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1, INTRODUCTION
In tho standard treatment of optimum growth theory, the planner (or the
cconomy) is endowed with a preference structure which extends over the whole future
(or, at least a finito number of time perioda to follow). Morcover, the preflerence
function is given once for all and assumed not to change with the passage of timo.
For example, at the beginning of time period 1, the planner's welfuro function may

take the form £ a'-lufe;), where ¢; is the per capita consumption in period ¢, u(-) is
I=1

a time invariant per period utility funetion, usually assumed to bo strictly concave
and increasing and 0 < a < I is a disconut parameter. For a given technology
and initial resource restriction, maximisation of the above welfare function (when
such a maximum exists) will result in the choice of an optimum sequence of consump-
tion labour ratios (¢}, ¢y, ...). It follows from an elementary application of Bellman's

principle of optimality that while (¢}, c3, ...) maximises $ at-tu(cy), (g, €5, -..) maxi-
t=1

mises )E'a"‘u(c,) and in general, (¢}, ¢}, ...) maximises E‘a“'u(q). Thus, if tha
I L

planner’s welfaro function docs not chango over time and at somo period i, 1 <1,
the planner decides to reovaluate his plan for the remaining perieds in his horizon,
he would come out with a choleo of {cf, ¢/, ...) which is identieal with the corres-
ponding portion of his original plan, provided in tho beginning of period 1, ho has the
sama capital stock as the i-th period optimal capital stock for the original plan. This
was firat observed by Strotz (1956) who showed that so long as the planner employs
a geometrically declini of di paramet all optimal plans corres-

g P

ponding to & summable nclfnm funetion sntisly this property. Strotz described the

*Thia iu o rovised vorsion of & papar presontod at the Winter Mcolings of the Econometrio Sotioty
in Now Otlcans, Docombor, 1071. The author gratefully acknowladges the help roceived from William
Brock, Jamoea Friodman and Lioncl MaKenzio.
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planner’s behaviour under theso conditions ns istent, minco i
tions do not change the planncr's original decisions.

Clearly, the Strotz kind of consistency will not bo observed when the planner's
preferonco structure changes over timo. A simplo example of such changing prefer-

ences is obtained when in period i, the planncr has a welfare function ;J‘ o ~Nuyfer)
=

and 1(") vorics with . Under such a changing preference structure, in general the
planner’s decisions at sny moment of time on tho basis of tho current preference
function will bo discarded when reovaluated on the basia of a futuro preferenco fune-
tion. Tho asymptotic behaviour of the economy, when plans chango on successive
reevaluations was studied by Goldman (1968) for & special class of preferenco functions.

It scema almost certain, however, that when plans do get discarded over time,
tho plannor should becomo aware of his own apparently paradoxical behaviour, duo
to which ho nover carrics out his own decisions. One might ask why the planner
does not ider his future disobedi asa int in his original maximization
problem. If such additional constraints are introduced into the problem, tho planner
would bo fucing a second best version of his original plan.

Thus, on the basis of his past behaviour, the planner may try to forcast a
probable pattern of behaviour regarding tho future. In general, the planner’s decision
at the present t will be a function of his expectations about tho future. For
examplo, under the usual kind of planning tho planner will lay down a vector of opti-
mum consumption-labour ratios (cf, ¢, ...). However, if the welfare function is
changing over time, tho planner would be aware of the fact that {c}, c3, ...) will not bo
followed during periods (2, 3, ...). Instead, depending on his past experience, ho
may boliove that tho actual magnitudes to provail will bo (¢, ...). If the planner
considers this as an additional int, his ion-labour ratio choico for

the first period will bo €] , which, in general, would not ba tho samo as ¢,

There is no reason, of course, for the planner's expectations regarding tho
future to actually materialize. Howover, it is etill worthwhile to specify the ciroum.
atances under which tho planner’s expectations will indeed turn out to bo truo. This
is precisely tho purpose of this paper. In particular, we aro interested in demons-
trating tho oxisteneo of an infinito soq {eilin of ption labour ratios which
satisfics the property that tho planner at point of timo 0, knowing that (e, ..., €o-)
prevailed in tho past and expecting that (cj,;, ¢5,s, -..) Will prevail in tho future,
actually chooses cj as his optimum consumption-labour ratio. If this s truo for every
0, then tho sequonce {c}}, may bo said to satisfy a very genoral consistency require-
ment. The situation may bo described as ono involving consistenoy, because the plan-
ner, faced with tho same pattorn of oxpectations in every period and acting as n cons-
cious maximizer, chooses o plan which ia idontically the samo as his oxpeoted plan.

In tho noxt scotion the problom is posed in its general form and Section 3
proves tho main results.  Finally, in Soction 4 woe mako cortain concluding romarks.
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ON GEXERALIZED CONSISTENCY IN A ONE SECTOR MODEL
2. TitE GENERAL PROBLEM

In this scction wo poso tho problem in its full generality and mako a few
remarka regarding tho literaturo existing on the subject. Wo first turn to tho existing
literaturo,

The solitary referenco on this problom scems to bo an article by Phelps and
Pollak (1068). According to their view, the process of intertemporal planning ia not
undertaken by a singlo planner. In general, ono may visualize a sequenco of plannors
cach situated at o different point of time.  For future roferenco, this sequence of plan-
ners may be denoted by (P, where Py is tho planner situated at point of timo
f. Phelps and Pollak assumo cach planner Py to be endowed with a welfaro function
of the form

2
u(c,)+6‘_§“a u(cs). o (20)

It may bo noted that in (2.1), any two adjacent periods ¢, 141, { > 0+1, satisly tho
property that the utility from consumption in period {41 reccives a times the weight
received by the utility from consumption in period £, This tells us that although the
planner is myopic to o certain degree, this does not result in any preferential treat-
ment of two adjacent periods in tho future. However, when it comes to evaluating
tho utility in the first period, which is presumably the period about which the planner
is most concerned, there emerges a preferential treatment of today against tomorrow.
This is reflected in tho appearance of the parameter 8 in the welfare function. In
the caso where & < 1, this implics that the planner puts a disproportionately high weight
on the utility in tho first period.

Since each planner is assumed to have the same kind of welfare function, wo
have, once again, the caso of changing preferences over timo. Tho planner Py will
thus arrive at a consumption plan for all future on the basis of (2.1) which would be
immediately discarded by P,,,, becauss, on the basis of the preference function of
Py, the utility in period 041 received too low a weight in the plan proposed by
P,. If, however, Py, is awarc of such futuro disobedience, ho may try to formulato
a second best plan of the nature proposed in tho last scction.

In the Phelps and Pollak model, an optimal path for each planner is described
in terms of o sequence of savings ratios. They deal with a mode! for which the pro-
duction side involves a lincar technology and the pref sido has o utility function
which displays constancy of elasticity of marginal utility. If the planner's preserip-
tions are not likely to be followed in the future, ho may try to formulate a pattern of
expectation regarding a rate of savings o bo followed in all future. Given such a
savings rate, the planner will work out s sccond best savings rate for the current
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period, which in general will bo different from tho firat best rato of savings. For any
expeclation # regarding the futuro savings behaviour, ono ean then define a function
$la), which yield tho eavings ratio of the first period.

The authors then go on to show that under the essumptions mado on the
model, 3{2) will have a fixed point. ‘Thus, if 2° is a fixed point of ${s), then it will havo
tho property that when cach planner expects o® to bo followed in the futuro, he finds
it his best strategy to follow &* also. The savings ratio & then providea an equili-
brium solution for tho model in the scnse that it involves generalized consistency
and as Phelps and Pollak rightly point out, it resembles the solution to a non-coope-
tive gamo as visualised by Nash (1951).

A non-cooperative game usually deals with a given number of players, each
with well-defined pay-off functions. Each player also has a strategy set from which
ho chooses his decision variable. Moreover, the pay-off function of each player ia
affected by the choicoe of strategics made by each other player in the game. An equi-
librium solution to such a game then refers to a choice of strategics, one by each player,
which has tho property that the strategy chosen by each player ia the best possible
ono against the best possible strategy of overy other player. In the Phelps and
Dollak modol, there is an infinite number of players (P, each with pay-off fune-
tions given by (2.1). The strategy of Py, viz. the savings ratio & chosen in period 0,
is affected by what was chosen by (Py, Py, ..., Py_;) and what ho expects to be choson
by (Py,1s Payys o). Tho players (P, ..., Py_,) onter the acene becauso their choices
offect the initjal capital-labour ratio for P,. Thus, a sequence of savings ratios salis-
fying consistency of the gencralized kind atructurally resembles the solution to & non-
cooperativo game involving an infinite number of players.

In what follows, we try to generalizo tha results obtained by Phelps and Pollak.
In the Phelpa and Pollak treatment, the wolfare function of planner P,,, is simply
the welfare function of planner P, shifted one period into the future, Clearly, under
tho circumstanca the ¢() function defined above will remain stationary with respect
to time. In a more gencral situation the welfare functions of planners may keep
changing in a quito arbitrary manner. In such a situation, ¢(-) would change over
timo and the simple Phelps and Pollak treatment of the problem in terms of catablish-
ing a fixed point for the ¢() function will not be applicable. However, this is precisoly
the problem wo intend to sudy in this paper. Tho situation we havo in mind involes
viewing cach Py as endowed with some welfare function wics, ¢ryy, -..). The parti-
cular assumptions we make regarding () will be discussed later. On tho production
sido wo assume a nco-classical technology. This ia a departure from tho Phelps and
Pollak set-up of a linear technology. In general, then, given any expected scquonco
(80431 3 49s --.) Sor the future and knowing that (s, ..., 4-,) waa followed in tho past,
P, will iry to find hia best choico 8, a8 o function of theso variables. It may bo noted,
that wo aro not ily restricting tion to a tant savings ratio as was
assumed by Phelps and Pollak. Our task is to postulnto proper ptionsJon the

model which will allow ua to show tho existenco of o sequonce (s}, &3, ..., 8, -..) which
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has the property that if Py expects (s5,,, 83,4, ...) to be followed in tho future and
knows that (s}, a3, ..., #)_,) was followed in tho past, then his best choico would bo
to follow ;.

Each Py may bo assumed to have a strategy sct S for his savings ratio. More-
over, on the basis of w(-) and the technology, each would havo & choico function
U8y iy 81y, 814y, .) uch that & = @ila,, ..., 81_y, &,y ...). In general, since wif*)
F (), 1 # ', we can say that gi(-) # ¢p(-). Consider the function

Q(ay, 83, ...) = G(8y, 83, )X B8, 8, o) Xoee X8y, 830 cvey Brogs B14gy 000 ) Ko
Obviously then, Q(.) maps §,x §yX... into itself. Qur purposo is to show that Q(-)
has a fixed point (s}, 65, ...). Such a fixed point will form a non-cooperativo equi-
librium for the model in question.

Since §,X Sy ... ia an infinite dimensional space, the usual theorema avail-
ablo for finito dimensional spacea will not be useful for our purposo. Thero aro, how-
ever, several fixed point theorems available for infinite dimensional spaces also and
tho particular one we choose ia the Schauder-Tychonoff fixed point theorem (Dunford
and Schwartz, 1958). The statement of this theorem gocs as follows :

A conlinuous mapping of a convex compact subsel of a locally convex lincar
topological space inlo ilzelf has a fixed point.

In the next scction we describo a apecific model which will satisfy the condi-
tions of the Schauder-Tychonoff fixed point theorom.

3. THE EXISTENCE TREOREM
For the purposo of this section, the welfare function of P, will be assumed to
take tho form

lew Cone) = E auvate) - (1)

whero, the uy(c)'s have tho same interpretation as tho u,(c)’s dealt with so far. Theo
assumptions mede with respect to wy(c,) for cach 0 aro stated below.

Assumption I :

(8)  wule)>0, ufe)<0;

(b) TFor cach 0 there exists by > —o0 such that uu(e)) > b, for alt ¢;

(c) There exists u,(c;) satisfying propertics (a) and (b) such that vg(e) <
uyfer) for all 1.

Tho sequence of discount parameters {a,)2, employed by P, are assumed to
satisfy,

Assumption 11 :

(@) aw=1 ¥0

b 0< 5‘;—'['-' g a < 1 for somo x and all { » 0.
{
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A ion 1I(b), in conjunction with II(a), implies {au}, is & monotono

decreasing sequonce with respect to ¢ for each 0 and that it decreases at the geometrio
rate, or, possibly even faster.

Prod is d to be ined by 8 ono sector neoclassical techno-

logy
Ci+(Ktyy—Ki) = Yy = F(Ky, L) . (3.2)
where, Fy(-) is a linear homog function of its arg ta; ¥y is the level of output

in period ¢; Cy is the level of consumption in period ¢; Ky is the level of capital and
L; tho Inbour force in existence in period ¢, With labour growing at a constant exo-
genously given ratoe, i.e,

Liy—=L
L

=n

and under the sssumption of full employment, (3.2) reduces to

¢t = fulke) 4 ke—(14nkryy e (33)

where fi(t)) = Fy ( —f—'— , I)And tho small caso letters denote the per capita magnitudes.
d
Tho function fi(-) is assumed to satisfy :

Aszsumption TII :

(8) f1)>0,4i)<0;

(b) fi(0) =0;

(e} fitk)—> +o0 a8 k= 0; fi(ks) — 0 28 ky— +o0.

Thus, we are ing technological progress of a fairly general nature.
However, tho following assumption will be made. Let ¥: be tho uniform bound im-
posed on the capital-labour ratio by fi(). (Under neoclassical assumptions and
constant rate of growth of the labour force, such a T < +oo will always exist for
each fi()).

Assumplion IV :

Thero exists % such that T, < %% 1, where I< +00.

Clearly, Assumption IV along with Assumption I{b) and I(c) and Assumption
II guarantees the boundedness of the welfare function (3.1).

1f & is tho savings ratio choson by Py, then (3.3) may bo equivalently expressed
by the following pair of equations.

o = (1=a)filk) . (34)
(1n)key—ke = afilke). . (3.5)
394
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For any Py, & is obviously bounded above by 1. As far as & lower bound on
# is concerned soveral possibilitics may bo auggested,  First of all, one may postulato
& » 0. Inthiscoso, a8 is quite obvious from (3.5), investment would bo irreversibla.
However, if wo want to consider the possibility of revorsible investment,! then tho
lower bound on # will in gencral depend on k. This can bo scen as follows, The
maximum amount of ption possible corresponding to any K;and L, is

Cr = Fi(Ky, L)+ Kt

However, Cy = (1—a)Fi{K,, Ly).
Therefore, Fu(Ky, L)+ Ky = (\—a)F (K1 Ly).
or, Ky = —aF(Ky, L)
S (RS
or, “= = D= " . (36)

From (3.6), the lower bound on ¢ ia clearly a function of k. If wo have to introduce
reversiblo investment, we would then allow # to bo negative but arbitrarily restrict
it to be greater than or equal to some negative number (smaller than unity in absolute
value), Inany event, weshall be assuming that &; ¢ Sy whero, Syisa closed and bounded
interval. If s, is bounded below by r; for planner Py, then, we shall assumo, §; =
[r, 1) for each t, with |r/] < 1.

Sinco {1, ¢t4y, ... ) i completely determined by (ki; &, 8, ...) and k; is com-
pletely determined by (ky; 8y, 8, ..., 81y, wi(-) may bo looked upon as a function of
(ky3 8y, 85, ...).  To take thia into account, wo shall from now on wTite wi(k); &, 45,
(To be more precise one should write w)(k,; 8, 8y, ...), where wdar, €1y -0
8, 85, .00).

As was pointed out earlier, tho task of Py is to choose &, given (5, 8y, ..., 82
81,1, 8140 ). Thus, a7 is optimal for P; if it maximises (3.1) subject to a given ky,
(which ho inherits from the past, and cannot influencs), the sequenco (sz,y, 814p -+)
and the production relation (3.3). Let the function Gi{.) relate o] to (ki; 1,y 814pr +:)-
Sinte, k; is completely determined by (k,; 8,, 4, ...), from (3.4), we may writo

of = Gulks; 8141, 81382

= Gulkyi 81, g, o 1y B10r B1ay,
= gulky; &) e (37)
whoro 35 = (2, 8 +.+, 81_ys 8141, +.), 8nd ky(>0), tho initial capital-labour ratio at
=1, is a parameter occurring in each ¢i{*). (") in (3.7) is tho samo as the ¢i(-)'s

defined in Scction 2, where, in order not to complicate the discussion, we did not
mention the rolo played by the paramcter k,.

¥Tho refereo has pointed out that inatead of desling with roveniblo investment, ono could think in
torms of asbilrary rates of capital deprociation.
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Tho savings ratio g lics in the interval (;, 1] and as such the atrategy sot of
each P; is convex and compact.

It is olear now that given a value of k,, each ¢(-) maps the infinile Cartesian

product space Sy X 83X ... X Si_; X Si; ... into Si. Defino
Qs 8, 85, ...) = y(ky; ) XBylkyi )Xo o

Then, Q() maps s=.ﬁls. Into itsalf.

S is subset of tho infinite Cartesian product of the real line and the latter is
a locally convex topological spaco under the product topology. Morcover, S is com-
pact in the same topology by TychonofT ‘s theorem, and it is obviously convex. Henco,
if it can bo shown that Q(k,; 4,, 8, ...) is a singlo valued function which is continuous
in the product topology, the cxistenco of a fixed point will bo established. At first,
it will bo shown that @(:) is singlo valued and continuous. A further argument will
show that 2* = (s}, 83, ...) #(0,0,0, ...), whero a® = Q(s*), For this last rcsult,
however, we shall bo necding stronger assumptions than the oncs made so far.

Lemma 1: wilky; 8y, 2, ...) 18 @ alriclly concave function of &, given (ky; &).
Proof : 1t is sufficient to prove the lemma for w(), Consider the correspond-
ing P-period problem.
wl(*) = uy((1—a)fy(k))) et gtalc)+.. Fayruyrier)
whero, (ky; 8, &, ...) i8 given. We shall show that each component in the above surm

is strictly concavo with respect to 8, which will prove that wf(-) is strictly concave
ing. A final limiting argument will show concavity for the infinite horizon model.

Let o}, 8¢ 8,8} # 2% Then for p such that 0 < p <1,

uy((1—(p aj+(1 —P)’ﬂ)fl(kl)) = uyy(p(1— e} y(k)H{1 =) (1 — ]y (ky)
>puy, (1=l (ky)) +(E—p)u (1~ (Ry)),

by tho strict concavity of uy, (). Henco, uy(c,) is strictly concave with respect to
4. Consider now any uyfc), 2 ¢ < T. From, (3.4) and (3.5),

a = (1—a)fik) = h(ke)  (say),

"'="_'!’-|(§:A)+—“L =gualbiy)  (say).

Therefore,
uy(er) = uy o hulke)
= tyohiogiyogiqo . ogilky)
k) 4k, .
and ky= ’-I',I_{-‘fl-)_ntl =i(8) (say).
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Sinco fi()'s aro strictly concave, Ay, gi_y, ..., gy are strictly concavo functions of thoir
argumenta. Also i (s,) is a linear function of s, Honce, uyfe;) is a strictly concavo
function of 8. Tho next step is to prove the strict concavity of the infinito horizon
welfaro function. Let (ky;pal4(l—pl}, &, 05 ..., 87), 0 <p <1, givo riso to
(€p €3 s c7). Similarly, let (ki o}, 85 8y, ..., 87) givo riso to (c},c}, ..., c}) and
(ky: &3, 8y, 8y, ..., 87) givo Tiso to (S5, ch, ..., c}). Then, from what wo havo shown
abovo,

u{(1—(p 14+ —p)Ifik))+ aitiple) +. +ayruyrier)
> plnn(V—gVsk )+ @ttnleD+ . Fayruyrich))
+(=p)unl(1 =)k agtinleB+ . o))+ e
for somo € > 0.
Let T c0. Thon, keeping in mind Assumptions ), 2 and 4, wo have
ek, : (P} +(1—phol), 0y 8y, o) > puohyi o], 4y, 05, . )+ (1—ployllys o, 2y, 8y, ..0)

Hence, w,(") is a strictly concave function of s,.
Q.E.D.

Since, (") is concave with respect to &y, 1() is continuous over tho interior

of Sy with reapect to &, given (&y; &). Wo shall show that (') is continuous at the
boundaries of S; also.  Consider wy(-) onco ngnin Lot s, =r. Also, let (6, ...)
be the ption-labour ratio seq d by (ky; 8 =r, 85, 8,...). From

Assumption (b}, {c) and 4, it followa that thoro oxista B, 0 < B < such that

B> |uyla)—unldf)| Ve Also, E at-1B— 0 as T-> 0. Heneo, thero exista N,

0 < N <o such that T> N imphcs 2 a"'B < , for any ¢ > 0. Now let
”
E et ugled—uuled) | < 5

Then, > Ea‘"l"u(ﬂ) thye(cf N+, 3 -!‘"B > LG"'IW(‘:)—".I( |

> E aylute)—udh)] - (28

Ly A ption 2. By the inuity of uy(*) and fi(), equations (3.4), (3.5) and the
finitencas of N, it follows thon that thero oxiata 8 > 0 such that (3.8) holds whenover,

|&—r,| < 8, given (k13 3,).  Heneo, wy(-) is continouaab &) =r,. In a similar fashion,
continuity of w,(-) at 8, = | may be cstablished. Similar arguments show tho conti-
nuity of wy(*) at tho boundarica of S; for any f.
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It follows that the & which maximises wi-) given (k,;2) is uniquo and that
such o maximum always exists, S; being o closed and bounded interval and wif+)
being continuous over ;. ‘Thus, cach gi(k,; #1), and therefore, Q(ky; 8, 2, ...) is single-

valued.

The next step is to show that @(k,: 3) is continuous with respect to 3. Since
@u(} i defined over nn infinito dimensional space and the latter is compact in the product
topolozy, the topology to bo chosen for the domain set of g(-) in our proof of conti-
nuity will be the product topology. Thus, the open scts we shall be coneerned with
will bo the infinite products of open neighbourhoods of the form 0, X 04% 03X ... where,
0,C 8,, 0,C Sy ... nnd only u finite number of 0;'s would bo proper neighbourhoods,
Thus, in the above definition of an open set, 0p == §; for all but finitely many ¢,

One way of showing the continuity would be to demonstrute that inverso
imuges of open neighbourhouds of $i(-) nre open in the product topology. Instead of

-

doing that, however, we {ry to defino a metric for the spaco IT §,. Choose the norm
t=1

-

',‘.:l af~a|.  Foruny two scquences {si}2, and {#)2,, the metrio induced by this norm

is' !.I‘ al=t|s—a't[. Since Sy is uniformly bounded for all £, the apen sets gencrated by

this metric ure open in the product topology.

Lemma 2: @i(ky; 3) 18 continuous in 3.

Proof : 1t will be shown, first of all, that wy(k,; 4,, 8y, ...} is continuous with
respect 1o (#), 64, 8y, ..) for all 0. Choose uny (s}, 62,43, ..., 3, ...).  Alsu, let (ky;
o, 6% ... generato (K: ¢3, eo,, ...). Then,

wotkyi of, 82, ...} = ‘g AT (N

Chovse € > 0. Then, by arguments following Lemma 1, thero exist 2, B, 0< T
<o, 0 < B < o such that

- o
€ >'L;:L“"B > ‘.;a.’-‘]u.,(:,)—n,,(r?)], for uny c.
- -
Chovse m > 0 such that
T\ -
£> S atdm X af-ip,
- =3

T= T
Lat l}..‘ a0 uglc) =) < X at-Om, e (39)
- = -0
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Then,

T -
> 5 at~tm+ I o8
-8 =T
> 2.-' at~9| ug(er)—wp(cd)|
-8
> Fo gl wpler)—raled)| .

Thus, 'Eaa,nl.,(c,) lies in an g-neighbonrhooit of ;. agritge(rf), Tt followa from (3.9),
. g

however, |uple)—ualced)) < i, 1 =0, 041,...,T—1, for rome . DBut ugl-) is
continuous.  Hence, the Inat observation implies |e—eP| < by, t = 0, 041, ..., T—1,
where b can be made as small as one likes, depending on the choice of m. Clearly,
from the continnity of fy(-) and the fact that k, ia fixed, one enn choose 8,0 < 8 <|1—r|
t=1,.,T—1, such that [s—o| <& 1=1,2,..,T=1 implies l—cf| <7,
=10, 041,....,T—1, vhere (6, ¢y, ooy €7_y) i8 generated by (ky; 8, &y, ooy 87).

-
Now choose €(8) > 0 such that X at-1|s—af| < &(8) implies {a—sf| < 8,1 =1,2,
l=)

.y T=1. Since, S; in bonunded for all ¢, the choice of §(8) is alwnys possible.

Thus, given any € > 0, there exists ¢(3) > 0 such that

-
X agr| ngiler)—up(cf)| < €
128
-

whenever, X abl]g—s0| < ¢€(8).
=

Sinee, < [1—-n), t=1,2,...,T—1, '}I al-V|a—4f| < €(8) defines an open neigh-
1=

hourhood in 11 Sy, Hence, wy(ky; 8, 8, ...} is continuous nt (ky: 8,83, ...) with respect
=]

to (ay, 8y, ...). Towever, (s, 63,
nuous with respect to (a,, 4y, ...).

.) was chosen arbitrarily. Therefore, () is conti-

Assumo now gi(ky; %) i8 N0t CONLINUOUR ab 7y = (4, B4y oer &1y Atyye =) Thin
implica that &7 = (83, 43, coe , 81_y, 88, s oor)= 2, 8} 8], where, a" = Sl o7 and

a0 =gtk m). Since, $ is bounded, there exist ubscquences a7 and £7* ruch that
oy, A £ 8
But, wlkys 8, e By 9, 07 ) D etk Y L LA

(
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Taking limits and using the continuity of wy(-), the left hand sido goea to

10y(ky3 8y, coes B1yy 8, Biggs o)

and tho right hand side goes to
wilkys 80 oo By 81y B4y oo)e
1lowever, from the strict concavity of w(:) with reapect to s,
101lkys 81y ovs Bty 8, Br4q o) < 0{RyG 8 iy 81y, B, B4y, )
which violates the continuity of wy(-).

1lence, g(.) is continuous with respeet to .
Lemma 3: Q: 8-> 8 is conlinuous in (s, 8, ...).

Proof : Leta" =(s}, &}, ...) 40 = (8, 85, ...). Then &°— o] ¥t from Lemma 2.

Henee, by the choico of our metrio & at-} a}*—s;|— 0. That is to say, 0™ —0a°,
4

o | .
where 0" = (5™, 57", ...) and 0* = (4}, 8}, ...). Therefore, Q(-) i3 continuous.
Q.E.D.

Theorem 1: Q:8— S has a fired point,

Proof :  Apply tho Schauder-Tyochonoff fixed point theorem.
QED,

The assumptions we have made on the model go far are too general for any
fruitful discussion of the propertics of the fixed point except that it exists. Under
stronger assumptions, however, it is possiblo to characterizo tho fixed point in greater
detail.  For the purposes of tho following discussion, wo shall assume () = 1,(:)
Jil) =f()¥L u,() will be assumedl to aatisfy.

Assumption & :

(8) u()> 0, wl) < 0%0;

(b) Thero exists by > —co such that w,(-) > b, for cach 0.

Aa far aa the production mido is concerned we merely rotain Assumption 3
and discord A ption 4. The seq {aa)zy i9 still nssumed to satisfy As-
sumption 2,

The planner’s welfaro function now becomes

)= E aunfe)

where, production ia constrained Ly (3.3).
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From what has been shown so far, existenco of a fixed point in this model
follows from Assumptions 6(a), (b), 2and 3. {Assumption I(c) is not needed for the
oxistenco theorem in this case).

In Lemma 1, wo proved tho strict concavity of m(k,; 8,, s,, ...) with respeet
to s given kyand a;. It follows that wy(ky; 8, 8,, ...) i8 twice differentinblo with respect

to & (given &, and ;) almost everywhero (in the senso of Lebesguo measure). Consider
now the point 8, =8, = ... = &_, = &, = ... = 0. Let 0; be an open neighbonr-
hood contained in §; = (r, 1] such that 0; containa 0.

Assumplion 6 :

Given gy =, = ... =8 =0, =..=0, wk;s,s,..) i3 differentiablo
with respect to & for 8, €0,

If Assumption 6 holda for evey ¢, then along with the other nssnmptions,
Thoorem 2 follows.

Theorom 2: Suppose Assumplions 2, 3 and & hold. Also let Assumplion
6 hold for all t. Then, there exists o* such thal o = (a*). Moreorer, given any
B, where 1 > f> 0, there exists a 0 such that if @502 Blhen 0° £(0,0,0,..).

Proof : Tho existenco of o* follows from Theorem 1. Suppose ge = (s}, 43,
6, ...)=(0,0,0,...). Wo shall achievo a contradiction by showing the existence of
a 0 = 0 such that &} = 8} = 8} = ... = #§_, = 0 implics s = 0 cannot be an opti-
mum choico.

Consider any sequence of ravings ratioa (s, 8, 8y, ...) with & = 0 for all ¢ 3 0.
Let (e}, ¢y €5, ...) and (K, ky, &y, ...) De the corresponding sequence of consumption-
lnbour ratios and capital-labour ratios respectvely. With these values, planner Py's
welfaro function becomes

106(Ca1 €ay11 o) = UalCo)F o041 UalCia) Ha0. 043 Yolcasn) o - - (3.10)
Note that uy(:) = u(+) for all ¢, by assumption. From (3.4) and the assumption that
Jity = J) for all ¢, wo find,
e = (1—23)f(ks).

Similarly, from (3.4), (3.5) and the fact that 8,,, = 0, wo have

o = flhoy = f  2eLELe ),

‘Thus, (3.10) can bo written

sftka) ks

T4n )) +ay, 044%(Cora) o0 -

(a.11)

Walea, Cogra o) = 1o{(1 —80)f(K))+ o, 01%e (I (
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Yor an infinitesimal increnso in 8, (all other &8 remaining zero), tha total change in
welfure in periods 0 and 041 in (3.11) is then given by

Wl thy ) g (st ) o)

— (1= e DGk, oy (S { T etk o S ALY

Yor the remaining periods, denote the total chango in welfare by 8,. Nofe that 8,
muat be siriclly positive. Now let 8, = 0. Then, (3.12) becomes

—"ZU(l'a)V(l'o)Ha,mﬂi( (l e )f (, vl {(Er - (303

Thus, if in period 0, 8, i3 increased infinitesimally from zero (with g =0, all £ £ ),
then the total change in welfare is

— SN k)b, 05 ( £ (l+u)) ris l.) .{‘*‘_‘l’_}).ﬁ,_ . (314

Our proof in completo if (3.14) is demonstrated to be strictly positive for some & = 4.

1€ 8; = 0 for all £, then from (3.4) and (3.5), ky,, < ke and ¢, < ¢ for all L.

Henee, noting that ¢y = f(ky), €04, =j( l—+'_ ) and &y, =

the strict concavity of tho utility function that,

%, it follows from
i (o)) 1) > ittt - (319)

(3.15) holds for any 0, provided & = 8, = .., = 4y = 0. On the other hand, zince

Krqy < ke for all ¢, it follows from nssumption 11{c) that thero exists a # such that
Lthin)
B. 142 >1
sinco f is given.

Let a5,5,, 2 A. Then, from (3.15),

aine (£ (;35)) 7). g0 > wa st - (326)

From {3.10), it followa then (3.14) must bo strictly positice for 0 = 8, ns was to bo
proved.
Q.R.D,



ON GENERALIZED CONSISTENCY IN A ONE SECTOR MODEL

In u model of optimal growth, un equilibrium golution involving all plunners
saving at the rate zero s cconomically somewhat unaceeptable.  This would indicate
a situation whero no planner carcs for the future st oll. In the context of the
gamo theoretic framowork, howover, thia situation is not entirely uncxpected. For
example, in the Prisoner’s Dilemmu problem, the non-cooperative equilibrium solution
is strictly dominated by other solutions which cun nover Lo achieved.

If, however, wo still insist on altruistic motives on the part of planners, then
Theorem 2 is the answer,  Theorem 2 shows that the very fuct that ull the preceding
saving rates are zero would lead some planner ut somo stugo to start suving,

4. DIRECTIONS FOR FURTHER RESEARCIL

Our apporuch in this puper has been basically descriptive.  We have dealt
with a model whero all plunners have arbitrary utility functions and discount parn-
meters.  Given the fuct that the utility functions und discount parumeters can vary
from planner to plunner, we tricd to cstablish nn equilibrium sequence of savings
ratios whicli is aceeptablo to all planncrs.

It would be interesting to seo if our results hold in tho cuso where discounting
is ubsent. Brock (1071) hus shown tho insensitivity of the optimum consumption
path in a finite horizon model with respect to tho terminal capital stock when discount-
ing is absent. His results may turn out to bo usefut for our purpose.

Again, given tho existence of a fixed point, it would be important to sco whether
it is uniquo, or ut least under what conditions it is. Tho unigueness is casily estab-
lished if the mapping Q(:) turns out to be a contraction.

One would also like to know if a given cquilibrium of savings rutivs implics
convergenco of the capital-labour rutio to a steady state, and if it docs, how the stendy
stato compures with the Cass-Koopmans (Cuss, 1065 ; Koopiuans, 1967) steady state.

No attempt has been mudo horo to show how the equilibrium muy Lo attained.
Clearly, no planner may have any jdea about tho proferences of futuro generations.
It scems necessury, therefore, to construct a process of expectations formation about
future behaviour (bused on past experionco) which would lead the puth of optimum
savings ratios to the non-cooperutive equilibrium.

Lautly, although the horizon hus beon ussumed Lo Lo infinito for cach plunner,
tho result holds with equul forco for finito horizon. The sumnublo naturo of the pre-
ferenco funclions was necewsary (o prove the lemmas regarding continuity and con-
cavity. However, if ono Is willing to axsume theso propertics, tho summuablo pro-
feronco function cun also bo dispensed with,
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