Pak. J. Statist,
1092 Vol. 8(2), pp 63-71

ON OPTIMUM INVARIANT TEST OF INDEPENDENCE OF TWO SETS OF VARIATES WITH ADDITIONAL INFORMATION on covariance matrix

$B y$

S. R. Chakravorti
Indian Statistical Institute, Calcutta, India

(Received:Dec, 1990, Accepted: Jan, 1992)

Abstract

Test of independence of two sets of variates has been considered under the assumpotion that a part of the covariance matrix is known. This has been interpreted as that of testing the problem with incomplete data. Lift for the problem has been obtained Ly Olkin and Sylvan (1977). We have derived an optimum invariant test which is LMPI and locally minimax but the test is not LRT. Mowever, under special situation LRT has beco shown to be UMPI.

Key words

Incomplete data, independence of two sets of variates, optinmm invariant test, locally minimax.

1. Introduction

Let ${\underset{\sim}{\alpha}}_{\alpha}(p \times 1), \alpha=1, \ldots, N$ be N independent observations from $N_{p}(\mu, \Sigma)$. Let us partition $\underset{\sim}{X}=\left(\underset{\sim}{X} 1_{\alpha}^{\prime}, \underset{\sim}{X}{ }_{2}^{\prime}\right)$, where $\underset{\sim}{\underset{i \alpha}{\prime}}$ is a $p_{i} \times 1$ vector, $i=1,2, p_{1}+p_{2}=p$. Similarly partition

$$
\underset{\sim}{\mu}=\binom{{\underset{\sim}{\mu}}_{1}}{\sim_{2}}, \quad \sum=\left(\begin{array}{ll}
\sum_{1 i} & \sum_{12} \tag{1.1}\\
\sum_{21} & \sum_{22}
\end{array}\right)
$$

Let us assune that the elements of \sum_{22} are known and hence, without any loss
of generality, we assume that $\sum_{22}=I_{p_{2}}$. Under this set up, the problem is to test

$$
\begin{equation*}
H_{o}\left[\sum_{21}=0\right] \text { against } H\left[\sum_{21} \neq 0\right] \tag{1.2}
\end{equation*}
$$

The data of this kind have been considered by Olkin and Sylvan (1977), where they have studied the problems of estimation and testing concerning correlations and \sum.

Now this type of model may be interpreted in terms of the model with missing (or extra) observations as follows:

Consider N observations on ${\underset{\sim}{X}}_{1}$ and $N+M$ observations on $\underset{\sim}{X} \underset{2}{ }$ and all the observations are independent. This means there are M extra observations on $\underset{\sim}{X}{ }_{2}$ - This can be regarded as a special case of monotone sample defined generally by Bhargava (1962). Now for large M, \sum_{22} may be'assumed to be a known matrix and we have the above model. Eaton and Kariya(1974) considered the casc when M is finite.

It has been shown by Olkin and Sylvan that the likelihood ratio test (LRT) of the problem (1.2) is the same as that obtained when \sum is unknown and arbitrary. Thus extra information on X_{2} components i.e., \sum_{22} known has no effect on the LRT of this problem. In this article we have derived an optimum invariant test for (1.2) which is locally most powerful invariant (LMPI) and locally minimax level α test but this is not LRT. Further for $p_{2}=1$, the LRT is uniformly most powerful invariant (UMPI) level α test for this problem.

2. Reduction of the data

To construct an optimum invariant test for the problem (1.2), we reduce the given data of Section 1 by sufficiency and translation, under which testing problem remains invariant It is known that a sufficient statistic for ($\mu \sim 2)$ is (\bar{X}, S),
where $\underset{\sim}{\bar{X}}=\frac{1}{N} \sum_{\alpha=1}^{N} \underset{\sim}{X}$ and $\quad S=\sum_{\alpha=1}^{N}(\underset{\sim}{X} \underset{\alpha}{ }-\underset{\sim}{X})\left(\underset{\sim}{X}{\underset{\sim}{\alpha}}^{X}-\underset{\sim}{X}\right)$.
Since the problem is invariant under $\underset{\sim}{X} \rightarrow \underset{\sim}{X}+\underset{\sim}{a}$ and $S \rightarrow S$, where $\underset{\sim}{a}$ is a $p \times 1$ vector, the reduced sample space is S and the corresponding parameter space is $\sum>0, \sum_{22}=I_{p_{2}}$. Hence, without any loss of generality, we consider the data $\left(S_{11.2}, S_{21}, S_{22}\right)$, when $S_{11.2}=S_{11}-S_{12} S_{22}^{-1} S_{21}$, which is $1-1$ to S and where

$$
\begin{align*}
S_{11.2} & \sim W_{p_{1}}\left(n_{1}, p_{1}, \sum_{11.2}\right), \quad n_{1}=N-p_{2}-1 \\
S_{21} \mid S_{22} & \sim N\left(S_{22} \sum_{21}, S_{22} \otimes \sum_{11.2}\right) \tag{2.1}\\
S_{22} & \sim W_{p_{2}}\left(n, P_{2}, I_{p_{2}}\right), n=N-1
\end{align*}
$$

and $S_{11.2}$ and $\left(S_{31}, S_{23}\right)$ are independently distributed.

Reduction by invariance

The problem (1.2) remains invariant under the group \mathcal{G} of transformations, where

$$
G=\left\{g=\left(\begin{array}{cc}
g_{1} & 0 \tag{2.2}\\
0 & g_{2}
\end{array}\right)\right\}
$$

where $g_{1} \varepsilon G_{l}\left(p_{1}\right), \quad z \varepsilon O\left(p_{2}\right)$. The group action on sample space is .

$$
\begin{equation*}
S_{11.2} \rightarrow g_{1} S_{11.2} g_{1}^{1}, S_{21} \rightarrow g_{2} S_{21} g_{1}^{\prime}, S_{22} \rightarrow g_{2} S_{22} g_{2}^{\prime} \tag{2.3}
\end{equation*}
$$

and that on parameter space

$$
\begin{align*}
& \left(\sum_{11.2}, \sum_{21}, I_{F_{2}}\right) \text { is } \sum_{11.2} \rightarrow \\
& \tag{2.4}\\
& \bar{g}_{1} \sum_{11.2} \bar{g}_{1}^{\prime}, \sum_{21} \rightarrow \bar{g}_{2} \sum_{21} \bar{g}_{1}^{\prime}, \sum_{22} \rightarrow \bar{g}_{2} \sum_{22} \bar{g}_{2}^{\prime}=I_{p_{2}}
\end{align*}
$$

Proposition 1: A maximal invariant in the parameter space is $\delta_{1} \geq \ldots \geq \delta_{t,:} t=$ $\min \left(p_{1}, p_{2}\right)$, where $\delta_{1}, \ldots, \delta_{1}$ are the ordered characteristic roots of the matrix $\sum_{21} \sum_{11.2}^{-1} \sum_{12}$. Let $\beta\left(p_{2} \times p_{1}\right)$ be a diagonal matrix such that the diagonal element $\beta_{i i}=\sqrt{\delta_{i}}, i=1_{1},,, t$. Then tr $\beta \beta^{t}=\sum_{i=1}^{t} \delta_{i}=\delta($ say $)$.

The proof of the proposition is straightforward and hence omitted. Under the proposition 1, the hypothesis (1.2) can be written as

$$
\begin{equation*}
H O[\delta=0] V s H[\delta>0] \tag{2.5}
\end{equation*}
$$

Since the power function of an invariant test depends only on th variants in the parameter space, without any loss of generality, we may assume the data are such that from (2.1),

$$
\begin{align*}
S_{11.2} & \sim W\left(n_{1}, p_{1}, I_{p_{1}}\right) \\
S_{21} S_{22} & \sim N\left(S_{22} \beta, S_{22}(\otimes) I_{p_{1}}\right) \tag{2.6}\\
S_{33} & \sim W\left(n, p_{2}, I_{p_{2}}\right)
\end{align*}
$$

where β is as defined in proposition 1.

In order to construct optimum invariant test for the problem (2.5) we consider the well-known Wijsman's representation theorem (1967, Theorem 4, eq. 3, Page 394) of the probability ratio of the maximal invariant in the sample space.

To apply the theorem we assume

$$
S_{21}=X ; \quad S_{11.2}=Y^{\prime} Y^{\prime}, \quad S_{22}=u u^{\prime}
$$

Then from (2.6) we have,

$$
\begin{align*}
& X \mid u \sim N\left(u u^{\prime} \beta, \quad u u^{\prime} \otimes I_{p_{1}}\right) \\
& Y \sim N\left(O, I_{p_{1}} \otimes I_{n_{1}}\right) \tag{2.7}\\
& \because u \sim N\left(O, I_{p_{2}} \otimes I_{n}\right)
\end{align*}
$$

3. Optimum invariant test for (2.5)

It has been shown by Olkin and Sylvan (1977) that the LRT for the problem rejects H_{O} for small values of the statistic

$$
\begin{equation*}
\left|I-S_{11}^{-1} S_{1} S_{22}^{-1} s_{21}\right| \tag{3.1}
\end{equation*}
$$

For $p_{2}=1$, this becomes $1-R^{2}$ where $R^{2}=S_{21} S_{11}^{-1} S_{12}^{2} / S_{22}$, the square of the multiple correlation of X_{2} on X_{1} IIence the test which rejects for large values of R^{2} can be shown to be UMPl level a test (as shown in theorem 2 below). In general, however, for $p_{2}>1$, (3.1) does not provide oin UMPI test for the problem. To construct an optimum invariant test for this problein; we have from (2.7) the joint density of (X, Y, u) w.r.t. Lebesgue measure,

$$
\begin{align*}
p(x, y, u) & =C\left|u u^{\prime}\right|^{-p_{1} / 2} \exp \left[-\frac{1}{2} \operatorname{tr}\left\{X^{\prime}\left(u u^{\prime}\right)^{-1} X+Y^{\prime}\right\}\right. \\
& \left.+\operatorname{tr} X \beta^{\prime}-\frac{1}{2} \operatorname{lr} \beta^{\prime} u u^{\prime} \beta-\frac{1}{2} \operatorname{lr} u u^{\prime}\right] \tag{3.2}
\end{align*}
$$

In order to apply Wijsman's theorem, let ψ be the left invariant Haar measure under G defined in (2.2.), $|J|$ the Jacobian of the transformation, where $|J|=$ $\left|g_{1} g_{1}^{\prime}\right|^{-n / 2}$ and R_{δ} the probability ratio of the maximal invariant in the sample space. Now $X^{\prime}\left(: u^{\prime}\right)^{-1} X+Y Y^{\prime}$ being non-singular, there exists a unique $g_{0} \varepsilon G_{T}^{+}\left(p_{1}\right)$, a group of lower triangle matrix. with positive diagonals, such the $g_{O}\left(X^{\prime}\left(u u^{\prime}\right)^{-1} X+\right.$ $\left.Y Y^{\prime}\right) g_{O}^{\prime}=I_{p_{1}}$. Then substituting $\left(g_{1} g_{O}, g_{2}\right)$ for $\left(g_{1}, g_{2}\right)$ without changing the value of R_{δ}, we have from (3.2); after simplification.

$$
\begin{aligned}
& \quad R_{\delta}=D_{1}^{-1} \int_{G_{\ell}\left(p_{1}\right)}\left|g_{1} g_{1}^{\prime}\right|^{n / 2} \exp \left[-\frac{1}{2} \operatorname{tr} g_{1} g_{1}^{\prime}\right] \wedge\left(g_{1}\right) v\left(d g_{1}\right) \\
& \text { Where } D_{1}=\int_{G_{\ell}\left(p_{1}\right)}\left|g_{1} g_{1}^{\prime}\right|^{n / 2} \exp \left[-\frac{1}{2} \operatorname{trg} g_{1}^{\prime}\right] \vartheta\left(d g_{1}\right) \\
& \wedge\left(g_{1}\right)=\int_{O\left(P_{2}\right)} \exp \left[-\frac{1}{2} \operatorname{tr} \beta \beta^{\prime} g_{2} u u^{\prime} g_{2}^{\prime}+\operatorname{tr} X g_{0}^{\prime} g_{1}^{\prime} \beta^{\prime} g_{2}\right] v\left(d g_{2}\right)
\end{aligned}
$$

Since explicit evaluation of (3.3) for $p_{2}>1$ is difficult for general alternatives, we consider local alternatives of (2.5). To evaluate R_{δ} explicitly under local alternatives we require the following results due to James (1960, 1961):

Lemma 1: Let $H \varepsilon O(p)$ be orthogonal matrix in an orthogonal group $O(p)$ and $\vartheta(d I I)$ is the invariant Haar measure on $O(p)$. Then

$$
\begin{equation*}
\int_{O(p)} \operatorname{tr}(A H)^{2 j+1} \vartheta(d H)=0, j=0,1, \ldots \tag{i}
\end{equation*}
$$

(ii) $\quad \int_{O(p)} \operatorname{tr} B_{1} I I B_{2} I^{1} v(d I I)=\frac{1}{p} \operatorname{tr} B_{1} \operatorname{tr} B_{2}$
(iii) $\quad \int_{O(p)}\left(t r B_{1} H\right)^{2} \vartheta(d H)=\frac{1}{p} \operatorname{tr} B_{1} B_{1}^{1}$

Where A, B_{1}, B_{2} are matrices conformable for muliplication.
Expanding the integrand in $\Lambda\left(g_{1}\right)$ of (3.3) and applying the results of lemma 1, we obtain

$$
\begin{align*}
\Lambda\left(g_{1}\right) & =1-\frac{1}{2 p_{2}} \operatorname{tr} \beta \beta^{\prime} \operatorname{tr} u u^{\prime}+\frac{1}{2 p_{2}} \operatorname{trg} g_{0} X^{\prime} X g_{0}^{\prime} g_{1}^{\prime} \beta^{\prime} \beta g_{1} \\
& +O\left(\operatorname{tr} \beta \beta^{\prime}\right) \tag{3.5}
\end{align*}
$$

Hence from (3.3) and (3.5), we have,

$$
\begin{align*}
R_{\delta} & =1-\frac{1}{2 p_{2}} \operatorname{tr} \beta^{\prime} \beta \operatorname{tr} u u^{\prime} \\
& +\frac{1}{2 p_{2}} D_{1}^{-1} \int_{G_{C}\left(p_{1}\right)}\left|g_{1} g_{1}^{\prime}\right|^{\prime / 2} \exp \left[-\frac{1}{2} \operatorname{trg} g_{1}^{\prime}\right] \operatorname{tr}\left(g_{0} X^{\prime} X g_{0}^{\prime} g_{1} \beta^{\prime} \beta g_{1}\right) \nu\left(d g_{1}\right) \\
& +O\left(\operatorname{tr} \beta^{\prime} \beta\right) \tag{3.6}
\end{align*}
$$

Now let $g_{1}=h_{1} k_{1}$, where $h_{1} \in G_{T}^{+}\left(p_{1}\right), k_{1} \varepsilon O\left(p_{1}\right)$. Indtroducing this in the integral of (3.6) and on repeated application of (ii) and (iii) of lemma 1 , and remembering that $h_{1} h_{1}^{\prime} \sim W_{p_{1}}\left(n, I_{p_{1}}\right)$, we have from (3.6) after simplification,

$$
\begin{align*}
R_{\delta} & =1-\frac{1}{2 p_{2}} \operatorname{tr} \beta^{\prime} \beta \operatorname{tr} u u^{\prime} \\
& +\frac{n}{2 p_{1} p_{2}} \operatorname{tr}^{\prime} \beta \operatorname{trg}_{\mathrm{G}} X^{\prime} X g_{0}^{\prime}+o\left(\operatorname{tr} \beta^{\prime} \beta\right) \tag{3.7}
\end{align*}
$$

It is easy to show that the remainder $o\left(\operatorname{tr} \beta^{\prime} \beta\right)$ is uniform in (X, Y, u).
Since $\operatorname{tr} g_{0} X^{\prime} X g_{0}^{\prime}=\operatorname{tr} S_{21} \dot{S}_{11}^{-1}$ and $\operatorname{tr} u u^{\prime}=\operatorname{tr} S_{22}$; applying Neyman - Pearson lemma we have the following:

Theorem 1: Let $\varphi \varepsilon \partial_{\alpha}$ be the level α test function in a class of all invariant level α test functions ∂_{α} such that.

$$
\begin{align*}
& \varphi=1, \text { if } \frac{n}{p_{1}} \operatorname{tr} S_{21} S_{11}^{-1} S_{12}-\operatorname{tr} S_{22}>K \\
& 0, \text { otherwise } \tag{3.8}
\end{align*}
$$

where K is chosen to make φ level α. Then φ is unique locally most prowerful invariant (LMPI) test for H_{0}.

Theorem 2: When $p_{2}=1$, the test which rejects H_{0} for large values of $U=$ $S_{21} S_{11.2}^{-1} S_{12}$ is UMP invariant level α test in a class of level α invariant tests in ∂_{α}.

Proof: For $p_{2}=1, g_{2}$ in (2,2) is a scalar and in this case the group under which the problem remains invariant is

$$
G=\left\{g=\left(\begin{array}{ll}
g_{1} & 0 \tag{3,9}\\
0 & \pm 1
\end{array}\right)\right\}
$$

Under this situation, from (3.3) the explicit form of R_{δ} can be easily shown to be

$$
\begin{aligned}
R_{\delta} & =\exp \left[-\frac{1}{2} \delta S_{22}\right] \sum_{=0}^{\infty} \frac{\delta^{j}}{2^{j} j!} \frac{\left(\frac{n}{2}\right)_{j}}{\left(\frac{p_{1}}{2}\right)_{j}}\left(S_{21} S_{11}^{-1} S_{12}\right)^{j} \\
& =\exp \left[-\frac{1}{2} \delta S_{22}\right] \sum_{j=0}^{\infty} \frac{\left(\delta S_{32}\right)^{j}}{2^{j} j!} \frac{\left(\frac{n}{2}\right)_{j}}{\left(\frac{p_{1}}{2}\right)_{j}}\left(\frac{U}{1+U}\right)^{j}
\end{aligned}
$$

where $U=\frac{S_{21} S_{122}^{-1} S_{12}}{S_{22}}=\frac{R^{2}}{1-R^{2}}$, where R^{2} is the square of the multiple correlation of X_{2} on X_{\sim}.
From R_{δ} above, the joint p.d.f. of $\left(S_{22}, U\right)$ can be easily obtained and hence the marginal p.d.f of U is obtained as follows.

$$
\begin{equation*}
f_{\delta}(U)=\sum_{j=0}^{\infty} \frac{\delta^{j}}{(1+\delta)^{\frac{n}{2}+j}} \frac{\Gamma \frac{n}{2}+j \Gamma \frac{n}{2}+j}{\Gamma \frac{n}{2} \Gamma \frac{p_{1}+2_{2}}{2} \Gamma \frac{n-p_{1}}{2}} \frac{U^{\frac{p_{1}}{2}+j}}{(1+U)^{\frac{n}{2}+j}} \tag{3.10}
\end{equation*}
$$

It is easy to show that $f_{\delta}(U) / f_{0}(U)$ has a monotone likelihood ratio in U and δ . Hence the test which rejects H_{O} for large values of U is unconditionally $U M P I$ level α test in ∂_{α} which is LRT as stated in (3.1)

3.1 Local minimaxity of the test (3.8)

To demonstrate that the test (3.8) is locally minimax in the sense of Giri and Kiefer (1964), the first step is to reduce the original problem, using Hunt - Stein theorm. It is easy to show that the group

$$
G=\left\{g=\left(\begin{array}{cc}
g_{1} & 0 \tag{3.11}\\
0 & g_{2}
\end{array}\right)\right\}
$$

where $g_{1} \varepsilon G_{T}\left(p_{1}\right)$ is non-singular lower triangular matrix and $g_{2} \varepsilon O\left(p_{2}\right)$ is an orthogonal matrix, which leaves the origninal problem invariant, will satisfy the conditions of Ilunt - Stein theorem.
To obtain the probability ratio of the maximal invariant R_{δ} under G_{o}, we observe that a left-invariant measure on \boldsymbol{G}_{T} is

$$
\vartheta\left(d g_{1}\right)=\pi_{i=1}^{p_{2}} g_{i i}^{-\left(p_{i}-i+1\right)} \pi_{i \geq j} d g_{i j}
$$

and the Jacobian of the transformations is $|J|=\pi_{i=1}^{p_{1}} g_{i i}^{-n}$.
Then from (3.3), R_{δ} under G_{\circ} may be written

$$
\begin{align*}
R_{\delta} & =D_{1}^{-1} \int_{G_{T}\left(p_{1}\right)}\left|g_{1} g_{1}^{\prime}\right|^{\frac{n}{3}} \exp \left[-\frac{1}{2} \operatorname{tr} g_{1} g_{1}^{\prime}\right] \int_{0\left(p_{2}\right)} \exp \left[-\frac{1}{2} \operatorname{tr} \beta \beta^{\prime} g_{2} u u^{\prime} g_{2}^{\prime}\right. \\
& \left.+\operatorname{tr} X g_{0}^{\prime} g_{1}^{\prime} \beta^{\prime} g_{2}\right] \nu\left(d g_{1}\right) \nu\left(d g_{2}\right) \tag{3.12}
\end{align*}
$$

Let $v^{\prime}=X g_{o}^{\prime}, \theta=\beta^{\prime} g_{2}$ and we first integrate over $G_{T}\left(p_{1}\right)$ for fixed $g_{2} \varepsilon O\left(p_{2}\right)$. Then using $\nu\left(d g_{1}\right)$ and $|J|$ as obtained above, we have from (3.12),

$$
\begin{aligned}
R_{d} & =\int_{0\left(p_{2}\right)} D_{1}^{-1}\left\{\int _ { G _ { T } (p _ { 1 }) } \pi _ { i = 1 } ^ { p _ { 1 } } g _ { i i } ^ { (n - p _ { 1 } + i - 1) } \operatorname { e x p } \left[-\frac{1}{2} \sum_{i \geq j=1}^{p_{1}} g_{i j}^{2}\right.\right. \\
& \left.\left.+\sum_{i \geq j=1}^{p_{1}}\left(\sum_{k} o_{i k} \nu_{j k}\right) g_{j i}\right) \pi_{i \geq j}^{p_{1}} d_{g_{i j}}\right\} \exp \left[-\frac{1}{2} \operatorname{tr} \beta \beta^{\prime} g_{2} u u^{\prime} g_{2}^{\prime}\right] \nu\left(d g_{2}\right) \\
& =\int_{0\left(p_{2}\right)}\left[\exp \left\{\frac{1}{2} \sum_{i>j}\left(\sum_{k=1}^{p_{1}} o_{i k} v_{j k}\right)^{2}\right\} \pi_{j=1}^{p_{1}} F_{1}\left(\frac{n-p_{2}+i-1}{2}\right), \frac{1}{2}, \frac{1}{2}\left(\sum_{k=1}^{p_{i}} \theta_{j k} v_{j k}\right)^{2}\right] \\
& \exp \left[-\frac{1}{2} \operatorname{tr} \beta \beta^{\prime} g_{2}^{\prime} u u^{\prime} g_{2}^{\prime}\right] \nu\left(d g_{2}\right)
\end{aligned}
$$

For local minimaxity, we write

$$
\begin{align*}
R_{\delta}= & 1+\frac{1}{2} \int_{o\left(p_{2}\right)}\left[\sum_{i>j}\left(\sum_{k} o_{i k} v_{j k}\right)^{2}+\sum_{j=1}^{p_{1}}\left(n-p_{1}+j-1\right)\left(\sum_{k} \theta_{j k} v_{j k}\right)^{2}\right. \\
& \left.-\operatorname{tr} \beta \beta^{\prime} g_{2} u u^{\prime} g_{2}^{\prime}+R\right] \nu\left(d g_{2}\right) \\
& =1+\frac{\delta}{2}\left[\int_{O\left(p_{2}\right)} \sum_{i>j}\left(\sum_{k} \eta_{i k} v_{j k}\right)^{2}+\sum_{j=1}^{p_{1}}\left(n-p_{1}+j-1\right)\left(\sum_{k} \eta_{j k} v_{j k}\right)^{2}\right. \\
& \left.=\frac{1}{\delta} \operatorname{tr} \beta \beta^{\prime} g_{2} u u^{\prime} g_{2}^{\prime}+R\right] \nu\left(d g_{2}\right) \tag{3.13}
\end{align*}
$$

where $\eta_{i j}=\theta_{i j} / \delta$.
Now choosing

$$
\eta_{i} \eta_{i}^{\prime}=\varepsilon\left(n-p_{1}+i-1\right)^{-1}\left(n-p_{1}+i\right)^{-1} p_{1}^{-1}\left(n-p_{1}\right) n_{1}
$$

where $\eta_{i}=\left(\eta_{i 1}, \ldots \eta_{i+1}\right)$, and transforming $\eta \rightarrow g H$, where II is uniformly distributed over $O\left(p_{1}\right)$, we have (following Schewartz (1967) on averaging over $O\left(p_{1}\right)$, the quantity

$$
\begin{align*}
\delta E_{g}\left[\sum_{i>j}\left(\sum_{k} g_{i k} v_{j k}\right)^{2}\right. & \left.+\sum_{j}\left(n-p_{1}+i-1\right)\left(\sum_{k} g_{j k} n_{j k}\right)^{2}\right] \\
& =\delta \varepsilon p_{1}^{-1} n \operatorname{tr} v v \tag{3.14}
\end{align*}
$$

Where $\delta \varepsilon=\delta$ tr $\eta \eta^{\prime}=\operatorname{lr} \quad \theta 0^{\prime}-\operatorname{tr} \quad \beta \beta^{\prime}$
Thus on taking expectation over $g_{;}(3.14)$ becomes independent on g_{2}. Hence substituting (3.14) in (3.13) and integrating over $g_{2} \varepsilon O\left(p_{2}\right)$ and using (ii) of lemma 1 ,
we have

$$
\begin{align*}
& R_{\delta}=1+\frac{n}{2 p_{1}} \operatorname{tr} \beta \beta^{\prime} \operatorname{tr} v^{\prime} v-\frac{1}{2} \operatorname{tr} \beta \beta^{\prime} \operatorname{tr} u u^{\prime}+o\left(\operatorname{tr} \beta \beta^{\prime}\right) \\
& =1+\frac{\delta}{2}\left[\frac{n}{p_{1}} \operatorname{tr} S_{21} S_{11}^{-1} S_{12}-\operatorname{tr} S_{22}\right]+o(\delta) \tag{3.15}
\end{align*}
$$

Hence from Giri and Kiefer (1964) we have the following:
Theorem 3: For testing $H_{0}[\delta=0]$ against $H[g>0]$, the test (3.8), which is LMPI, is locally minimax in the sense of Giri and Kiefer (1964).

References

(1) Bhargava, R.P. (1902): Multivariate tests of hypotheses with incomplete data, Technical Report No.3, Applied Mathematics and Statistical Laboratories, Standord University.
(2) Eaton, M.L. and Kariya, T. (1974): Test for independence with additional information, Tech. \because Reporl No. 238, School of Statistics, Univ. of Minnesota.
(3) Giri; N: and Kiefer, J. (1964): Local and asymptotic minimax propertics of a normal multivariate testing problem, Ann. Math. Statist., 35, 21 - 35
(4) James, A.T. (I960): ${ }^{2}$ Distribution of Latent roots of the covariance matrix, Ann. Malh. Stalist., 31, 151-158.
(5) James (1961): Distribution of non-control means with unknown covariance, Ann. Math. Statist, 32, 874-882
(6) Olkin, I and Sylvan, M. (1977): Correlational analysis when some variances and covariances are known, Multivariate Analysis, IV, Edited by P.R. Krishniah, P. 175-197.
(7) Schwartz, R. (1967): Local Minimax tests, Ann. Math. Statist., 38, 340-360.
(8) Wijsman, R.A. (1967): Cross Section of orbits and their applications to densities of maximal invariants, Fifth Berkeley Symposium, Math. Stalist. Prob.1, 1, $389-400$.

