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ABSTRACT
In the present paper a review on various aspects of cluster analysis has been made. The variables 

used are five mineralogical attributes [viz., quartz (vol. %), colour index, anorthite content o f plagio- 
clase, N z of biotite and feldspar ratio] of a large number of samples selected from eleven intrusive 
granite plutons (each pluton was treated as a group) of Bihar Mica Belt, eastern India. It has been 
demonstrated using the data of Bihar Mica Belt granites that the pattern of dendrograms depends to 
a large extent on (i) the ‘similarity measure’ and (it) the methods of clustering, used in the problem 
concerned and thus different dendrograms may indicate in some cases mutually contradictory in
ferences, not in tally with the geological observations on the same granite groups. Therefore, for 
deriving a comprehensive and convincing inference, different clustering methods employing different 
distance measurements are to be attempted. However for a cursory investigation average linkage 
clustering method on the basis o f  Mahalanobis D 2 statistic is recommended.

INTRODUCTION
In  any classification scheme for geological data , the choice of a  few discrim inating variables 

th a t re ta in  m ajor inform ation regard ing  different groups under study is a  g rea t problem and 
is often no t free from  subjective bias. T o  get rid  of this problem , some sort o f summarise; 
m ethod is required  w hich takes in to  account all the variables under consideration at a tffle 
and in  doing so should be capable o f rendering a m agnified view o f the differences (howev'er 
small) am ongst the groups. D ue to its over-simplicity an d  capability  o f visual display of the 
ultim ate inference, cluster analysis technique has found im m ense applica tion  in  geologiĉ  
problems.

T he present work reviews some o f the im portan t aspects o f cluster analysis technique with 
special reference to categorising th e  intrusive granites o f B ihar M ica Belt, eastern  India (hen#' 
forth called as BM B granites). A  detailed account on  the petrochem istry a n d  evolution 
these granites is given in  Saha et al (1987). A  to tal o f 395 samples from  eleven BMB gran  ̂
plutons are chosen for the present study; five m ineralogical attributes, viz., quartz  (vol. 
colour index, feldspar ra tio  [i.e. K -feldspar x 100/(K-feldspar-f-plagioclase)], anorthite conte"1



of plagioclase an d  N z of biotite are used as variables, whose m eans and  standard  deviations 
(for individual p lu tons) are  depicted in T ab le  1.

TA BLE 1
MEAN AND S T A N D A R D  D E V IA T IO N  OF T H E  M INERALOGICAL A T T R IB U T E S  FOR D IF F E R E N T  

BIH AR MICA B E L T  G R A N ITE  PLU TO N S

Group Name of plutonNo.
N Quartz (Vol. %) ColourIndex R. I. ofBiotite

(Nz)
An % of plagioclase (mole. %)

Feldspar ratio

1 Tisri 91 x 34.33 • 7.46 1.643 15.46 65.25
s.d. 4.46 2.83 0.009 6.43 5.14

2 Chauki 32 x 32.76 9.39 1.655 20.75 66.09
s.d. 5.05 2.42 0.013 6.13 5.50

3 Manihari 48 x 34.38 8.10 1.652 16.94 65.67
s.d 4.28 2.55 0.013 6.02 4.12

4 Banresar 60 x 30.82 8.29 1.656 18.98 64.72
s.d. 4.83 2.25 0.012 4.50 4.72

5 Gawan 25 x 32.71 11.15 1.663 21.44 59.15
s.d. 4.40 3.01 0.009 6.96 9.68

6 Barmi 25 x 31.14 11.98 1.645 14.68 71.55
s.d. 5.12 3.12 0.008 3.04 3.42

7 Debaur 21 x 28.03 10.43 1.648 20.76 70.55
s.d. 4.26 2.93 0.011 5.58 8.82

8 Khobanva 23 x 30.11 6.58 1.648 16.30 55.33
s.d. 5.49 3.31 0.011 6.03 8.30

9 Bandapahar 31 x 31.97 10.07 1.656 21.97 77.89
s.d. 2.27 4.10 0.010 8.35 5.79

10 Kalapaliar 23 x 32.56 6.13 1.661 26.48 57.82s.d. 9.74 2.73 0.010 4.68 12.13
H Simratari 16 x 34.90 8.84 1.644 15.25 63.66

s.d. 5.97 5.06 0.009 3.17 13.25
All groups 395 x 32.53 8.63 1.651 18.41 65.50

s.d. 5.03 2.98 0.011 5.89 6.83
i\=No. of samples; x =  Mean; s.cl. —Standard deviation., D a ta  s o u r c e : Group 1— Mitra (1984); 2, 3 & 4-—Sarkar, S. S. (Unpublished data); 5 & 10—Mukhopadhyay G, 7, 8 & 11— Mukhopadhyay (1981); 9—Ray (1985).

METHODOLOGY
A sequence o f  classification in w hich larger clusters are obtained through m erger o f sm aller 

!,tlcs is a ‘nested’ o r ‘hierarchical’ classification. Two basic prerequisites for such classifica- 
'10n schemes a r e : (i) Choice of similarity measures to characterise the relationships am ong groups 
to be clustered a n d  (») the method o f linkage to be used.
C larity m e a s u r e s

to order to  c luster th e  variables some num erical sim ilarity measures for characterising 
;'lc relationships am ong  variables are required . T he  conventional approach to this require- 
rilttlt is to com pute a  m easure of association for every pairwise com binations of the variables.



A basic assum ption of all cluster analysis m ethods is th a t  these num erical measures of asso
ciation are all com parable to each o ther (although each  m easure reflects association in only 
a  particu lar sense an d  thus in  a particu la r case it is needed to choose a measure, appropriate 
to the problem  concerned and its context).

For a given d a ta  set of n-variables and  m -data units, a  com m on device for displaying 
the m easured values is the data  m atrix  of n-rows and m -colum ns. The fth row of the matrix 
contains all scores pertain ing to ith  variable and  the j t h  colum n contains all scores for j th  
d ata  unit. W ith in  this setting a row vector of scores is the collective response of all d a ta  units 
to a single variable and  consequently all scores are com parab le to each other. O n  the other 
hand, a  column vector o f scores for a  single d a ta  unit cuts across all the variables (rendering 
it m ore versatile w ith  respect to the former, from  the stand po in t of inductive generalisation). 
T here m ay be quite a  variety of m easurem ent units and  variab le types. This heterogeneity 
makes it  especially difficult to define m eaningful m easures o f association between d a ta  units 
w ithin the context o f a given set o f  variables. T he usual w ay of m anoeuvring this difficult}' 
is to in troduce the concept of distance and the fam iliar euclidean distance is given by

D 2 (*, , *k) =  [ Z  (Xll —  x lk )* P / 2 i=l
where, xij be the scorc achieved by the j t h  d a ta  un it on  ith  variable and the vectors for j th  
d ata  unit is

vji -= (x /j .........................x nj). [cf. A nderberg (1973); Le M aitre (1982)]

However, some authors recom m end to use a squared version of the above expression to avoid 
com plication in calculation.

In  tills connection i t  is notew orthy th a t euclidean distance is scale dependent an d  hence 
will be weighted in  favour of variables w ith  large num erical values. V ery often in  petrologic 
problems it  is found th a t a  variable occurring in  a  relatively m inor proportion m ay  tu rn  out 
to be a very good discrim inant betw een two groups, com pared to others, occurring in  consi
derably large proportions, [e.g. the proportion of T iO a (occurring in < 2 % ) is a  very m uch 
trusted discrim inant in  categorising orogenic andesites from  its anorogenic counterparts, cf. 
Gill (1981)]. As a result it  is strongly recom m ended th a t each  score should be standardised 
to have zero m ean  and  un it variance, before use.

A nother m ethod of distance m easurem ent between tw o sets of m ultivariate d a ta  is 
M ahalanobis D 2 statistic, as described below: Let, xQ  an d  xj£  be the scorc vectors cor
responding to ith  and  j t h  element, where,

-  (* i£  ................ ) , * = 1  (i) ni
and =  fog ) ................), *  =  1 (i) nj

then D? =  —  - - [ J-W -  x®  V  S - 1 [X(i> -  x® ]J n i + n j  L

where, =  i/n i 2 ^  & =  1/nj E  x'£

S =  i/(nj +  nj -  2) r ni [ ^ - ^ ] [ ^ - * (i)] ' x  ^  | 1



It is noteworthy that the change of base and  scale as is needed for euclidean distance is not 
required for M ahalanobis D-, since it is invarian t under change o f base and scale, a very much 
desirable property for any distance function.

The similarity measures described in the preceding sections inav be used to construct 
a similarity m atrix describing the strength of all pairwise relationships am ong the entities 
'variables or d a ta  units) in the data  set. T he  methods of hierarchical cluster analysis operate 
on this similarity m atrix to construct a ‘tree’ depicting specific relationship am ong the different 
entities. Extrem e brandies represent the  individuality while the root represents the entire 
collection of entities. H ierarchical clustering methods (which build a tree from branches to 
the root; are often called as 'agglom erativc m ethods’— the principle of such m ethod is listed 
in the following flow chart: Let sij be the similarity between entities i and j  as defined bv 
one of the similarity measures. Define S =  [sij] [ I t  is to note th a t si|-—Sji, i , j — 1 (i) n .j.

1. Begin with n  nos. of clusters, each consisting of exactly one entity. Let the clusters 
be labelled w ith the num bers 1 through n.

2. Search the similarity m atrix  for the most similar pair of clusters. Let the chosen 
cluster be labelled as p  and q and  let their associated sim ilarity be s1H1, p > q .

3. R educe the num ber of cluster by I through m erger of clusters p  and  q. Label the 
product of the m erger q and  update  the sim ilarity m atrix  entries in o rder to repeat 
the raised similarities between cluster q and all o ther existing clusters. Delete the 
row and column of S pertain ing to cluster p.

4. Perform  steps 2 and 3 a total of (n—-1) times [a t the point w here all entities will be 
in  one cluster]. A t each stage record the identity o f the clusters w hich are  merged 
and the value of similarity between them  in order to have a complete record of 
results.

d i f f e r e n t  l i n k a g e  m e t h o d s

In  this section different m ethods of h ierarchical clustering are described as follows: 

Sin g l e  L in k a g e  M e t h o d

A t each stage, clusters p and q have been merged, the sim ilarity  between the new cluster 
(labelled t) and some other cluster r is determ ined as follows:

If  sij is a distance like m easure (e.g. euclidean distance) str = m in  (spr, s((r)

I f  clusters t and r were to be m erged then  for any en tity  in  the resulting cluster the 
distance to its nearest neighbour would be a t most str [cf. Le M aitre (1982, p. 166) 
for detailed discussion].

Single linkage clustering is invarian t to any transform ation w liich leaves the ordering 
of the similarities unchanged.



C o m p l e t e  L in k a g e  M e t h o d

A t each stage after cluster p  an d  q have been m erged the sim ilarity betw een the new 
cluster (labelled t) and  some other cluster r  is as follows:

I f  sij is a  distance like m easure: str= m a x  (spr, sqr)

I f  clusters t and  r were to be m erged then every en tity  in  the resu lting  cluster would 
be no farther than  str from  o ther entities in the cluster.

A part from  these, two other linkage methods, viz., unweighted average method, and  weigh'd 
pair group average method were also used, a  detailed discussion o f w hich can  be found in Le 
M aitre (1982, pp. 167-168).

COMPUTATION AND OBSERVATION
T o trace ou t the bearing of sim ilarity measures and m ethod o f clustering on  th e  disposition 

o f the dendrogram , we have in the first step com puted euclidean (standardised) distance matrix 
and M ahalanobis D 2 m atrix  (vide T ables 2 & 3 respectively) for the eleven BMB g ran ite  plutons 
(here each p lu ton  constitutes a g roup), using the aforesaid five m ineralogical attributes as 
variables. In  the second step, for each  o f the two above m entioned distance matrices, four 
dendrogram s w ere constructed [Fig. l(a -d ) using euclidean distance and  Fig. 2(a-d) using 
M ahalanobis D 2 statistics]. T he clustering methods, used w ere single linkage (Figs. l a  & 2a), 
complete linkage (Figs. lb  & 2b), unw eighted average linkage (Figs. lc  & 2c), weighted pair 
group average linkage (Figs. Id  & 2d). I t  is noted th a t groups 1 (T isri p lu ton) and 11 
(S im ratari), 2 and  4 (Chauki and  Banresar respectively) are in  all cases c lustered  together. 
G roup 3 (M anihari) is clustered in  some dendrogram s w ith  groups 1 an d  11 [Fig. 1 (a-d)]

TABLE 2
EU C LID EAN D IST A N C E  (STA N D A R D ISE D ) M A T R IX

1 2 3 4 5 6 7 8 9 10 11
1 0.000
2 2.686 0.000
3 1.455 1.607 0.000
4 2.803 1.295 1.984 0.000
5 3.983 1.895 2.978 2.439 0.000
6 3.217 2.940 3.142 3.066 3.900 0.000
7 4.087 2.797 3.810 2.445 3.764 2.548 0.000
8 2.828 3.174 2.952 2.291 3.970 4.092 3.676 0.000
9 3.826 2.016 2.995 2.572 3.287 3.004 2.633 4.310 0.000

10 4.435 2.653 3.581 2.955 3.197 5.746 4.677 3.742 4.221 0.000
11 0.876 2.587 1.467 2.948 3.807 2.920 5.151 3.143 3.840 4.629 o.ooo

S. Nos. 1 to 11 represent the different groups, as explained in Table 1.



(a-d) Dendrograms constructed on the basis of Euclidean distance, using 
(n) single linkage, (b, complete linkage, (c) unweighted average 
linkage method, and fd) weighted pair group average method respec
tively. Serial numbers representing different granite groups are 
same as in Table 1.

0 1 2  3 4 9 * 
E u c l i d e a n  D u t a n e #

Fig. 2 (a-d). Dendrograms constructed 
on the basis of Mahala
nobis D 2 statistic using (a) 
single, (b) complete, (c) 
unweighted average, and 
(d) weighted pair group 
average linkage methods 
respectively. Group serial 
numbers are same as in 
Table 1,
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while in  others w ith 2 and  4 [Fig. 2(a-d)]. In  7 out of 8 dendrogram s groups 6 and  7 (Barmi 
and D ebaur respectively) are either m erged w ith each o ther to  form an  althogether separate 
b ranch or, are located on a b ranch  ju s t following/preceding the earlier/later one [cf. Figs. 
1 (a-b) & 2(a -d )]; only in the dendrogram  for average linkage w ithin new groups using euclidean 
distance (Fig. lc) such relation is absent. For the rest of groups, viz., 5 (Gawan), 8 (Khobarwa), 
9 (Bandapahar) an d  10 (K alapahar) no definite clustering criteria  can be deciphered from 
the aforesaid dendrogram s.

TABLE 3 
M AH ALAN O BIS— D 2 M A T R IX

1 2 3 4 5 6 7 8 9 10 U
1 0.000
2 5.285 0.000
3 2.572 0.863 0.000
4 5.438 0.586 0.974 0.000
5 13.747 3.170 5.287 "3.500 " 0.000
G 3.225 7.734 6.237 9.185 17.152 0.000
7 3.925 3.781 4.218 4.514 12.174 2.621 0.000
8 4.634 6.180 4.079 4.-167 9.546 10.936 8.406 0.000
9 10.098 3.519 5.480 5.255 10.737 8.813 4.147 16.494 0.000

10 18.520 6.321 8.787 5.353 4.219 27.337 17.093 11.599 13.739 0.000
11 0.372 5.508 2.907 6.107 12.787 2.714 4.527 4.516 11.252 19.605 0.000

S. Nos. 1 to 11 represent the different groups ([i.e. granite plutons) as explained in Table 1.

I t  is notew orthy th a t each of these observations are only in  partia l tally w ith the geological 
inferences on the sam e granite groups (cf. Saha et al, 1987) an d  thus complete parity  between 
these two lines of observations has no t been found in any single instance.

DISCUSSION
From  m e preceding sections i t  nas been noted th a t  unless there is a  very strong sense 

of ‘nearness’ am ongst the groups (e.g. groups I  & I I  or, 2 & 4) the pattern  of dendrograms 
(even for a  single set o f data) varies distinctly for different sim ilarity measures and /o r methods 
of clustering. T herefore it is im perative to carry  ou t cluster analysis (for any set of data) on 
the basis o f a t  least two different sim ilarity measures using as m any linkage m ethods as possible. 
However for a  prelim inary investigation (in case of a  cursory survey) M ahalanobis D 2 statistic 
using average linkage clustering (of bo th  types) m ethods can  be tested for the reasons discussed 
below.

M ahalanobis D 2 statistic originates from  testing the equality  o f location of two m u ltiv ar ia te  
norm al populations, therefore it  possesses some distinct op tim um  properties. Besides this, it



can be evaluated w ithout difficulty w hen the num ber of samples in two groups are unequal. 
Whereas for the euclidean distance we have to apply the m easure on some scaled central value 
(e.g. mean) of the variables, instead of the original scaled variables.

While using single linkage m ethod on distance like m easure, the m inim um  of two 'sij' 
values preserve th e  triangular inequality of the m etric (in contrast to any other linkage methods'! 
which can be claim ed to be a unique property  of this m ethod. Nevertheless the average linkage 
methods (of b o th  the types) take into account the concept of a sort of compromise between 
the procedures o f single linkage m ethod on one hand  and com plete linkage on the o ther and 
thus furnish a m ore realistic and com prehensive picture to user.

If it is conceived th a t the efficacy of form ing cluster of a  p articu lar m ethod is best m ea
sured when m axim um  num ber of clustering is achieved a t the closest proxim ity o f a perfect 
similarity (e.g. closest to zero, for distance like measures), then  bo th  single linkage and average 
linkage methods usually tu rn  out to be equivalent to each other.
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