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ABSTRACT

~ Given paired observations, {(x,,);i=1,2,...,n} on two variables x and y for a

random sample s, from some bivariate non-normal population like bivariate gamma,
beta-stacy which are of much use in modelling data obtained in Physical, Social and Life-
Sciences, This paper considers an improvement of the customary estimator of population
variance.” A mixture (i.e. a weighted combination) of the customary estimator of the
variance and a suitably chosen statistic t is proposed. It is also indicated that under some
conditions for a broad range of the values of the mixing constants, the improvement in
the sense of having a smaller mean square error, over the traditional estimator is possible.
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1. INTRODUCTION

In the statistical literature, it is well demonstrated that estimation of variance will be
as important as estimating means, even may be more. Here, in this paper, improved

estimators for population variance cﬁ of a variable y of bivariate gamma and beta-staey

population have been considered, when we have information on both the variables y and
x available in the form of paired observations {x,-, y,-} only. The proposed class of

estimators is as follows.
d= s>+, (1.1

n —\2 . . . . .
where si =z ( yi— y) /(n-—l) is an unbiased estimator of of, and t is a suitably chosen
i=1
statistic based on sample vatucs of x alone or on sample values of both the variables
x and y.

The motivation for the form of the proposed estimators in (1.1) arises from
recognising the fact that in many real life situations, there may exist a functional
relationship between the variables x and y. For example, in Rain-storm, according to
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166 Some improved variance estimators from a bivariate non-normal population

Etc’ ~urota (1986), duration x, maximum intensity (3y) and total amount z(a %)

ha: . a gamma distribution. It is also observed that y = 1 x*.

We discuss some of the situations when a specific t would appear to be more
appropriate than any other £'s. Suppose the scatter diagram reveals approximately a linear
relationship between yand x i.e.,

y = o +Px,

then an estimator of ci, can be taken as
&% = kys} (say),

and with the choice of at= k,s2, the appropriate class would be
d (k,,kz;si,si ) = X,sﬁ +(7»;k, )si = k,s}z, +Xzsf.

The choice of a ¢ is motivated by. the relationship of the parameter8= ci with
another moment & which is related with the variance oi through some relationship of

the form crf. = k& . Motivating the choice of a ¢ asé , an estimate of £ , estimation of ci
has been considered.
- e . 2 ]
Similarly, if it is expected even distantly, Hy~W,0r G,~ G, Of G\~ W, OF O, = W,

hold in some situations, then in such cases, following choices of t can be suggested.

(y-%),  fuy=n,
(S;——Sf), ifo, =0,
t(y,x)= <(S§*f)’ ifO'i:'}lx (1.2)
(3-%),  ifol=n,
As an illustration one may observe that for the bivariate gamma population,
at -l s : '
f(xy)= ToTq N y-x)" e, 0<x<y<oc, a>0, p>0, 0. (1.3)

If 0<p, q<1, p+q = 1 and p ~ 1 then one would have, (i) 6,~ &, and (ii) My~ By
Similarly for, a ~ I, ap ~ 1 together with the condition in (1.3), we would have,
(iii) o (x) = p, and (iv) o (¥) = u, respectively.
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The organization of the paper is as follows. In Section 2, some general results for
estimation of any parameter 0 have been provided followed by section 3, where in

particular, the problem of estimation of 0'5‘ has been considered. In section 4,
improvement over Searles- type estimator has been made through utilization of a pair of
observations {(x,-, ¥ ); l,2,.._.h} for any bivariate population. In Section 5, we have

considered observations as if drawn from a bivariate gamma and a beta-stacy population.
In Section 6, we examine the superiority of the proposed estimators through a real life
data which is supposed to be a realjzation from a bivariate gamma population.

2. SOME GENERAL RESULTS FOR ESTIMATION
OF ANY PARAMETER 6

Let 6 be an unbiased estimator for the parameter 6. The generalised Searles
estimator for 8 may be defined as

T,=1 6, _ 2.1)

where A, is a suitably chosen constant. We have
M (T;) =62 [xf (1+c2(6))—2x, +1]. 22)

The natural question arises: For what choice of a A, the estimator 7} is better than ()
and what could be the best choice of A, ? To answer this, we have the following,

Theorem 1:
For T, =1,0, the optimum choice of A, which minimises mean square error of 7
and the minimum mean square error are given respectively by

Aoy =1/[1+c2(é)]

M (1) =62 (8)/[ 1+ (8))]: @3)

and

A sufficient condition for 7, to be better than © can be obtained by taking a A, such
that

e (é)}_l <k <1, 2.4)

where Cﬁ)(e) (s c? (é)) is a value known apriori and C? (é) is the square of

coefficient of variation of 9 .
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Proof:
Minimising M (7;) in (2.2) with respect to A,, the resuits in (2.3) follow. Comparing

M(T}) with V(é), it may be shown that 7; would be better than 8 for all A, satisfying

[1 _c? (é)]/[ncZ (é)]s A <1,
and hence a sufficient condition as in (2.4) follows.
It is interesting to note that use of C(Zl) (6) for C ( ) in km still helps 7; perform
better than © , but the use of C(zz) ( é) (fé c? (9)) would not preserve t?s property of 7, .

Next we consider the problem of generating estimators better than 8 as well as I,
through a class of weighted estimators defined by

d(?»,,?tz)={d:d=k’v}, _ (2.5)
where V' =(é,t) and A’ = (Al,kz),é being an unbiased estimator‘for 0 and ¢, being a
suitably chosen statistic such that ¢? exists and Ay, A, being suitably chosen constants.
[t may be shown that
M(d) =L\ GL-20 My +8? : (2.6)

o))
("))

To find the estimators better than 6 as well as T , we have the following.

where,

E (
y'=(6,E ().
E

Theorem 2:
The optimum value of A, say A, which minimises M(d), the mean square error of d,

would be a solution of
GA, =0y ‘ 2.7
and min MSE , would be

Mo<d>=e2[r—w' (5)'\v],

where, G is a g-inverse of the matrix G.
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Proof:
It follows from (2.6). It can be shown that (2. 7) is always consistent i.e., it always

yields a solution A, for A such that
M(d)=My(d)+(A—-Ky))G(A-Ay)) 2 My(d).

Since the matrix G, in general, is a non-negative definite matrix and would be non-
singular, it follows from (2.6) and (2.7) that

Ao =6 G 'y and My(d)=6? [1— ' (G")’\y].

In case G is a positive definite matrix, A g=(X o1, A o, ) and M, (d) would be given by
A o=6 [E(é).E(ﬂ)—E(r).E(ré)]/D(é,z);
A 03=0 [E(x).E(é2).—E(é).E( ét)] /D(é,‘r) 2.8)

and

M, (d) =62[l—{N(é,t)/D(§,t)}], ' 2.9)
where,

ofi. )£ (7 - (<o)
=0 (E@)) [( o} )C 2( )2+ (8)+ () -2p;, (é)cm]; (2.10)

N(8e)=07 (E0) [ c*(8)-205,C(B)cir+C?) |:

C(¢r) = Coefficient of Variation of ¢, and

Ps, = Correlation Coefficient between 6 and ¢ .

However, in practice, A, would not be known, as it may depend upon a number of
parameters, including sometimes, even the parameter 6 itself. Therefore in the absence
of exact knowledge of A,, our approach is to improve ) through a 7, and then 7
through an estimator of the type d =7, +A,t by appropriate choice of a constant
depending on A, and a specific ¢ with ¥ (f) <o . This has been possible because of the
following representation of M (d), i.e., M (d) being possible to split itself into M (7, ) as

M(d)=M (T;)+)\] E(r*)-24,8 E(t){(l—k,)—K,péJC(é),C(t)} . @.11)
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The above idea of improving ) through 7; and then 7, througha d =7, +X,¢ can
be implemented through the following. ‘

Theorem 3:
For a given A, asin 7;, an estimator d(A,,,)would be better than 7;,

iff A, lies between 0 and 2\, , (2.12)

where,
Mz =[(1=14)8 £ (£)=MCov (é,t)]/E(tz)
=0 E(1)] (1-})~hpy,, () (8) |/£(#).
is the optimum choice of A, for a specific A; in 7;.

Proof:
The result follows from (2.11). Obviously, the resulting MSE of d, in this case, would be

Mo(d)=M (1)1 E(*).
Therefore, it is noted that & may be improved through 7; which, in turn, could be

improved through d, even if 0 is uncorrelated with r.

It may be observed that for a given A,.

Aoy =9E(t)[l—k |<l+pé,’.C(é)C(t))]/E(IZ).

To ensure the non-negatively of the estimator d(A,A,) for the non-negative
parameter 0, we should avoid taking that ¢ for which

9E(f)>0 and A, (1 +pé,,.c(é).cu)) >1,
as, in this case A g, in (2.12) would be negative and d (M,A,) may also sometimes turn
out to be negative.
A subclass of d, say d(A; =124, = Ay)=6+21y may be quite interesting in some
situations to generate estimators better than 6. Comparing M [d (7\1 =LA, =), )] with
V() , a sufficient condition for (%, =1,A; =1} to be better than & wonld be cither

0 <Aj <2Ag, incase p; <0

or
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20p <Ay <0 incase Ps, >0, 2.13)

where, Ay, =—Cov(é,t) / E (tz). Therefore, for the situation A, =1, one should never

choose a ¢ to be uncorrelated with é, as for such choices of ¢, 8 would be uniformly
better than d (X, =LA, = kz) . In practice, in the absence of exact knowledge of Ay, , a

set of sufficient conditions for d(l, =LA, = kz) to be better than 6 would be

0<Xy <2p Ky ((,‘(2[)(1)/(1 +C(22)(t))) ,in case p;, <0
or
_2p‘K(l) (C(zl)(t)/(l + C(zz)(t))) <A; <0, incase Po, > 0. 2.14)

‘3. SOME GENERAL RESULTS FOR ESTIMATION OF ci
Let 6§ be an unbaised estimator for ci based on any sampling design and let a
Searles-type estimator be defined as
.T] =7\,‘6'i, (31)

where A, is a suitably chosen constant. minimising mean square error of T,. This

optimal estimator T, is an improvement over &i, since

v(82)-M, (T, )=0"| C?(6%)- Cz(ai)
()l ()7

where C? (63,) is the square of coefficient of variation of 6?, .

But the optimum estimator Ty, can never be used in practice, unless the optimum

choice of A, in T;, namely,

. =1/[1+c2(6§)], C(33)

is known exactly. However, in the absence of exact knowledge of A, f can still be

improved through the estimators of the type(3.1) by éhoosing a A, such that

-1
[1+C§)(6i) ]sll< 1, (3.4)
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where, C(zl) (6i )(s C? (6'i )) is a value known apriori.

T, in (3.1) with a A, satisfying (3.4) can further be improved through an estimator of
the type
d=T, +,t, 3.5)

where t is a suitably chosen statistic and A, is a value lying between

0 and 2Aq,, (3.6)

Ay, being the optimum choice of A, and given by
4

Moo =[(1-14 )o2E (1)~ M Cov(82,1) | /(). 3.7
This follows immediately by observing that
Md)= M(T, )+X§E(t2)—2}»2‘{(1—)», Jo2E(r)-1, Cov(&i,t)} :
and

My(d)=M(d), . = M(T,)-23E(7). (3.8)

Therefore, the procedure to improve 6f,, the usual unbiased estimator for ci would
be as follows:

(i) 6§ is first improved through a T, or through the T,,, and then (ii) T, or Ty, is -
improved through an estimator of the type in (3.5).

4. IMPROVED ESTIMATORS OF VARIANCES
OF BIVARIATE POPULATION

Let a random sample of size n yield the paired observations {(y,,x,);i=12,..n}
and let

Tl = }\,lsi,
be the Searles - type estimator for cf,. It is found that optimum choice of A; minimising

MSE(T,) is

)»01='/A,

) n? -2n+3 . . .
with A = B,(y)+———<—,B, () being the coefficient of Kurtosis of y.

(1)
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Let A (n/ A ) where A" is such that <A’ <A and Tj =A;s? be the shrinkage

type estimator for oy . We now define several estimators for cf, as follows.

=d(M,hy385,%) =T} +1,% @.1)
dy = d(M,Ag3s3,52) =T} 44,82 4.2)
dy = d (M, Ayish(s2 sf))='l‘; +hy(s2-5) 43)
d, = d(x; = 1,x2;sy,f) =52+ 4% (4.4)
dy =d(x; =1, x,,si,ﬁ) 53 +Ays} (4.5)
d =_d(x; =1,Agl,(s2 -5 )) =52 +1, (52 ~52) 4.6)

It may be observed that the estimators for the variance
d=A;s53,i=12,...,6 %))

due to the Das and Tripathi (1978) are based on the availability of the knowledge on
mean, variance and co-efficient of variation® of an auxiliary variate x and A 's have been

made to be dependent on the sample estimates as well as on the above parameters. In our
case, in the absence of the exact knowledge on the parameter involved in A, the

optimum choice of A, a useable A has been obtained using the knowledge on some
bounds of the parameter involved in A,and an improved estimator oyer s§ has been
obtained.

The following proposition exhibits the range of values of A,, such that for a given
value of A, the estimators in (4.1) to (4.3) will be imprbvements over T; and hence

over sf, also.

Proposition 4.1:
A set of necessary and sufficient conditions for the estimators in (4.1) to (4.3) to be
better than T; would be that A, lies between 0 and 2)»:,2 , where,

r[(l—)&;)UiE(i)-k;Cov(sz,f)] /E( ;2),z=f
K;z =<[(l-—k;)ciE(s ) MCov y,s ]/E , ,f
[(l;x;)ciE(sy—sf)—X;{ ( ) Cov y, x ]/ s 52 t=sf,~s§

4.8)
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FENEI A W NS R
Cov(f,§)=po,cy/n; Cov(si,i)=p3 (y)/n;

COV(Sy’x)-‘-—[le(x )’)ﬂ»llo(x Y){(" Dio2 ()

'("“ 2)“0,1 (x,J’)—ZM,l (x,y)p.o, (x’)’)—ncil‘-x}]

s

= ~[hi2 (62) + e {(n=1)13 ()~ (n-2)2} 201, (5. 9)m, -0, |

3

Cov(s3.52) = [ua,z (5.3)+ (7= 1) ()3 () =202 (5 )
—(n=2)uzns (¥)- 251 (% y)u, - (n=2)m3 (x)1}
+ 4(

,(n (i)(:') (1=2)("=3) 22 sy (61 (y)]

Z)Hn(x }’)P-xl»ly (n- 2 )“ll(x y)

and u, =E (x’ ys)

Proof:
It may be noged from (3.8) that M(d) was decomposed as

M(d)= M(T})+W2E(2)-20, {(1-47) 3 E(r) - AiCov(6, £ (1))}

and hence, the set of necessary and sufficient condition follows.

After routine calculations, one will obtain the above expressmns in (4.9); [Please see
Appendix Al.1to A1.6]

Corollary 4.2:
A set of necessary and sufficient conditions for the estimators in (4.4) to (4.6) to be

better than sf, would be that, the corresponding A, lies between 0 and 2, of (4.8)

with A; being replaced by 1 i.c., corresponding A, should lie between 0 and 20,
where,
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-Cov(sz,f) /E()_cz)
Ay = —Cov s .52 /E (4.10)
—{V( Cov s s /E s —s
This follows from the class defined in (2.13) and also from the expression in (4.8).

Remark 4.3:
i) Neither the optimum estimators in (4.1) to (4.6), nor the intervals of preference

i.e., the interval between 0 and 2Ag, can be of any practical use, unless the exact
02 Y

values of the parameters involved.in Ay, may be known exactly.
ii) In such situations, depending on some prior information on the bounds of the
parameters involved in Ag,; if available, the interval of preference i.., the

interval between 0 and 2Ay, can be shrinked to the interval 0 and 2l:,‘2'), where

Ay (s k:,z) would be a quantity known apriori.

Therefore in the abserice of exact knowledge of A, , a sufficient condition for an

estimator d of the types in (4.1) to (4.6) to be better than T; would be that corresponding
A, should satisfy

0<hy S2h9,if 0<Agy <Rg,
or  2hP <2, <0,if AP <Ag, <0.

5. RESULTS FOR SOME BIVARIATE NON-NORMAL POPULATION

5.1 Bivariate Gamma Population:
We study the properties of the proposed estimators for the following bivariate gamma
population due to MC-Kay,

fx ,y)— _ o (y-x)" ¥, 0<x< y <<, (a, p, g>0) (.11

I'pI'g

we obtain, from Appendix A2.1

ry.\')= B(’+P»‘I)r(s+4+"+p)

o =Elx :
’ ( a'Tplq

Hence, p, =p/a,pz(x)=p/a2;p3(x)=2p/a3,p.4(x)=3p(p+2)/a4;

by =(p+a)/am(y)=(p+q)/a,
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13 (»)=2(p+9)/@ .y () =3(p+q)(p+q+2)/a*;
( 2) = p(l+p)/a2 ;Cov(%,¥) = p/na* ;Cov(si,:?) =2p/na ©(5.12)
Cov(s3,%) =2(p+q)/na*sB,(x) =3(p+2)/ p;Ba () =3(p+q+2)/(P+9)

For n such that —n—:1 and n_+1: 1; we have,
n-1 n-1

Cov(s},s3)= — [2p( 1)+6 ] 3’.(1’;_3);

na

V(Sy) 2(P+q)[(p+q)( )+3:l=2(p+q)(p+é+3);

na“

0. 2e[ (n),5] 2p(p+3)
V(sx)—na4|:p(n_l)+3]— - | (5.1.3)

E(s2) =_p7[(ni1),,,,+6}=;%[np+q;

E(s’), (p+4q)[§:+1;n(p+q)+6] p+ "L n(p+q) )+6].

na

Proposition 5.1.1.

For bivariate gamma population as in 5.1.1, 0< p,q <1, —1~ 1, —+—]: 1, a set of
n—

necessary and sufficient conditions for the estimators in (4.1) to (4.3) to be better than T;

for a specified A, and hence, than sf, also would be that the corresponding A, lies
between 0 and 2)g, , where,

[(l—k, )(1()+ q)]—)(ZM /’l)] ’ for d, (5.1.4)
al p+—

Moz = ﬁ{(pw)—k; {(p+q)+2(pn+3)H, for d, (5.1.5)
p+=

[(P+a)-1i {(p+a)+8}]/(a+9), for d (5.16)

where 6=2(2p+q+3)/n
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Proof:
From (4.8), (4.9), (5.1.2), (5.1.3) and Appendix [A2.3], the result follows.

Corollary 5.1.2. _
From (5.1.4), (5.1.5) and (5.1.6), it follows that a set of necessary and sufficient

conditions for the estimators in (4.4) to (4.6) to be better than Tl' as well as sﬁ would be

that corresponding A, should lie between 0 and 2A;, , where

-2/a(np+1), for d,
Ap = {~2(p+3)/(np+6),  for d; (5.1.7)
-0/(g+9), for dg

Thus, in the absence of exact knowledge on the parameters p,q, but depending on
some bounds ( ps p(z),q < q(z)) , a set of sufficient conditions for estimators in (4.4) to

(4.6) to be better than T; can be obtained.

Corollary 5.1.3. .
One can observe that 7»:,2 ’s in (5.1.4), (5.1.5) and (5.1.6) will be greater than 0 if

* 2 3 *
. x‘.,n> (p+ ) }",and n>
(p+a) (1-17) (p+q) 1-n

respective values of n is such that n>

2(2p+q+3) A
(p+q) (1-n

) resp;actiVely.

Thus a set of sufficient conditions for the estimators in (4.1) to (4.3) to be better than
T, would be that corresponding A, should lie between 0 <A, < 20, where A can

be obtained from Ag, on the basis of some bounds on the parameters p,q,a in the absence
of them knowing exactly.

Corollary 5.1.4:
For some bivariate gamma populations with (p+g)=1(0< p,g<1), a set of
necessary and sufficient conditions for the estimators in (4.1) to (4.3) to be better than T,'

would be that corresponding A, should lie between 0 and 2, , where,
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i) o

o = ‘6[14:@@]], Sord, 619
&

{l_k;{H_2(2p:q+3)H/[2(2p:q+3)+q:|, fords

Proposition 5.1.5:
Let the terms n/(n-1) and (n+1)/(n-1) be replaced by unity and the bivariate gamma
population as in (5.1.1) be considered. If p+q=1,and 0< p,q <1 , then we have,

S
Ne——~

K\
Proof:
From (3.8) and (4.8) and under the conditions of the proposition, we obtain

ce o, (%), (=n)
(7»02) E(X) =a(T(-p+—)])2.E(x =( a4) . ford,
[M(T;)—Mo(d)]=<(k:,z)z.E(sf)z=(l—;);!)—.E(sf)2;(]—a7:l) . ford,
. 2_ 2\ 1_}“‘2 2_ 2\ l—kiz
(koz).E(sy-sx) =((]_p))2 .E(sy—sx) =( 7 ) , for d,

Hence the resuit follows.

5.2 Beta-Stacy population:
We consider the obseryations {(x,-, y,);i=l,2,....;n} as if drawn from beta-stacy

~ population and study the properties of the proposed estimators of oi for this population;

v - ' :
F(xy) = (y-x)T Tl em{-[ﬁ] } [B*TkB(pg), 521

0<x<y<«,>0,y>0,k>0,p>0,g>0
We obtain, from Appendix (A2.4),
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' o B(r+p.q) B T(r+s+vk)/y
Uy XY =F x’y‘ = . (522)
) ( ) B(p.9) Tk
Now, for Beta-stacy population with Y=1’§Z_2: 1, _k_;c'f_l_: 1, we have the
followings: ' '
=kp;. p, =| —£— kB,
p}’ B px (p+q] ﬁ
B2k(k+1)p +1 k 242
b () = kB2 g () =S KXY [ P _[__)_ p J: Bpg
(P+q+l) p+g+l \k+l) p+q (p+9) (p+q+l)

2pq(q- p)K°p’
(q+p)3(p+q+l)(p+q+2)

us () = 2k8%; s(x)=
e (y)=3k(k+2)p*
~ w for the population with p+q=1, y =1, -If—,;ﬂ: 1 and k_;:_Z: 1, we have

, aps
Ka (%) =k—‘3—8ﬂ(2—5pq)

k“ﬂ“pq( 5 p+qY (p-q) _1 5
>EPPAS 20| pg=| PXL| (P29 <2 5pg>-2| (523
8 7y R 2 7 TPazoy| 623

>0
By (¥) =3 (k+2) 3,
(2- 5pq) s
Pa(x)= 2pq [pq 2]

£(7)- Bk*p[q+np(p+q)+np]
n(p+q)2 (p+q+l)

= Bzzlc':l’ [(p+q);“(2"—l)p] _ B2k2p[l ;izn—])p],

Cov(si,f)=—— >0,
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Cov(si,‘x') = _(_i’_]kzﬁs =~ pk?B® <0,
p+q ;

Cov(sz,sf)=— Bk’ pg
LT (pra) (praty)

2] {5}

ﬁ4k3
8

(1‘—(p—q)2),

(s2)=2E () BK (pa) [2-5pg_n=3
T 4n 2pq  n-1}|

. t ,
22 _p22 N+l o200, 22 Bk (pa) [2-5pg n*-2n+3
E(s}) =p% =~ B E(s}) = . [

Remarks: . ‘
It may be noted that in the bivariate gamma population, ‘p,(y)’ depends on the

parameters of the ‘x’ distribution, so improvement may be possible. However, for the
bivariate beta-stacy distribution ‘ p,(y)’ does not depend on the parameters of the ‘x’

distribution, so a minimum variance unbiased estimators of oi is available in this case

(Johnson and Kotz (1972). However, if the roles of x and y are changed then it would
make sense.

The following proposition provides the range of values of A, for bivariate beta-stacy
population which, when imputed, to the proposed estimators makes them improved over
T]' as well as over the usual estimator si .

Proposition 5.2.1:
k+1 k+2 - -
Let the terms - and — be replaced by unity and the bivariate beta-staey

population as in (5.2.1) be considered. Let 8 = kpg . If p+q = 1, then for large n, a set of
necessary and sufficient conditions for estimators in (4.1) to (4.4) to be better than T;

and hence than s’

+ would be that the corresponding A, should lic between 0 and 2Aj, ,

where,
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B/p, for t=Xx
Aoy =4{2/8, for t=s?

[(1-1)-8]1(1+8%), or 1= (s2~52)

The proposition follows from (4.8), (4.9), (5.2.3) and Appendix A2.6

6. NUMERICAL ILLUSTRATION

Table 24.53 from page 354 of the Book by Hutchinson and Lai (1990) have been
used. X in the above table is our Y and their Y is our X. Assuming the bivariate data
arising from bivariate gamma population, relative efficiencies of 7, and d,'s(i =1,2,3)

in 5.1.4 to 5.1.6 over s2 have been computed and presented in Table 6.2. Rain volumes

from clouds which were seeded (y) and matched clouds (x) which were not, are given in
the following table.

" Let

Table 6.1:
Rain volumes from seeded (Y) and unseeded clouds (X).
Trials 1-5 Trials 6-10 Trials 11-16
X Y X y X Y
26.1 129.6 0.0 302.8 68.5 200.7
26.3 314 17.3 119.0 81.2 274.7
87.0 2349.6 244 4.1 973 261.7
95.0 489.1 11.5 92.4 28.6 7.7
372.4 430.0 321.2 17.5 830.1 1606.0
345.5 978.0

On computation, we héve,
W, =455.64, u, = 152.03, o} = 548321.99, o} = 48056.05

a=p,[o} =

n=10, and let A;

Mo (%)= 1.172051201 x 10"

v(s2)= 1920867537 x 10"

My (d,)= 1.163236471 x 10"
M, (d,) = 1.172043839 x 10"
My(dy)= 1.169916504 x 10",

00316, p+q=p,a=144,
p=ay,= 480399, g=.9596601,
B,()=7.1666, c*(s}) = 0.63889, A= 14.71205,

=My = % =0.6797 . Now, we have,
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Table 6.2:

Percentage Relative Efficiency of T, d;(i = 1,2,3) over si .
[r(sf,)//wo(r;)}xloo [V(sj)/Mo (d, )]xloo [V(s;)/MO (dz):|x100 [v(52)/ Mo (d3) x100
163.88% 165.13% 163.89% 164.18%
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APPENDIX Al:

A.ll: Let p = p', and for simplicity, p ',(x) (r =1,2,3,4) be written as , ;

_ _ , 2 .
E(s§)2=%[p;-4p;p;-_2<"_—21@;32' 2, (1=2)(n=3) 4 n-2n+3 2}

(n-1) 25 (n-1) (n-1 2
A g o 20=D(=3) o (1=2)(n=3) 4 n’=2n+3 o
_n[:u4 6“2“]“'3“] (n—-l) 2 |+ (n_.l) l+ (n_l) 2]

c! 2(n* -2n+3)
n{ﬁﬁ (n-1) ]

X

4
A12: V(sh)=E(s}) - (EGs)) = EL[B 5+
n n—-1

_oxl. (n-3)
'T{Bf (n—n}

2_
nt—2n+3 }_64

- _ — — 1
AL3: COv(x,y)=-E(x,y>—E(x).E(y)=n—2E[z xy+L X x,y_,]—u,xuy

i*f

i ,
=T-[”-H||+”("‘1)H M y:l_uxpy

n
_pO,0,

n
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A4 Cov(s},y) = E(s).5)—E(s2).E(P)

Now, E(s y)= E[—Z - y)z] (%Z y,)

( “1)1 1
C z % +z S|,
SRS R - Lar-Lii (P
(n—l) i=1 n i=1

1 , v .
=~ [kt -3y p--2)n ]
n

Therefore,

Cov(s},7) = [+ (1= - =2 ¥ ] -0 2w,

=%[}1 3+”P2N1 ]“H;PF% .

A.15: Cov(s2,%) = E(s3%) - E(s2).E(¥)

Now, E(s)z,.J—c)=E[ ( _DZ i - J’)Z(é ‘xi):l

2 iy
1 E (n—l)z y! I A Z ¥

" n(n-1) nos n -

= %[uiz(x,y)ﬂx}o(x,y){(n—l)ubz(x,y)—(n—2)u Ben )} =20 DR y)]

Therefore,
.Cov(sy, )_l{”lz(x )’)+N|o(x,}’){(n Di 62 (x, )= (n= 2 (x, y)}}
=21 130% Y M 05 ) — () 1)
Cov( ) Cov(s x) Cov( y,y)

Cov(s2,52 —52) = Cov(s2,52) - (52)

2 _ 4
V(S§)=“2’§y)[ﬁz—(" 3)] o4 I:Bz 3}

(n-1) n n-1
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n2—2n+3)
(n~1)

1 2An-2)(n-3)
“‘f(n“_*r)—‘}lzo(x Mgy (x, y)+ D)

1 3006, ¥) = 4p 30(x, V) 1 1o(x, )

(=223 {6( )

b <L Bl )+

AL6: Cov(s?,52)= E(s.s2) - E(s2).E(s2)

{(n 1),% i - ( _1')“5 (x - )} KoV (%)

1
+—;{4 X VX Y% +2Z X VX y+ 2 y,y,xkx/H—uz(y)uz(x)

n i# j£k
i ' . o
= —z{nu 206 )+ (=1 50(%, V)i 0%, y)}
n

21 1%, ) (=D 1o(x, )}

1
e

+(n=1)01 =2k 25 V)b 506 )} = —5 {20 (5 i Y=

1
n(n-1)
+n(n=1)(n=2)p (%, Y 105 )}

I ' ' '
* (n(n-1))? {4’1(”— D=2 (%, ) 10X VI 01, ¥)

+2n(n= D] (x,9)+ n(n=1) (1= 2)(n= 3 G5 2D 5062} = 20DR 2(5)
B 31;[# 2206 ¥)+ (n =D 50(%, Y) 1t g%, ¥) = 20 1205 V)it 10, )

~(n =212 (%, 1) gy (% 1) = 20 1 (5, V)M g (%, )
~(n=2)p 30 (%, Y)W 7 (6, V)M Gy (3, )

2 . )
+4( - ?juu(x Pk jo (6K o) (x5, )+ (n—l)“ﬁ (x,»)

L=D(n=3)
(n-1h

b (6 )xp gy (9) | -0 303
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APPENDIX A2.1:

Calculation of moments of different order of bivariate gamma distribution. We have,

al*d
Ipl'g

g~
e (5) =2 Hx’y"’x”"y"“‘[l—f] e ddy

a T+ p) T(s+q+r+p)
Tp D(p+q+r) ’

Hence, relating p, ,(x,y) with g, (x,y), we have,

m(x)=to(xy)=pla; j(¥)=poi(xy)=(p+9)/a
My (x) =bz0 (6, 3) = P/ i 1y (¥) =10 (%.3) = (P +9)/ &
i3 (%) =30 (0 ¥)=2p/a" s ns(¥) =pos(n.¥)=2(p+q)/d’

3p(p+2),p4(y) o (527) = (p+q)‘(,;z)+q+2)

ty (%)= pag (x.¥)=

ni (x.9) = p(p+q+1)/d

uyr (x.9)=(p+q+2)(p+1)p/d
ua(xp)=(p+q+2)(p+q+t)p/a

sy (n.y)=(p+q+>,(p+2)(p+1)p/a*
;,11,3(x,y)—(p+q~i-3)(p+q+2)(p+q+])p/a4
1y, (5 3)=(p+1) p(p+q+3)(p+q+2)/a*

APPENDIX A2.2:
Calculations of Cov(si,t) for t = sf,i,i under the assumption of

(i) Cov( 2 2) 4[p p+1)(p+q+2)(p+g+3)+(n- )p(p+1)
X (p+q)(p+q+l)—-2p (p+q+1)(p+q+2)
- (n-2)p*(p+q)(p+q+1)-2p(p+1)(p+9)(p+q+2)

- (n—2)p(p+1)(p+q)2 +4(-n—_-_—?—)pz(p+q)(p+q+l)

(n-2)(n-3) ,

+(,,:)P2(P+é+1)2+ (-1 P (p+q) —nmo(p+q) |

185
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- ——]—{ZP ( 1)+6p}~ -n-l—zp(p+3)

ha

(ii) (ov(v x)= 21; ;

(i) Cov( ) M

3

na
(iv) Cov(%,7) =.n—i’2- :
) By ()= 2222,
) By (y)=3(—fpi+f’§)—2—);
(vii) ¥(s2) ﬁ[zl’(,{—l)”]: 2p£i4+3),
(vii) V( ) 2 :a§Q)[(p+q)(nTJ+3}_ (p+ql(aﬁ7+q+3)
) E(s2)’ -;:%H:fg.npm} L_(np+6);
| APPENDIX A2.3:

Calculation of Ag, ’s for different t’s (t =X, sf,si -—sf) .

Case l: =X
b =[(1-2)o2E(1)-icov(s}. %) | /E(®?)
P{(H?)(wq)—zﬂ P

3 1
)
n

(1-M)(p+q)-(20i/n)

a(1+r)

Thus, for the bivariate gamma population with p+g =1, we have,
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, RN
=— 2
% a(p+1)[a na(n+ a)}

and for large n (n — o), we have,

e (105

It may be noted that,

A‘
Agy >0, or <0 according as 7> ~—~—~.—1

187

(A2.3.1)

M

p+a (1-1;) o n<;—+—q'(1—x{) '

Hence, a set of sufficient conditions for d, to be better than A, for all bivariate gamma

population with p+ g =1, would be that

. . A
0 <Ay S2hg5) <21, for, n> L
2 02 02 p+q (]*)\1) .
’(l) }L]‘
or 2Xq’ SA, <0, for, n< o
p+a (1-17)

where, Agy = (l -N )/20(22) ,agy <a [vp+i<2]

Case2:1=s2;
A;)z:[(l—xl)o o2 ~AiCov{s.s?) /E

W[n(p+q) M {n(p+q)+2(p+3)}]

Thus, for bivariate gamma population with p+¢g =1, we have,

Az =[n-2] (n+2(p+3))]/n(p+%),

A 22 o)
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which, for large n i.e. n— a, becomes,

Aoy =(1—x{)/p'>o. (A232)
Hence, a set of sufficient conditions for 4, to be better than A; would be,

0<h, $2)»:)(21);

Case3: t=(s3-s);
- [(“M')ci (03 -02)-riCov{s2.(s; -2 )}]
02 E(s; -sf)z
(P+a)-M {(p+q)+ 2(2”’“‘7*3)}}
Thus, g, = n

Thus, for the bivariate gamma populations with p+g =1 and for large n, (n - a), we

N i

Ay = | - (1—1{)/;1 (A2.3.3)

I:q;2(2p+q+3):l

have,

A 2(2p+g+3)

(R

be better than T, would be

Clearly, Ay, >0, if n> and hence a sufficient condition for d;to

0<hy 200,

where, k;,(zl) is any known quantity depending on some bounds on the parameters
involved. '

It may be observed that,' for n —«,

x{,ﬁ.E(sﬁ)z =(1-% )2/a4
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;:,g.E(sﬁ -s2) = (1-n)’ [ |
and x;%.E(fz)=(1—A[)2/a“
APPENDIX A2.4:

Calculation of moments of different orders of Beta-Stacy population, (5.2.1). We have,

B(r+p’q)E(yr+.r),

(%)= “8nd)

where,

E(y™)= Iy )
0

and, _ .
p-t q-1 Y
f y_(£) y(n—l)_y(q—l)(l_ﬁJ Y exp _.(ZJ dx
O<x<y Yy y B

B*TkB(p.q)

= y.yv""kf’"’(l—u)""exp{—(é’-ﬂay /B”‘ TkB(p.q)

O<u<l

fO=

=Y. y"k"e_(%) %37" Tk, y>0

Therefore,

E(y’“‘) _ 1 Tyynsﬂk—le_(%JY dy

BTk o
] Br+s+yk m
B™Tk
Hence,
, B(r+p,q) B IT(r+s+yk)/v)
“",.\' (x9y)= ( p q)' ( )/
B(».9) Tk
Now, for beta-staey distribution with y =1, we have, finally, v
r+s.
u (%)= Blr+p.a) B rtstk (A24.1)

B(p.9) Tk
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APPENDIX A2.5:

Computation of Cov(s;,t) for different choices of 1.

From A.2.4.1, we have,

() - LBk ) 2)
)= Gy e+ (230
piy (%)= (p+q)B 2k (k+1)

b (1) =Tl 2)e3).

(i) Cov(si,)?) = %[p{,z (x,¥)+n, {(n—l)p'2 (y)—(n—Z)ui}
~2ui, (% ¥)H, - ot |

=%[( 4 ]k(k+1)(k+2)[53+[—If;)kﬁ{(n-l)ﬁzk(k+1)—("—2)"2l32}

p+q

—2[p )(k+1)[3 kB - np k( Jkﬁ]

Let the terms

. +q
1 p ) | Kk+1)(k+2) (k+lJ (m)_ﬁ

n(p+quB {——_k;——Jr (n-1) (n=2);- k
1 (_ﬁ)kﬁ [kH dMUIJ

n\p+q )\ k) k k
=-( P )kB (A25.2)

pP+tq
+l), (k+2) and (k;3) be replaced by unity, then from A.2.5.1,

(
k

we have the followings:

k

p(p+1)
(p+q)(p+q+1)

(@) Hy (x,y)=pk*
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. 4k4p(p+l)
b 4 ul [ I . L A
()llz(x)llz(J’) (p+q)(p+q+l)
2
4
(C) ul2(x’y)“x B k [p+q]

_ B4k4p(p+l)
(p+g)(p+q+1)

2
4
(e) py(y)nl =p'k (p+q) |

B4k4p(p+ 1)
(p+q)(p+q+i)

2
_ 4
(g) Hn(x,.V)Hley B k [p“"])

) wiy (. y)m, (A253)

® py(x)p) =

N2
h) pi (x,y)=p*k* (;’f;}

2
Q) pliyl= B“k“-(—p——)
pt+q

() #y(x)ma( y):'}“k“{ pq }

k(p+q)2(p+q+l)

(ii) Cov(s s )=%[u22(x,y) (n=1)us (x) 5 ()

= 215 (%, y)ue ~(n=2)ul 0y (v) =20, (x.y)n,
-2)

- (n- 2)uz(x)uy+4(( l)un(x V) Ry

' n-2){n-3
( )p”(x, ) (_(—n)il)—“)'l‘iﬂy—”uz( )-Pz(Y)
Substituting the values from (A.2.5.3), we have,
4,3
Cov(s)z, s2) sz rq
(p+q) (p+q+1)

ms (v) _2p%k

n n

>0

(iii) Cov(s),¥)=
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— ) Ir,
@ con(z3) =20 L () um,]

Ut

I

‘ APPENDIX A2.6:
Computation of A, for different choices of t
Casel: t=Xx;
M =[(1-1 )02 (%) -nicov(s2, %) /E(7)
K8 p/(p+4)

kZB2p{;(—p—+q—q:ﬁ+p} /(p+q)2

when p+qg =1, we have

-

which, for large n, i.e. for n >« becomes,

ho2 =(B/p)>0

132=[(1—x,)o o’ —A,Cov /E

‘Cpg/(p+q) (p+q+.1)

2 2
2 1-—
Bk (pg) 2—5pq+( n)
4 2npgq (l——l—
“n

which, for p+¢ =1 and for large n, i.e. for n >x we have

)voz 5 >0 where 3 = kpg.
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Case3: r= (s —sz)

Ay =

s s 2

(p+a) (p+q+)) (n-1) (p+9) (p+q+))

- 1) 2]

(p+9q) (p+q+l)

Denominator = V(sf,)*—V(si)—ZCov( s 2)+(02 —0'2)2

_ 2Bk pg 2f5pq_(n-3) BE (. 44(_@1)2
(-1)" an \ 2g \n-1)) 3 -(r A fep1 2

Assuming ———::—~ 1, we have,
n —

' ‘ 2
2
E(Si —sf) = k2B4 X [terms containing (.’l_l}. kpq + (1 _f!;_‘]_] ]

: 2
and for large n, i.e. for n-—»>x E (si - sf) becomes

E(s2-s7)= " [ "2’;2‘72]
Thus, for p+g =1 and for large n, we have,
o k
ep|(1-)-7]
KB [1 +(5”—‘l)2}
: 2
_ (1-47)-5
(1+87)

Aoy =
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