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ESTIMATION OF NONSAMPLING VARIANCE
COMPONENTS UNDER THE LINEAR MODEL
APPROACH

Pulakesh Maiti'

ABSTRACT

The importance of nonsample or measurement errors has long been recognized.
[for numerous references see e.g.. the comprehensive papers by Mahalanobis
(1946), Hansen ctal. (1961), Bailar and Dalenius (1970). Dalenius (1974)].
Attempts have been made for estimating components due to nonsampling errors.
The work in this arca starts developing surveys, specifically_designed to
incorporate features which can facilitate the estimation of non sampling
components such as reinterviews and/or interpenetrating samples. Howcever
most of the survey designs so far developed, though few, arc very complex in
nature {Fellegi (1964, 1974), Bicmen et al. (1985), Folsom(1980), Nelson(1974)).
Here, a very simple survey design as well as a simple cstimation procedure have
been developed for the purpose of estimating simple as well as correlated
response variances, namely interviewer variance and superviser variance.

Key words: Simple Response Variance, Correlated responsc variance,
Measurement error.

1 Introduction

The various models developed for such errors have assumed that a survey
record (a recorded content item) differs from its true value (Zarkovich 1966) by a
systematic bias and various additive error contributions associated with various
sources such as interviewers, supervisors, coders etc. These models indicate that
the errors made by a specified error source (say a particular interviewer) are
usually corrclated. These correlated errors contribute to the additive components
of the total mean square error of a survey estimate. As a result of these correlated
components, the usual unbiased estimations of variances of estimators of total or
mean appear to be negatively biased. The modecls also indicate that these biases
can be climinated or reduced, if estimates of correlated response variance are

" Indian Statistical Institute, Kolkata.



194 Pulakesh Maiti: Estimation of nonsampling ...

available. This nccessitates the cstimation of the components due to correlated
variances.

1.1 Survey Measurements

We start with a set U ={U},U;.,....Ux} of N objects and a set {)'}of real

numbers corresponding 1o the objects. Each object is assigned one and only one
number and two objects may be assigned the same number [(Dalenius. (1974)].

Some of the essential conditions for having a measurement may be identified

as follows:

(a) the valuc of the characteristic to be measured should be precisely defined
for every population unit in a manner consonant with the uscrs to which
the data are to be put;

(b) for any given population unit, this value known as the true value should
be unique and should exist;

(c) there should exist procedures for obtaining information on the truc value
and although this procedure may be costly and very difficult to use
(Sukhatme and Sukhatme (1970);

1.2 Measurement Ervor

The approaches to define measurement error in surveys vary according to a
particular researcher’s view on true values. One approach considers the true
value to exist on the survey condition, while the other takes a strict operational
approach in relation to the survey condition [Hansen et al. (1951)].

Under the assumption that it is meaningful to talk about a true value Y; of the

study variable for the i population unit, then measurement error is defined as
(¥ =), (1.1)

where y;is observed measurement for the i individual using a specific

measurement technique.

1.3 Three Distinct views on the Nature of Measurement Variability

Three different views in existence may be described as follows:

(a) Mcasurements are random variables having a mean and a finite variance
[Hansen (1951); Raj (1956), (1968)]; (1.2)

(b) Measurements as random variables are generated by a conceptual
sequence of repeated independent trials of a generating process [Hansen
(1951)]; (1.3)
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(c) A third point of view does not allow the variability at the clementary
level, but assumes that the variability results from interviewers and
subsequent handling of data; (1.4)

1.4 Nonsampling Bias and Nonsampling Variance

Nonsampling bias is a measure of the difference between the expected value
of their repeated observations and the corresponding true value.

Nonsampling variance measures the variation of the observed values for
fixed samples in hypothetical repetitions of the survey process, if it is agreed
upon that the survey is conceptually repeatable under identical conditions. More
precisely, it is assumed that a measurement derived has a well defined, though
quite likely unknown, probability distribution.

Nonsampling variance has two components, namely (a) simple or
uncorrelated response variance and correlated response variance.

a) Simple response variance: Uncorrelated responses are those that are not
affected by the particular interviewer or superviser or coder or any other
survey personnel who happen to be associated with a particular clement of
the sample.

b) Corrclated response variance: In so far as individual interviewers have
different average effects on their work loads, they introduce response
errors which are correlated for all elements of the assignment included in
the work load of the investigator. The correlated errors thus arising give
rise to corrclated response variance. The correlated response variance may
be categorized as
* Intcrviewer variance;
® supcrviser variance;

e coder variance etc.

For different kinds of correlation of response deviation, one can refer to the
paper by Fellegi (1964).

Another way of looking at correlated response variance, say, interviewer
variance is that it results from bias effects that differ from one interviewer to the
other.

2 General Measurement Model

A mcasurement model wants to specify the joint probability distribution of the

.th . .. Cae
measurement y; for the /™ unit conditional on a samples s in sample surveys or

for every unit i of the population U in case, a census or complete enumeration is
conducted.

From a frequentist’s point of view. given a particular sample selection
procedure leading to a simple *'s” and a specific measurement technique adopted,
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the process gencrates an observed value for every ies, and given independent
obscrvations many times on the same sample “s”, a long scrics of data

{\’f; = 1,2,...} for each i€ sis generated. The observed value of a specified

element i€ s would vary in a random fashion around a long term mean value

and long term variance 0'1-2. These moments may or may not depend on the

sample. The same thing applies to every i€ U, when complete cnumeration is
conducted.

2.1 Some Specific Error Models

2.1.1 Based on the views expressed in (1.1) and (1.2)

Non sampling error models are essential for understanding the cffects of
measurement errors on statistics and statistical inference. AN such models
developed assume that observed value differs from the true value by a systematic
bias and additive error terms.

The basic model developed in the U.S. Bureau of census was first introduced
by Hansen ct al. (1951). The basic model assumes conceptually repeated trials
and possesscs the views on the nature of measurement variability expressed in

th h

(1.2) and (1.3). The measurement for the /" unit at " trial, v, was thus

modeled a
yie =Y+ B ite; 2.1)

where f,is a systematic bias and e; is the variable error. Under repeat
measurement for the same unit i/, e is taken as a mean zero random error.

Subsequent elaborations of the basic model was made by Hansen, Hurwitz,
Bershad (1961), Hansen, Hurwitz and Pritzkar (1964).

2.1.2 Based on the views expressed in (1.3)
Let y;be an observation from a randomly selected population unit 7 which is

thought of as the sum of two components, the true value Y;and an error d i the

error d j may be attributed to the measurement processes (including the

interviewer, questionnaire, the interviewer setting and so on).
In its most general form, the structure of the error dj provides for essential

correlations amongst the different measurement errors due to interviewers,
supervisers, coders etc., or due to any other survey operators.
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The observation collected from the i respondent by the jﬂ77 investigator i.e.,

Yjj may be modeled as
yij =Y +dj
vy =Y+ B ey (2.2)

Y;being the true value, ﬂj being thejth operator bias and gjrg are
elementary errors. ﬂjmay be fixed or random. For random effects, ﬂj'S
constitute a random sample from an infinite population of operator effects having

. 2 . . .
mean /;, and variance O j. €jgare random variables with mean 0, variance

O'ﬁ. The following covariance structure for d,.j and d,.,j,may be mentioned as

follows.

orforj= il

O,forj# ji+#i

COV(di/»di'/'): 0 forj. ij., . (2.3)
T Jforj# ji=i

'

oi+0? forj=ji=i
Under the assumption of fixed operator effects, the covariance structure is

modified by LettingO‘%: 0. Another special case is the case of no-operator

effectsi.c., 3 = 0 for all j. This model is referred to as uncorrelated model.

2.2 Measurement Models taking care of a specific measurement Technique

2.2.1 Personal Interview Method
Measurcments have been described as being realized under a model which

specifies the joint distribution of y;'s .The model is specified in terms of its

moments namely, 4 i,O',-Z, O

[ntroduction of the model did not require any specific measurement
procedurc. We now consider situations when data are collected by interviewers.
They may introduce bias, variance and correlations in to the measurements (being

2 . . .
reflected through 077, 0;; ). Such interviewer effects have been detected in many

empirical studies.
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Comprchensive and claborate discussions on different kinds ot interviewer
settings and associated models taking interviewers effects into account are
available in any standard text book.

3 Mean Square Error in the Presence of Combined Effects of Total
Error

Decomposition and Linear model

The general models for variability in the literature are cxpressed either as
Mean Square Error Decomposition Model or Mixed Linear Models. The net
bias is assumed to be zero, so that the model deals only with variability. The
major difference between the two models is that decomposition approach often
has a component attributable to the interaction between sampling and
measurement error, whereas the linear model approach omits this component. The
linear model approach defines response variability about the true value. However,
both the approaches merge on a specific occasion.

The Situation, When Both Variance Decomposition and Linear Model
Approach Merge

The variance decomposition approach and the linear model formulation tend
to merge, when the variance decomposition approach focuses on a particular
source of error-mostly the error due to the interviewer. If, in the variance
decomposition model with the interviewer setting, the interviewers influence in
the response deviation independently, then the additive model would be
appropriate. The additive model would not be applicable, if, in the hypothetical
repition of the (original or repeat) survey, such factors as common training or
supervision etc., have a correlating effect on the response deviations obtained by
different enumerators/interviewers (Fellegi 1964). It has been observed by others
also.

It may be mentioned that the model in (2.1) and that in (2.2) can be thought of
as variance decomposion approach and linear model formulation respectively.

3.1 NonSampling Variances under: Mean Square Error Decomposition
Model

Hansen, Hurwitz and Bershad Model (1961) decomposes the variance into
three components namely, (a) sampling variance, (b) measurement variance
and (c) covariance between response and sampling deviation. Their model has
implications for the total survey design in so far it relates to the accuracy of
survey results [Jabine and Tepping (1973)]. In our discussion we are mainly
presenting the expressions for nonsampling variances.
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Let f,[ = Zy,- /7[,- be an unbiased estimator for ¥, the population total, then

ieS
it may be shown that,
Sampling
|- (myj—miz )
Variance(SV) = z ( ) Z Z y — Ul (3.1A)
ev T izj eU %
Measurement
— 7))
Variance (MV) = z Z Zz (3.1B)
i.j et
where,
y7Ne ,~2,O',~/- are model parameters and, (3.2)

7T s 7 the inclusion probabilities are sampling design parameters.

We have,

simple response variance = Z 0'12/7[1- and (3.3A)
ielU
correlated response variance = Z Z I] (3.3B)
T ;
i#=j eU J

However, correlated response variance can alternatively be expressed as

Yy LY S o (34)

_7[7[)

3.2 Remarks '
(1) Contrary to what generally accepted name suggests, the measurement
variance depends both on measurement model and the sampling design

O' O 5T Tjj . It would be therefore interesting to isolate a component
that is unaffected by sampling ie., a term that would remain
unaffected, even if the sampling were pushed to the ultimate limit of
complete enumeration.

(2) Therefore, under complete enumeration,

M=% ot + 33 o (3.5)

ey i#jel
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3.2 Measurement Variances under Variance Decomposition Approach with
different Measurement Models and Different Measurement Techniques

Here we present only the expressions for measurement variances under the
following different situations.

3.2.1 Measurement variances without taking care of interviewer’s effect:
a) Sampling Design: SRS(N,n);
b) For model specification, we refer to the model specified by cquation (2.1)
of the basic model introduced by Hansen et al. (1951);

Let y,be an estimator for population mean Y . From cquation (3.1) or
otherwise also, it follows that,

MV (3,) :%[O'fﬁ(n—l)é’agz ] where,

o g/: £ ()’iz - £ ()’it))z
o 3/: E, [(J’it - Ez(y/,'z))(J/i'r -k ()’i'r))]

This was originally derived by Hansen et al and also later by Bailar and
Dalenius (1969).

(3.6)

3.2.2 Measurement variances with taking care of interviewer effect:

a) General Sampling Design: [7[ :(N,n)] ;

b) For Survey Design with interviewer settings of deterministic as well as

random assignments. We consider the following situation.

there is a fixed set of ./ interviewers labelled j=1,2,...,J/, and prior to the
survey, the population is partitioned in to j responding groups
Uy,U,,...,U , so that each interviewer J is linked a unique or a number of
groups according to the specified survey design (3.7)

For the estimator f,, of the population total, we have from equation (3.1A,B),
J

J
Y| Xl v+ TS Y m, /71’.71’k e.v.: (3.8)
i=wiey) ) i e KT JJ

V4
J
Weo+v ) X UUn.+v, Y| > Y=rp/r.m, | (3.9
Py 'szl[iijew /" "]
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where, (3.8) and (3.9) refer to deterministic and random assignments respectively
and U ;,V g,V arc model parameters.

3.3 Remark

Under complete enumeration, the expressions in (3.8), and (3.9) take the
respective forms as

J J
SNV AY NN, -Deyv, (3.10)
j=! j=1

J
2 A
vﬂz N7+ NV,

=

and Nj is the number of responding units in the jrh group U]-

3.3 A General Expression For the Measurement Variance of an Estimator
taking Interviewer and Superviser Effects.

Let yl(./.f/\) be a measurement made by the jm investigator on the i respondent

under  the  supervision  of K" superviser  at  the /' trial
(i=12,...015=12,...Jandk =12,...K);

Let us define the following indicator variables.

Lif i'" elementis included into the sample;

(3.11)

0,otherwise;

Jl,if jrh intervieweris selected for the survey;

Vi
‘ LO, otherwise;

5= Lif _j’}7 superviseris selected for supervising the job;
0,otherwise;

L,if thei” elementisassigned to the /7 interviewer;
0,otherwise;
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1.if theschedule filled up by the /' "interviewer from the /" respondent

Y ki) :J isallotedto be £ supervisor for supervision;
10,0tllcrwise;

I J K
Let ¥, :Z Z Z uVoic §A Y ki, /)/n be the estimator for ¥ . (3.12)

Measurement variance, M.V. (\_f )

1 2
:(;) ZZZE{ u,V/CI/§ }/“’/’E(y”/‘ B ”I‘)
ig Kk

*2121225{ U, cyey, Yo Vi E 0L =y, ol v
AR Ay A :‘}
+ZZ;;E{ uY,C;0. 00 Ve Vet E, (y};’k’ _yu‘k)
W =y Juv 880, ¥ Vi) = }
*ZZZ;; E{uv Ve, 88 VeunTiunE (Vi = vi)
TR

)
yl(jt]\ - ylj’k )

U, V V/CI/CI/ 5 5 7k(i~.i)7//<'(f~./') =1 }
() ()
+ZZZZE uu'vlczlcz/51\ Vi, /)}/l‘(’ 2 y”A e ] S

”i”i"’jcﬁci.’/ﬁk Yein Vi) =1
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| |
*ZZZZZ’E[“ UV Y CC O Vi )T /){F (."ffz?—."z/kX"ffi-fAv—»“i_’/’/\)[

= 1 j# ] I3

UV iV 7 01/(1/5/\7/\(/ D) =1 } (3.13)

*ZZZZZE[H Y Sy T Y >{ [y}}/?—yz/k j(.vfri-/’«—m/«)

iz i G kK

UiUy c,/c,/5/\§/\ V(i )YV, j) = }

20 2D E i v rec VG )0k iy )

iz i g2 k# K
g ‘(f) 5., ( ~(l) —_— 2ty
t ."g/'/\- »‘/1//\' )kr‘if/’k’ }’1.//\'

uitlyv v OO iy Viti, Vit VYK 7y Yty = ) J

The above result is an extension of the similar type of result, obtained by
Lessler, (1992).

3.4 Remark

1) Both under Census Bureau Model/Cochran Model and the model due to
Raj (1968), simple as well as the correlated response/measurement
variance of the sample mean takes the form of

SRV ‘*7722 Vo ir) (3.14)
n J=li=1
1 (m- J -
and CRV = ———— Z Z Cov (v (3.15)
n Jl(l—l =y ‘

where, m is the number of assignments for an investigator j and 7 is the

sample size, yi/,is the observation collected from the i*” respondent by
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the Ajm investigator at the " tial and V,(ym),C()v(}f‘/l;,,y,-'/-,) are

measurement variance and measurement co-variances.
Under Census Burcau Model. it has been assumed that a fixed number of
investigators is available. No sampling of investigators is made, i.e.,

o
~—

U ;=1 forall j in our above setting.

3) Here only the covariance between the observations of a particular
investigator was considered. but not that between investigators.

3.4 Linear Model in the Context of Variance Decomposition Approach
Let Yy =Y +b;+¢; (3.16)

where, 1;,b;and ejare mutually independent and that the b, and ¢;; arises

respectively from an infinite population of interviewer cffects and an infinite
population of random effects. The b/-arc independently distributed with

E, (b/) =0and Vid;)= 0'127; similarly, e; are independently distributed with

E,(e,/):() and V(@II)ZO';%

It may be shown that

2 2

_ Oy +0
MV(y,)=———( b ‘)[]+(m—1)§], (3.17)
m  being the number of elements assigned to an investigator and
2 2 2
é/:O'b/ lo-b""o-e];

It may be noted that (O' §+0'§) is the simple response variance and 0'127 is

the correlated response variance.

4 Existing estimators of NonSampling Variance components

4.1 Need of Randomisation of the assignments and of repeat measurements

If the survey arrangement is such that each investigator is assigned to work in
only one sample cluster, then the effcct of interviewers will be completely
confounded with the effect of clustering on the sample variance, and usual
methods of estimating sampling variance will automatically include the correlated
interviewer variance. By contrast, if all interviewers work as a team in each
cluster or if the interviewer’s work loads are distributed at random, the usual
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estimation of sampling variance would not include the effect of additional
variability due to interviewers.

To make scparate cstimates of interviewer variance or other types
of correlated variance, it is necessary to introduce some degree of randomization
of interpenctration of work loads to the particular category of the survey
personnel.

Repeat measurement technique has been advocated as a tool in
measurement variance estimation. The measurement model using repeat
measurement so far developed has one crucial assumption that all repeat
measurements have to be uncorrelated with original measurements. There are
several discussions on the implication of the assumption of lack of independence

between the two surveys and change in the distribution of y;, [for example, scc
Hansen et al. (1964)].

4.2 Estimation of NonSampling Variance in the Variance Decomposition
Approaches:

Dittercnt methods under this approach can be broadly categorized into onc of
the following categories.
a) Survey Design: Interpenetrated sample, but no repeat measurement: This
mcthod is primarily due to Mahalanobis (1946).

Let v = Z Vi [ ns;). j=12,...,J and n(s;)=m:
i€S./'
Let Between-interviewer mean Square(BIMS) be defined as

J J
BIMS =3 (3 =3 I =13 5= 3 ¥y 1) (4.1)
j=1 j=1

Then, (BIMS/J), as expected, is an estimate of total variance i.c.,
Thus, £ (BIMS/]) = Sampling Variance + Measurement Variance.

b) Survey Design: No interpenetration, but repeat measurements are
available.
(b.1) Repeat measurements of the entire sample:
Let, Mcan Square within element (MSWE), Square Mean Deference
(SMD) and Square of the difference Between Measures (BMWE) be
defined as

1 2 n ~
MSWE:EZZ (yimt_yir)z (4.2)

m=1i=1
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SMD =1 (3 =3, ) (4.3)
14
D A\"‘ J
BMWE =32 < (v = e P (4.4)
i=1 j=I

It may be noted that the estimators in (4.2), (4.3) and (4.4) estimates
simple response variance only.

(b. 2) Survey Design: Repeat measurements of the sub-sample

Let an original samples of n, be drawn from a population with a sampling

design  p(-)having the inclusion probabilities 7, 7w From S, a sub-
sample of size #1,.(< ng)is drawn by SRSWOR. After two stages, we have

the number of observations ng + n,.. as

{Lvl(l),ie n(s)} and {y}z),ie n(r)};

Let Z; = (_1,'[(1) - )’;2))‘/”01‘ i€S(n.)

2
) i . Z; n.
Then. unbiased Estimate of SRV = E L. 5 S and
T | 2n,
P i I

Z/ Z./ . ns(ns -1

mr; | 2n.(n. 1) )

It may be noted that (4.5) can be used to cstimate SRV and CRV of (3.8)
and (3.9).

However, in case of correlated responsc variance for other categories
inclusive with interviewer’s variance, (4.5) can not estimate separate
correlated response variances due to all the categories.

Survey Design: Methods that use a combination of interpenetrated
samples and repeat measurements.

Methods that use a combination of interpenctrated/ replicated samples and
repeat measurements are rcflected in Fellegi’s work [(1964), (1974)].
Survey design developed by him with the use of both interpenectration and
repeat measures is a very complex one. He, in his paper (1964) extended
the model of Hansen, Hurwitz and Bershad (1961) to provide a frame
work for joint application of two devices namely interpenetration and
interviewer traditionally used to measure response variance. He built up
some estimating equations of the parameters involved and these equations
help one provide estimator for non-sampling variances. though biased.
However. Fellegi (1974) camc up with a relatively simple design

unbiased Estimate of CRV = Z (4.5)
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compared to the previous one [Fellegi (1964)]. But this survey design is
also not simple from the operational point of the experimental survey
design.

4.3 Estimation of Non Sampling Variance in the linear Model frame work

7
Let the statistic within interview Measurement Square (WIMS) be defined as

Under lincar model, we have Yi'r Y, + b +e; (4.7)

J N
WIMS = V/Z Cjj ( Vijg — 11‘)/ (m—=1)J,
J=1 i=l

v bum7 defined as in (3.11), then under the assumption of fixed population

/7

of interviewers and Y;; = ¥;: we have,

EWIMS)=0 +S} (4.8)

However, if onc uscs BMWE based on repeat measurement without the
device of interpenetration, estimate of simple responsc variance, but not
correlated responsc variance would be made possible, as one may observed that

E(BMWE)=03+02 . (4.9)

Hartley et al (1977) provided estimates of variance of only elementary
errors under a two-stage sampling design using linear model approach. The
lincar model structure used by them was to capture the interviewer and Coders
effect along with clementary crrors. However they only estimated variance of
elementary crrors, by synthesis based method, which is a MINQUE cstimate in
component variance estimation problem.

[t may be noted that, most of the available methods in estimating
measurement variance fall under the category of variance decomposition
approach: [For rcferences. see papers by Koop (1974), Koch (1973), Nathan
(1973). Chai (1971), Folsom (1980) etc.]. All the models developed so far are
based on very complex survey designs.

Compared to estimation of non sampling variances under decomposition
approach, the work of estimation following linear model formulation are not too
many. except the carly paper by Sukhatme and Seth (1952). followed by the work
of Hartley and Rao (1978), Biemer (1978), Biemer’s paper can be considered as
an cxtension of the paper by Hartley and Rao (1978).

In the sections to follow, we have provided a simple estimation procedure for
obtaining simple as well as separate correlated response variances following the
lincar modcl formulation.
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5 Interactive Linear Model

Considered 1s the problem of simple response and correlated response
variances. where a set of investigators are employed to extract responses from a
sct of respondents and additionally, a set supervisers are also employcd 10 oversee
the entire process and take corrective measures. Not withstanding the investigator
and superviser bias, a mixed effect model has been developed which. in turn, has
been used for the purpose of estimation of simple as well as correlated response
variances, due to investigators and supervisors.

Let Yijp, =Y, +b; + 5 + e (5.1)
where, Y;,b;,8; being true value, investigator cffect and superviser effect
respectively. It is assumed that Y,-,bj,Sk and €jjj are mutually independent and
that the b;, Sy arise from an infinite population of random cffects. The b;'sare
independently - distributed  with  £(b;)=0, and Vibp=o ;2, Si'S are
independently distributed with £'(s;) =0 and V (s, ) =0 g ; Similarly, € are

independently distributed with (g ) =0 and V/ (ejjk) = 0'3 . In this casc, there

is no overall bias in the measurement process and
E V)= ¥, (5:2)

However, it may be noted that a bias could be introduced by letting either the
expected value of bjsskaeijk to be non-zero.

5.1 Interviewer Setting

We consider the same setting as in (3.7).

5.2 Survey Design with the help of a symmetric BIBD

Let J, the number of investigators be of the formJ=4 1+ 3, t2>1.
Then, we can have r, the number of responding groups to which is assigned an

investigator and A, the number of rcsponding groups to which is assigned every
pair of investigator for work of the form

{J=ar+3r =241, A=1} (5.3)
and {J =41+ 30 =21+2, A=1} (5.4)
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(complement of 5.3)

Serics (5.3) and (5.4) exist and can be constructed easily be using Galois field
(J), wherever, 1 is a prime or power of prime. The method of construction is duc
to R.C. Bose. However, for BIBD'S with different values of » in a given range,
extensive tables arc available, which may be consulted to construct the BIBDS
(Raghava Rao, pp. 91-95).

The method of construction is bared on “difference sets”. One will have the

initial block as: [ = {_\‘0,.\’“,x4,...,x4[ } where, x is a primitive root of GF (/=4
t+ 3), J being a prime or power of a prime.

5.2.1 Tllustration Distribution of Seven investigators into Seven Responding Groups
Herc J = 7withs=1inJ=4¢t+3andr =3 . A = 1; We have,

2 . o
[ = {\‘O,,\‘“..\‘4 }: Using x = 3, as a primitive root,

/:{30,32.34}={ 1.2,41, (5.5)
and the scts would be as:

[1,2,4].02.3,5),[3.4,6].[4,5,7].[5,6.1].[6, 7. 21. [7. 1. 3] (5.6)

Table 5.1. Distribution of Interviewer Assignment into Responding Groups

Responding Groups

Investigators Ui Uz Us Us Us Us Ur

1 v v v

2
3
4 v v v
5
6
7
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5.2.2 Distribution of Investigator work to Supervisers
Let there be two supervisers Sy and S» ; The investigators work are assigned
randomly in to two supervisers according to the following lay out.

Table 5.2. Distribution of Investigator’s work into two Supervisers

Investigators Supervisers 1 2 3 4 5 6 7
NY v v v v
S, v v v v

5.3 Estimation of Simple and Correlated Response Variances

,
(a%,a%,ag and 0,2,+0';+a§)

For simplicity of calculation. It has been assumed that cach responding unit
has only one respondent. However our method of estimation would remain
unchanged, even if every Uj (j=1,2,...,7)has more than onc respondents. In

that case, only the size of the data matrix would be larger.
5.3.1 Acquisition and modeling of Data

Following the methods of data collection and of supervision (Ref. Tables 5.1,
5.2) we would have 24 recorded and supervised values. Thus we shall have,

Y gg= ki = 1.2, 7/ = 1.2....7 and k=1.2}
For example, data after collection and after supervision, we would have four

observations from each of the respondents namely 4", 5™ and 7". In fact data from
the 5" respondent would read as follows:

Y521 Vs +by +51+esy)
Ysar | _| Ystbatstess 5.7)
V542 V5 +bg+ 55 +esq
Y552 Y5 +bs +5y +essy

Similarly, there will be 3 observations each from I, 3 and 6"
respondent, thus totaling to 24 observations.
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5.3.2 Canonical Reduction of the Data
U

Theorem 5.2.1. The Y can be partitioned as ¥ = e with the

~ V
~17x1

dispersion  matrix Zz4><74 which  can  be partitioned also as

Z - 211 Zm

Z Z < |, where, Z]l and 222 are the variance. Covariance
21 22

matrices of U and V.

( 111 +YI§Z+ 17")

f

( 201 +Y22] +YZ62)

(Vo + ¥y +155)

SEER

U= ( T stV +Y) s

Q’

(YWI +7. 541 + y542 + ﬂﬂ)

Q‘

\/"( 631 6\2 667)

\/‘( 74] /4’+Y7(1 +Y772)




Lo

(B
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|
=Vl T =M
V2 2

| l 2
+—=V|50 ——F—=M72
\/8 Vi NG 152 NG 172
1 |
= V211 /_,"'221
N2 N2
R 2
— 1V = V7 ——= Vo262
\/6%11 \/3'21 N 6
| |
—=V321 T Va3l
LR
*l—y + 1 y __17‘,
6 321 NG 331 \/6’372
1 1
2y411 ﬁy431
1 1 2
—=V411 T = Y431 — = Va4
6 J6 N
1 1 1 3

V + 1% + V., == V492
\/5.411 \/5,431 \/6.441 \/12 422
I 1
f)’szl—ﬁ}’sm

1 1 2

pu— +—V —_—V
«/3}521 £,541 \%,542

1 v | B 3
r)’szl r 5411 Jﬁ V342 Tﬁ '352

1

—,V — =652
\/E 631 ﬁ 652

1

| 2
- +—=Y652 — = Y662
NCRANT J6

1

1
I ——=V 4
/'_‘2 Y741 \/E 742

1 2

1
—= +—=Vi40 — =V
gyt e T g

] 1 1 3
Vg A=V = V760 — =V
L\/1—2, 741 r—‘lz V42 \/17, 762 \/E 772_
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Proof: The reduction follows immediately by Helmet transformation.
It may be shown that, le Dispersion matrix of U’ and Zm the

dispersion matrix of J/ can be represented as

r 2 ’ 2 2
D =AioprAosvio;
and (5.8)

1 ,
Ei“\) :A]O'%-Q-AZ O‘%‘F]O'g

where. Aj, A~. 45, 45arc all symmetric matrices of real numbers. After
calculation. the matrices 4|, 45, A&AS n Z” and 227 have been found to be

as given in the tables (5.3), (5.4) & (5.5).

9 ] 2
5.4 Estimation of 0 j,, 0 and 0

(8%

5.4.1 Estimation of O

/
We have, Y[-/ = Y] b +5y + e

——

(i:l,2,..., ; j=L2,...,Jand k=1,2,...,k)
=Y+ (Y, =) b+ S +ep (5.9)
=Y 4o by +S; +ey with Za =0,

Let SSE = ZZL [,//\ —y,‘]-,——y,,/‘,+2_1>_“Fﬁ then 1t can be

shown that
E(SSEY=[JK ={(I-D)+(J =D+ (K -D}-1] o’
e EASSE/ (UK ={(I=D+(J=D+(K -1)}=1 |}=02

Therefore, 67 = [SSE/ [IJK ={I=1)+(J =) +(K = 1)} -1] (5.10)
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5.4.2 Estimation of O'z

Let £ and A |be the cigen vector corresponding to maximum cigen value

A of the matrix A . Now, from (5.8), we have,

: , . A ,
5122281281A1€105+€1A3816,2,+0; (5.11)

After calculaton, all eigen values appeared to be non negative. as they are

expected. On computation, maximum eigen value A becomes 3.5 and €145 €4
becomes — 7.85704 ¢ — 005 which is almost 0.
Thus, from (5.11), we have

£1Y 2 £,-62=3.56 7000078570476 ;.

~ D ! A2
Thus, 6j,=|€1).02€1-6; |/ 3.5 (5.12)
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D .

. - o2
Table. 5.5. Cocflicient Matrix ol G ;.0 7 in Z 1

133333 | 33333 | 28867513 | 28867513 | 33333 28867513
1 13333 | 28867513 | 28867513 | .33333 28867513
15 | 28867513 | 28867513 | .33333 28867513 |
A= | 15 1 28867513 | 1
' 15 28867513 | 1
e 1 28867513
] 15

166666 | 133333 | 133333 | 144337 | 1732051 | 1.66666 | 2.02073
[reo666 | 166666 | 202073 | 1732051 | 133333 | 1443375
166666 | 2.02073 | 1732051 | 133333 | 1.443375

Ag = 25 2 1443375 | 15
I N 2 1732051 | 2
I 1.66666 | 2.02073
- 25 B

N
5.4.3 Estimation of O §:
Method — |
. . S T B | . . K
Simple response variance, i.e., ko* 5+ 0 +0 ;] can be cstimated from the
repeat incasurements. This can be obtained through our survey design.

Hence. 6 2= o2+ 024 02) —62-62
ence. os=lOo+o+0,;) —0Op—0, (5.13)

Method - 1}
Let &~ and A >be the cigen vector corresponding to maximum cigen value

A 5 of the matrix A All the eigen values appeared to be non-negative as they are
expected and the maximum eigen value is found to be 1.03332.
Now. from (5.8). we have ,
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A
~ D
o

8222282282/4]82(5'%4-82A2€26'12)+U

(5.14)

€1 27 € = 6 2=1.65056275167+1.033326 2

Now, from (5.10), (5.12) and (5.13), d‘% can be obtained.

6 Estimation of Simple and Correlated Response variances
associated with measurement process in estimating population total

Let yjjg; be the observation collected from the i respondent by the j’h

investigator and supervised by the i superviser at " trial following our survey
design (Ref. Tables 5.1, 5.2). The investigator’s and superviser’s assignment rule
has been defined earlier in section 5 and under the assumption of the model
parameters,

we have, £, (y(-j/\,,): Y. (6.1)
using the notation similar to those in (3.11),

Let 0 = b if ™ investigatoris assigned to thei"” respondent
iy

0, otherwise

Lif & supervisersuperviser the job to jm investigator

and Cijgk) = .
0, otherwise
Let V=232 Cy Cijk Viks
ik

Then we have the following
Theorem 6.1 .: )A’is unbiased with simple response (O' %+O’§+O’§) and

correlated response variances 0'12,,0'%,0'3, (6.2)

Proof: E(Y)=Ep Esp (V).

where 7 denotes the measurement variable and R stands for the random allocation
of the investigators to the respondents. Therefore,
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thZZZ&mMmCQMFﬂ@J%QMFQ
i j ok
/
, 1
‘ZZZ)M‘E ZZT_
ig ok i=1 j ok

1 1

Since, £ <C(~/- = 1):7 and £ (CU(/\') =1 Cl'/' = I)ZE
Therefore, E(Y)=)_ ¥;=Y (6.3)

i
Now. measurement variance

o

(") ZZZ Cz/ Cl/(/\ (Vz/kz Ef(y('/'/\'f)

Proceeding same as before in (3.13), it may be shown that the corresponding

terms in (3.13) under this situation can be found to be
2

st 2 2
1" term= /[ \o+o0+0;
2term= [ o zg
3" term = / O'zg
4" term = 0
th e 2 2
S5Tterm= I(/ - {op+to]
6" term= /([ —1) O‘%
7 term= /(] —1) 0'12,
8" term = 0
Combining all the terms of (6.4), we have,

2
wnq?)=13{20§+2a§+9%}

(6.4)

(6.5)

(6.6)
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2

* lo 2%

— &
and ¢'3=—5—5——
Opto+0,

-
then, MV (¥) = 1" (a,;a%aﬁ) ngT+2gi (6.7)

L

R
< * x*\ O,
and MV(Y)=2 (0127+0'§+0£) (gl +g2)+[‘—:
The form of the expressions in (6.7) arc similar to that of Hansen, Hurwitz
and Bershad (1961).
Following the methodology already discussed in the section in the section 5,

o %, o %, O'g can be estimated.

7 Some Concluding Remarks and Discussions

I. Symmetric BIBD was necded to be constructed for this specific interview
setting, where the number of responding groups into which the population
was partitioned was equal to the number of interviewers. However, the
design need not neccessarily be always that of a a symmetric BIBD.
Depending on the interviewer setting, it could be non- symmetric BIBD
also. In fact, intensive tables are available for construction of symmetric
and non-symmetric BIBD for any specicd value of J.

2. The proposed survey design is very simple to construct and to operate
compared to the earlier methods, where both interpenetration and repeat
measurement techniques have been used [(Fellegi, (1964). (1974):
Beimer (1985)]. In fact, from the user point of view, he can simply consult
the available tables for constructing the BIBDS for allocation of the
interviewer assignment, without having in depth knowledge on Galois
field etc. Our proposed method is a very uscr friendly one.

3. The method of estimation procedure also involves easy computation. It
requires calculation of only eigen values and eigen vectors and for that
standard computer package is rcadily available. The method is very
flexible also in the sense that it can accommodate any number of effccts
arising from different categories of survey personnel from survey
management group.

4. For illustration purpose, we have taken J = 7 and number of respondents

from each U jto be one. However. our estimation procedure would remain
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unchanged, cven if we have more number of investigators and more
number of respondents from each responding group. Only the size of the
data matrix will be larger, but the estimation procedure would remain
unaltered.
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