47, 663-685

Maiti, P. and Tripathi T.P. (1981): Some T2 class of estimators betrer than H-T estimator. The Aliganh J. Statist. 52-58

Recevied: Feb. 24.

P. Maiti Opratious Reseesch Group Dr Vikram Sarabliai Marg, Baroda-390007 T. P. Tripathi University of Horin Nigeria Indian Statisics Institute, Calcutta

