
Sankhya: The Indian Journal of Statistics 
1992, Volume 54, Series A , Pt. 3, pp. 351-378.

DIFFUSIONS AND THE NEUMANN PROBLEM  
IN THE HALF SPACE

By  S. RAMASUBRAMANIAN 
Indian Statistical Institute

SUM M ARY. The inhomogeneous Neumann problem for certain classes o f  second order 
elliptic operators in the half space is investigated using the associated diffusions with normal 
reflection.

1. I n t r o d u c t i o n  

Consider the Neumann problem

Lu(x) - —/(* ) , x e O
du -  <U >f o ( x )  =  —<p(x),xedG

where G C  R d is open, L  is a second order elliptic operator and n is the 
direction o f the inward normal. I f  G is a bounded domain, this problem has 
been investigated using probabilistic methods by several authors. See Ikeda 
(1961), Watanabe (1964), Brosamler (1976) where L  is the generator of 
a diffusion ; see Hsu (1985), Chung and Hsu (1986) for the homogeneous 
Neumann problem for the Schrodinger operator ; Freidlin (1985) gives the 
stochastic representation for the solutions.

In the case o f the bounded domain and when L  is the generator o f a nonde
generate reflecting diffusion in G, the concerned diffusion is ergodic ; and the 
transition probability converges to the invariant probability measure [i 
exponentially fast. Consequently

u(x) =  lim E [ i f ( X {s))ds+ }  <p(X(a)) # (* ) ] ... (1.2)
i—>00 *1 0 0 -

is well defined, provided / ,  cp satisfy the compatibility condition

i  f (x )  d fi(x )+ ~  J a{x)cp{x)d/J,(x) =  0 ... (1.3)
a 2 dG

where £ denotes the local time at the boundary, and a is a suitable function 
given in terms o f the direction cosines o f the normal and the diffusion coeffi
cients. In  such a case u is a solution (in a suitable sense) to (1.1) ; also u is the 
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unique solution such that J u{sc) d/i(x) =  0 ; (the latter fact does not seem 
to be explicitly mentioned in the literature). The compatibility condition 
(1.3) is also a necessary condition.

The aim o f this paper is tc investigate using probabilistic methods, the 
inhomogeneous Neumann problem when G =  {x e  R d : xx >  0} is the half 
space and L  is the generator of a diffusion process. To our knowledge such 
an investigation has not been carried out for any unbounded domain. (The 
homogeneous problem for the Schrodinger-type operator L  -j-g in the half space 
has been considered b j the present author (1992) ; but the results do not apply 
here as the concerned gauge is infinite). In the cases considered here the

(-k> -diffusion {X (t) : t 0} can be written as X(i))) where

is a reflecting diffusion in [0, oo) with generator Lx and {X  (t)} is (d— 1)— 
dimensional diffusion with generator L2, where the coefficients o f  L x depend 
only on xx and those of Lz depend on (as2, ... , xg).

The main difficulty in extending the results to unbounded domains is the 
lack o f information about the rate of convergence of the transition probabilities 
to  the invariant measure.

In Section 2, preliminary results concerning the diffusions in G are 
obtained. In Section 3, we consider stochastic solutions for the Neumann 
problem when Lx =  Laplacian, L2 has periodic coefficients and f ,  f  are 
periodic in (x2, ...,xa). So our analysis is essentially over [0, oo)XTa_1 ; and 
the invariant measure is Lebesgue measure on [0, oo) x  a probability measure 
on With the compatibility condition (B 3) which is similar to  (1.3),
(and two technical conditions) we are able to show that u given by (1.2) is a 
solution, and is unique in an appropriate class : also the condition (B3) is 
a necessary condition.

In Section 4, we consider the case when Lx is self adjoint, L2 has periodic 
coefficients and / ,  <p are periodic in (xz, xa). Once again the problem is 
reduced to [0, co) x  T ^ '1 with the same invariant measure as in Section 3. 
But the compatibility condition (C3) is stronger, and perhaps it is not a nece
ssary condition ; (see the remarks at the end of Section 4). However, for the 
homogeneous problem, (C3) is the same as (B 3) and we get a complete picture.

In Section 5 we consider the case when L is the Laplacian ; here 
the invariant measure is the Lebesgue measure. The data / ,  f  are bounded 
functions having finite second moments and satisfying the compatibility condi
tion (D 3), which again is similar to (1.3). In addition to analogous results



as in the preceding sections, we also give, using the spectral, representation, 
a criterion to realise the solution as a continuous function vanishing at infinity.

In the last section L is assumed to be the generator o f the Ornstein—  
Uhlenbeck process, which has a Gaussian invariant measure. Our analysis 
hinges upon Propositions 2.4 and 2.5 which concern respectively the rate of

oit tJO u)convergence of q(t, x , y) to »(y), and that of- * . ’ to unity, where q is

the transition probability density o f O—TJ process and v is the invariant 
density.

It may be noted that the existence of a stochastic solution depends on 
well definedness of u(as given by (1 .2)), which in turn depends on the com
patibility condition ; and uniqueness depends on lim Ex (u(X(t)) =  0. The

t  — ► 30

latter condition is a natural one from the probabilistic point of view. This 
is one main reason for investigating the problem using probabilistic methods, 
though our arguments can be rephrased analytically. (Another reason is 
that probabilistic method gives an elegant continuous solution for measurable 
data). It would be interesting i f  conditions without involving the time para
meter t can be put to ensure lim Ex (u(X{t))) =  0 ; (see e.g. Theorems 4.2,

■ < —►»
5.4, 6.1).

Using the estimates given in the following sections, it is easy to establish 
the continuous dependence of the solution on the given data. Also our results 
readily extend to those diffusions which are diffeomorphic to any of the cases 
considered here ; (such diffusions can be easily characterised using Lemma 3.5 
o f  Ramasubramanian (1988)).

Before ending this section we show by an example that, in spite of our 
(seemingly strong) conditions, the problem can not be reduced to a bounded 
set or to a lower dimension.

Example. Let d =  2, 0  =  {(xls x2) : >  0), L  =  — ( ^  ),

/ ( . ) s 0 ,  (p(0, x2) =  cos3 2nx2. Clearly cp is a periodic function on dO such 
that J <p{x^)dx2 — 0. Suppose there exists a solution u(xv  x2) to (1.1) of

the form
u{xt, xz) =  ii^Xi) v4 x2) ... (1.4)

N ote that (1.4) and the boundary condition imply that u2(x2) =  — y(x2)iti(0)
and hence «i(0) ^  0. It now follows from the differential equation that 

A 3-8
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%(#i)<p"(a;2) =  — Si nce « i(0) ^  0, there is an xx such that % (»i) #  O

Therefore -y~- [9"(ic2)] =  constant, which is not possible. Thus there can not 
91*2)

be a solution o f the form (1.4) to the problem (1.1).

2. D iffusions

In this section we put together certain results concerning reflected d iffu 
sions in the half space 0, which will be of use in the subsequent sections.

(i) Self-adjoint X Periodic case. Let G =  {x  e R d : xx >  0} where d ^  2. 
We have the diffusion coefficients a, b satisfying the following conditions.

(Al) : For each x  e G, a (x) =  ((ay(*)))is;i, ̂  a is a (dX. d) real symmetric 
positive definite matrix and b(x) =  (bx (x), ..., &<*(*)) is a ^-vector. The func

tions at) (.),& < ('. ) eC\{G) for 1 <  i, j  <  d. There exist constants Ax, Aa 

such that 0 <  Ax ^  A2 <  00 and for any x e G ,  any eigenvalue of a(ap) e [Aj,
AJ.

(A2) : an , bx are independent of x2, ..., a?<* ; =  a>j\ =  0, j  — 2, ..., d ;

1 (I
Ofj, 6| are independent of xt for 2 <  i, j  ^  d. Also bt (xt) =  — -^ -«n (^ x)i and 

\  (0) =  0.
(A3) : For i, j  — 2, d the functions fty ( . ). ( • ) are periodic in  

x2, xd with period 1 in each variable.
Note that the functions an , bt can be extended to the whole of R  by

®ll(*l) ~  ®ll( *l)> 1̂ (^l) ~  —^l( ^l)) ^  't'l 0. ••• (^-1) 
These extensions are again denoted by au , bL respectively. For any

X =  {x1; x2, ..., xa) we shall denote *  =  (x2, x&) and we shall often identify 
dG with Ra-1.

Define the elliptic operators L v L2, L  respectively on C2 (R), C2 (JBtf_1), 
<7a (R*) by



Let Clx =  C([0, oo) : R), Q2 =  C([0, oo) : R*-1), Q =  C{[0, oo) : R a) and 
£2 =  C([0, oo) : T^-1) be endowed with the topology of uniform conver
gence on compacta and the natural Borel structure. (Here Td_1 denotes 
the (d— 1 )-dimensional torus). Let X(t) (sometimes written Xt) denote the
t-th  coordinate map on Cl ; let X(t) =  (X2(t), ..., Xd{t)) and X(t) =  (X2(t) 
m od 1, ..., X x(t) mod 1).

Let {Px : x  e 0 } be the (̂ L, j diffusion in 0 ; jp *  : X e it*4-1 j be the

■diffusion in R a~x ; jp*?: xx >  0 j  be the {l v j -difusion in [0, oo). These

are the families o f probability measures respectively on Q, Q2, £2i solving 
t.he appropriate martingale problems. (It may be mentioned that {Px} and
T O  are diffusions with normal reflection atthe boundary) Because of our 
assumptions (Al), (A2) note that Lx and L2 are generators o f diffusions ; also 
L x is self-adjoint.

Under the assumption (Al), there exists a continuous, nondecreasing, 
nonanticipating process £{t) on such that

(a) m  =  J I ?Q (X(S)) d£(s) ;
o

(b) for every ijr e C\ (Ra),

t t
ir(X (t))-iJr(x)- J Ltfr(X{s))ds— J J*jL (X(s)) d$(s) 

0 0 OXi

(2.5)

is a continuous Px -martingale with respect to {St}. J 
-where <6t =  v{X(s) : 0 <  s <  t}. This process, called the local time at the 
"boundary, is uniquely determined, (see Stroock and Varadhan (1971)).

Proposition 2.1. Let (A l), (A2) hold. Then for any x  — (xlt x2, ..., sra) in G,

P x  =  P (" x P T  ... (2.6)

1where x  =  (x2, ..., xa). The processes {£(s)} and {X(<)} are independent. Also 
f o r  t >  0, x, y  e G,

p(t, x, y) =  Pl(t, xv y2) p2(t, x, y) ... (2.7)
where p, pv p 2 are respectively the transition probability density functions of 

^ X , — -^-diffusion, j -diffusion and L2-diffusion processes ; in parti

cular, the three diffusions are strong Feller.
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Proof. The first two assertions are immediately seen by writing down

the stochastio differential equations for the [ l , j-diffusion ; (see Ikeda

and Watanabe (1981)). To prove (2.7), extend the coefficients to R a using 
(2.1). Consider the diffusion in R d with generator L  ; let T(<, x, y) be the 
transition probability density function o f the ^-diffusion R d. Note that p 
is obtained from T by the method o f images. In view of our assumptions,
(2.7) is now immediate. □

Remark 2.2 . Using Green’s formula it can be shown that, for any bounded

measurable function g on 3Cr(~ R d~x), a? e O, t >  0,

[ I g(X(#)) rf|(s)] =  ~  J  | an(y)g(y)p{s, X, y) dv(y) ds

=  4 - J f  an(0)g(y)pi(.s, xx 0)p2(s, x , y) dy ds ... (2.8)
 ̂ Ofll- 1

where E x denotes expectation with respect to P x and dcr(. ) denotes the (d—1) 
-dimensional Lebesgue measure on dO ; note that the second equality in 
the above follows by the preceding lemma. (In what follows, the notation 
d<r(y) or. dy will be used according tc convenience).

Proposition 2.3. Define Y  : 0 2 —> Q by (T  w) (() =  (w2(t) mod 1, ..., 
wg,(f) mod 1) ; put X(t) =  (X2(t) mod 1, ..., X$(t) mod 1). For $ e Td~x let P*

— P'jp'F-1. Assume that (A\)~(AZ) hold. Then ({X(<)} is a T d~x valued 

continuous, strong Feller, strong Markov process under {P^.}; also

P $ , V) =  2  p2( t ,x ,y + k )  ... (2.9)
fceZ*-*

is the transition probability density function of [X(t)}. Moreover, there exists 
a unique twice differentiable periodic function p on It**-1 such that

f  P (y ) fy =  1, ... (2.10) ijtd—l

LiP(y) ~  0 ,y e R * - i ,  ... (2.11)

A sup f |Pa {t, x , y )-p (y )\ d y  <  cxe~^ ... (2.12)
AC e rpQr-\



where c1; ca are, positive constants independent of t, L\ is the formal adjoint of

L2 ; in other words, under P  ( . ) =  J Pz.( . ) p(x)dx the process w
y<*-i

ergodic.

Proof. The first assertion; is elementary to  prove. Since X(t) is a Feller 
continuous diffusion on the torus T d_1, by results in Bensoussan, Lions, 
Papanicolaou (1978, Chapter 3, Section 3 ) it follows that there is a unique 
invariant probability measure p(y)dy on T ^-1 satisfying (2 .10)—(2.12) ; (see 
also Bhattacharya (1985)). The regularity o f p follows by  the regularity 
theorems for solutions of second order elliptic equations, p

(ii) Ornstein—Uhlenbeck process. We now consider a version of the 
Ornstein-Uhlenbeck process in G with normal reflection at the boundary. 
In this case the diffusion coefficients are given by oy(ac) =  bt(x) =  —xt,
1 ^  i> j  ^  d. The generator is

L f{x )  = } s  - i x t  d- p ^  -  (213)2 <=1 dxj f=1 dxi

In this case the transition probability density function is given by

q(t, (xi, x), {ylt y)) =  q^t, xv  y j  q2(t, x , y ) ... (2.14)
where

-  [^ jj~ t) ]*[e*p( -  } + « p {  -  } ]

... (2.15)

d-1

=  2 “ p { - ( r ^ 3 i 5  ,|  -  (216)

Note that q1 is the transition probability density o f the O.U. process in [0, oo) 
with reflection at 0, and q2 is the transition probability density o f the (d 1)
-dimensional O.U. process. Let {Px : X e G)} denote the corresponding family 
o f  probability measures on £2. By writing down the stochastic differential 
equations for the O.U. process it can be seen that there is a uniquely deter
mined continuous, nondecreasing, nonanticipating process {§(0)  on ^  satis
fy ing  (2.5). Note that all the assertions of Proposition 2.1 and analogue of

(2.8) hold also for the O.U. process {Px : x  e G}.



It is easy to check that there is a unique invariant probability measure 
v(y)dy on G for the O.tT. process with normal reflection ; in fact

v(y) =* *1(1/1) vdy) ••• (2-17)
where o «

*i(2/i) =  lim ?i(*> *i> Vi) =  T7= «”  1 (2-18>*—>oo V 77

>s a. / i (d—D/s / \
va(t/) =  lim g3(J, * , y) =  (— j exp ( — 2  ) ... (2.19)

<—>oo \7T /  \ i-2  /

for >  0 , y  e R d_1.
Proposition 2.4. Let <0 >  0. Then

| g(«, *, «/) — v(y) | <  K 1 e-n + K z  | x  | e~* ... (2.20)

for all t >  £0, x, y e  G, where the positive constants K lt K 2 are independent of 
t ^  t0, x , y.

Proof. It is sufficient to prove.

l ' /2 —  < * i e * t+ K t \/}\e-< ... (2.21)

for t >  t0, a, /? e R, where K v K 2 are positive constants independent of £ >  t0. 
a, fi.

Put e =  e-t and set h (e) =  exp [— ̂  ■ ] where a, fi e R  are

arbitrary but fixed. It is easily verified that

!*'<«>! < (T ! i i ? S - + ( T ^  "• (2-22)

for all 0 <  e <  1, a, ft e R  where the constants Gv C2 are independent of
e, a, ft. From (2.22) it is simple to obtain the inequality (2.21). This com
pletes the proof. □

Proposition 2.5. Let t0 >  0 and H (^ G  be a compact set. Then

q(t, x, y) <  [l+ e -< (& o+ ^ il» l+ ---+ ^ | y| ‘i)]v(y) ... (2.23)

for all t >  t0, x  e H, y  e G, where the positive constants k0, k}, ..., ka depend only 
on t0, H.

Proof. It is sufficient to prove that for t0 >  0, ft0 >  0,

( 1 \ exp (g~ e /?)l- 
l 1—e-2< / P (1—e~2e) j

( 1 V1/2 cm  f (^~e~« >g)a 1 
\ (1—e~2t) / P I (1- e - 2*) J <  C7(l+|aj)e-*e-«2 ... (2.24)



for all t ^  t0, | fi | ^  y?0, a e R ,  where the positive constant C depends only 
on ô> fio'

Put e =  e~*. It is simple to check that

U . S .  o f  (2 .2 4 ,  <  1 I ^ p  [ l - e * p [
e2 e

(1—e2)1/2

i e~~g r /J2e2 , | j. _ ( a2e2_ 2a/?e) il
(1 —e2)1/2 exp [ ( l - e 2) J I 1 exp[ (1—e2) JI -  ( ’ }

Since the first two terms on the r.h.s. o f (2.25) satisfy the required bound, it 
is enough to  prove that the third term also satisfies the required bound.

Set g(a) — e x p [-----— e 2 af  e  ̂ ] . I t  is not difficult to verify that
L (1—e ) J

for 0 <  e <  1, y8 e R ,

sup {g(a) : a  e R } — exp£ | ... (2.26)

sup { | cl g (a )  | : a e R }

-  i  [ ^ T O S * ]  exp [ ] ... (2.27)

Using (2.26), (2.27) and the mean value theorem, it is now easy to verify that 
the third term on the r.h.s. of (2.25) also is dominated by the r.h.s. of (2.24) 
for all t >  t0> \ft\ <  /?„, a e R .  This completes the proof.

3. N e u m a n n  p r o b l e m  : %  =  l a p l a c i a n ,  l 2 h a s  p e r i o d i c  c o e f f i c i e n t s  

We now  consider the inhomogeneous Neumann problem for L  in the 
half space G. That is, for a measurable function /  or G and a measur
able function ? on dO, to find an appropriate function u such that

Lu{x) =  —/(* ), x e G  "j 

! ~ ( x )  =  -  <p(x),xedG J -  (31)

As in Hsu (1985), Ramasubramanian (1992), a measurable function u on G 
is called a stochastic solution to (3.1), i f  for each x eG

| Z(t) : =  u (X (t))-u (X (0 )+  Sf(X(s))ds+ j  <?(X(s))dUs) ... (3.2)
0 0

is a continuous P^-martingale with respect to St, where {Px} is the

I  JL- ] -diffusion 
dxx J
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Remark 3.1. It can, be shown using (2.5) that any classical solution 
(with appropriate growth condition) is also a stochastic solution to (3.1)

Conversely, i f  f  and <p are continuous and u e C2(G) Pj C1 (G) is a stochastic 
solution, then it can be shown that u is a classical solution to (3.1).

In this section we assume that the conditions (Al)-(A3) hold and that 

. ) =  1 and 6X( . )  =  0 ; that is, jp*-?* j  is the reflected Brownian motion

in [0, 00), L2 has periodic coefficients, and |P^| and |P^J are independent 

diffusions. Note that, in this case

* * * » > - (  d i  ^  n  ••• < «
Lemma 3.2. For 0 <  tx <  t2 <  00, a e R ,

I rU' H ( - i ) - i j *

a“ -X
- V 2  |a| J r-u *e-*d r  (3.4)

*2/2<2
aa zProof. Put z =  —, use the fact that e~z— 1 =  J e~r dr ; the required

0
result is obtained by a routine computation. □

In this section we shall make the following assumptions on the prescribed 
data / ,  <p.

(Bl) : / ,  cp are bounded on compact sets ; <p(x2, ..., ®a) is a periodic 
function with period 1 in each variable; f(x lt x%, ..., xg) is periodic in #2, ..., U 
with period 1.

(B2 )\ Hr =  sup J \oc1\* \f(xv tt)\dxx <  00, r =  0, 1, 2. 
t0,06*

(B3) : J J f(xlt x ) p(x)dx dx1 +  ~  J cp(*) p(x) dx  =  0,
[0 ») ytf-l  ̂ ^ -1

where p is the invariant probability measure for the La-diffusion on T̂ -1- 

For 0 <  tx <  t2 <  00, x  =  (xv x ) e G, put

5(*t, h  : * ) =  Ex [ f  f(X (s))d s+ f ?(X(s))d5(s)] (3.5)



iftieie %-is the local time at the boundary as in (2.5). Because of the periodi
city assumption we may take x  e T d~l. Now in view of (2.8), Proposition 2.3 
(ia particular (2.9)), and condition (B3) we get

% h ; * i»  * )  =  J  J  J  f(zv z ) p x(s ,x l , z 1)pi { s , x >si)dzdz1 isti [0,®) yrf-l

1  A.

+ J  J 9 <?(z)Pi(s, xv 0)pz(s,x,g}dsd8 

*2

=  J J J- /(*l. *)Pi («, *1> 8i) [!>*(*, *, #)-/>(*)] <̂ 1 ia 11

+  /  ii/  x I  ^  f p i i *’ Xv rfs*1 to, «) yd-l V 3

+  !  J  T  <p(*) Pi (», * 1 , 0 )  * ,  *  *»1 yd-1 J

+ 1 t L  t  ^ i) p { i ) ! Pt {s’ Xv 0)~ v t i  1 i z  d*

-  Jx (tx, t t ; -Vv x )+ J t(tl, h  ; x^+hih, h ; «e)+Utv h > *d

... (3.6)
where p t is given by (3.3) and pi is the transition probability density function 
of the £r2-diffusion on the torus T*-1.

Lemma 3.3. Let (Al)-(A3) hold with au( • )==!> M  •) m ^  J '   ̂
satisfy conditions (Bl)-(B3). Then for any 0 <  h <  tg <  co> (*i» * ) e ®’

| Jx (tx, *, ; xx, x ) \ < H 0 cx f  s '"*  f e*d* -  (3J)
ti

i r n  t ^  1 I, „ _ 3 _  r%-w*e'***ds -  (SJ)I 3 (*i> h ; *i» * )  I ^  "g"

where the constants cx, c2 are as in (2.12) and the constant So w 
;particular I x is bounded.

Proof. Immediate from condition (B2) and Propositio
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Lemma 3.4.. Let the hypotheses be as in the preceding lemma,. Then, 
for _Xx e [0 , oo), t >  0,

I J»(0, <; «,) | <  2H .+2H , | ^  | (H%+ H 0 i 1») (3.9)

Ih (0 ,V ; x , )I ^  IMIoo ( k I +  (3-10)

where the constants £f0, Hv H z are as in (B2). Moreover for a >  0, e >  0 one 
can choose T such that

sup |I z{t, co ; # ])| <  e ••• (3.11)
< 35 T

\It{t, oo ; a?i)l <  e ••• (3-12)

(3.13)

o r
for ail | xt | <  a.

f  7 (*i.*).'*  i > °
Proof. Put F(zv «) =  4

L_/(-Zx, «)»^i <  0

By Lemma 3 .2, for 0 <  tL <  tz <  oo, >  0, we get

Iz(h> h  > xi) — J J ^/^T—~ *^x’ *2’ Xl> Zl  ̂ Ẑl R T*-y V  27T :
where

<«. *•) =  V ?  { “ P ( —

—-y/2 |2i—â | | r~m e-* dr ... (3.14)
f(zi—xj) (Zi-a:f)l
L 212 ’ 2tx J

Letting ^ > 0 and taking t2 =  t in the above, we get

| / , ( » , < i * 0 K  I  Tl 1

from which (3.9) easily follows.

A similar argument gives
1 "  I

I* (̂ i> 2̂ > -̂i) =  ^ 2jt 2̂’ 9 (z)p(z)dz ... (3.15)
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where J is given, by (3.14). The inequality (3.10) is now immediate from 
(3.15).

Now let a >  0, e >  0 be fixed. Choose r0 >  0 such that

J ^ . i { ( ' § ' ) l (a* +  l*1 l * ) + ( <* + l ^ l ) } l J ^ » * ) l ^ ( * ) l <* * * i < y  e ••• (3-16)

Such a choice is possible because of (B2). Letting fa—> co, putting tx =  t 
in (3.13) and using (3.16) we get for |*j| ^  a, and t >  1,

A A
| l . f o o o  ; « , ) ! <  J  J {̂ p ^ - \ J ( t , o o , x 1,zl)\dzdz1 

B jd -i v 2n

< | e + ( | - ) ^ 0(r§+«a) + (0̂ 7 ^ 0 J s - i e - d s  ... (3.17)2 \ntl V n

Clearly one can choose T large enough that the right side of (3.17) <  e for 
all t >  T. Thus (3.11) is proved.

Using (3.15) in the place o f (3.13) and proceeding similarly, (3.12) 
is proved. This completes the proof of the lemma. □

We now prove the main theorem of this section.

Theorem 3.5. Let (Al)-(A3) hold with an( . ) =  1, bt( . )  =  0.

Let / ,  <p satisfy conditions (Bl)-(B3). For x e G  define

r t  t  .
u(x) =  lim Ex J /(X(s)) ds-\- f  f(X(s)) d  ̂(*) 1 ... (3.18) 

t —>« L o o J

Then u is a continuous function on G such that

(a) u is periodic in x%, ..., z& ;
A ___ A

(b) | u(xv  as) | <  K(\ +  j I), where K  is a constant independent o fx t,X ;

(c) «  is a stochastic solution to (3.1);

(d) lim sup | E. («(X(t))) I =  0,for any x1 >  0.
*-*• * 11 ■
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Moreover, u is the unique stochastic solution to (3.1) in the class 

@1 — {v '■ G—> R  '■ (i) v is bounded on compacts ; (ii) v is periodic in %s,

(m ) I v(xv &) I ^  # (1 +  | î I), for some constant independent of xv X] wd 

(iv) lim Ex [v(X(t)] =  0). , ... (3.19)
t  ’ ■> flP

Proof. Observe that u(x) — lim u(0, t2 ; x1 x ) ; consequently by the
i2-*- oo

preceding two lemmas it follows that u{x) is well defined for. each X, u is perio
dic in x2, ... , xd and that | u(x1; x) | < # ( 1 + 1 ^ 1 ) .  To prove continuity, 
note that for any x  =  (xv x ) e G,

u(x) =  w(0, 8 ; xu ae)+w($, T ; xx x )+ u {T , oo ; xv x )  

where u is defined by (3 .5), and 0 <  § <  T  are to be suitably chosen. For 
fixed (xv Si) e G, e >  0 by the preceding two lemmas, T  >  0 can be chosen

so that u(T , oo ; yv y) <  * e for all (y, y) in a compact neighbourhood of 
(%lt x ). Choose S >  0 such that

Then it is easily seen that sup | u(0, 8 ; yv ?/)| <  I e. By the strong Feller
A y &

property, u(S, T  ; â , x) is continuous in (xv x). Continuity of u now follows.
To show that u is a stochastic solutior, we have to show that Z(t) is a 

continuous Pa-martingale, where Z(t) is given by (3 .2). Because o f assertion
(6) o f the theorem and condition (B2), it follows that Z(t) is integrable ; con
tinuity in t is clear from continuity of u. For s, t >  0, w e £2 put

f t  (to) ss f ( t ,  w) =  {f (X (s , w)) ds+  f  (X(s, w)) dl(s, w),
0 0

6t «>(«) *= «;(£ -[-«)

As / ,  tp are bounded on compacts note that ^  is well defined. Since £ is as 
additive functional

&tM>) — ft{s-\-t, w)—i/r(t, w) ... (3 .20)

For r <  r, put M\ =  E(\p-(T)\ /8r). By (3.20) and the Markov property, 
for. t ^  0, « >  0, X e G  we have

Mp* *  ^(<)+^X(*) (&(*))> a.*.P»s (3.81)



- \M°+t\ <  | xlr{t) | +  | « (0, s ; X x (t), X (t)) |

<  l ^ l + A + ^ I ^ W l + A l ^ i W I 2. ® - ^ *  -  (3-22)

for all s >  1, t ^  0, x e G  where the constants ftv /?2> P% are independent o f 
te[l, oo), t, x.

Put Nt =  lim M\+t. By the definitions of u, i/r, M\, Nt, Z(t) and (3.21)
! ■  ̂ao

it follows that for any t >  0, x  e G

Nt =  Z(t)-\-u{x), a.s.Px .

Ia view o f (3.22) it is easily seen that for t2 >  1x >  0,

E (Nh \*Ih ) =  lim E (M '+ * '\ e )
A  *  < - > «  • - 1

=  lim E(E(ir(s+ti)\ £  )\j3t )
! - > »  2 1

=  N fi a.s. P x  ... (3.23)

Thus {Nt}, and hence {Z(t)} is a P®-martingale with respect to St- Hence 
u is a stochastic solution to (3.1).

Note that for x e G ,  t >  0,

Ex[u(X{t)]= j" J u(yv y)p1{t,x1, y 1)[p2 ( t , x , y ) —p(y)]dydy1 
[ o ,«-] T «-i

+  /  J u(yv yfa it, xt , yd p(y) d$ dyv  ... (3.24)
[0, * )  T <*-»

By assertion (6) of the theorem and Proposition 2.3 it follows that for 
any xt >  0,

lim sup | first term on the r.h.s. of (3.24) |

<  lim Kct e ** J [1 + 1 yi |] Pi(t, *i, yt) dyt «* p.
$ —̂  oo [0, ®)
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Next, as the Lebesgue measure on [0, oo) is the invariant measur&for 
the reflected Brownian motion and p is the invarnant measure for the 
Lj-diffusion, by the representation (3.18) for u, we have for t >  0, ^  0,

J J »(& . y) PiV> x1, yx) p(y) dtf dyx{0, <r) y i - l

=  J im I [ J J J J Z)Pl(s, Vi, 2l)o *■ to,*) Ta-i to,*) Ta-i

Pi (*i Vi) Pi («, y,  *) P(y) dz dzt dy dyx

+  J J  J  ^  <?{z)Pi{s,yi,0)px (t,x1, y 1) p 2( 8 , y , z ) p ( y ) d y d z d y 1 ] dt 
[o, •) Ta~i Td-1 1 ■ ■

=  lim f [ J J ( .f f{z i ,z)p&)dz)p1{s,yv z1) p x{t1xv y x)dyl dzi -
T - * »  0 1 t°> •) I0,») ' T d- 1 '

+  J ( f  4 - ?(*) /»(*) dz ) px(s, ylt 0) pt (t, xx, yx) dyx 1 ds
10, r) ' Td-1 1 ' J

T+t  r a " * *
=  lim I I J f(zv z) px (s, xx, zx) p(z) ds dzx

t Lt0, or) Td-l

-r I. 4 - <P(«) Pi (s, xx, 0) p(z) dz 1 ds (3.26.)-
. yS-l 1

Now let F  be the extension of /  as given in the proof o f Lemma 3.4. 
Since / ,  f  satisfy the conditions (B2), (B3), from (3.26) we get for xx p  0, 
t >  0,

! J f u(yv y)p1(t, xv y x) p(y) dy dyx I> * ) ytf-l

- I * .  +t U  

^  d t  i *** ( ^ )  - 1} ^  ] *

<  1 -  V5T?)] (2«.+2*!fl.+*S ML) ... (3-2’ )

(3.24), (3,25), (3.27) the assertion (d) of the theorem is immediate. In 
particular u e <SX.



Uniqueness in the class (Bx follows from the following lemma.

Lemma 3.6. Let (A l)-(A 3) hold and f ,  <p satisfy (Bl),  (B2). Let v e ^ b e  
a stochastic solution to (3.1). Then v(x) =  r.h.s. of (3.18).

Proof. As v is a stochastic solution,

v(x) =  Ex(v(X(t))+Ex [ J f(X (s))d s+  J <p(X(a))d£(«) ]; 

and since lim Ex(v(X(t))) — 0, the conclusion follows. □
t —> CO

We will now prove the necessity o f the condition (B3).

Theorem 3.7. Let (A l)-(A 3) hold with an { . )  =  !, 6X( . ) =  0 ; let f, <p 
satisfy (Bl), (B2). Suppose there is a stochastic solution in the class (®y to the 
problem (3.1). Then f, cp satisfy the condition (.53).

Proof. Let u e Q x be a stochastic solution to (3.1). Then by the pre
ceding lemma

u(x) =  lim Ex  f  J f(X (s)) ds+  J <p(X(s)) d$ (*)]
T —» «  I- 0 0 J

Observe that in the derivation of (3.26), the condition (B3) is not Used. There
fore by (3.24) and (3.26) we have for any t >  0, x  =  {xv x),

Ex K Z M)) =  I J u(yv y)px(t, xv yx) [p2{t, x , y) — p(y)]dy dyx
[0, OC)

t+T r a a f 2 \ ,
+  lim J J J /(Zi= * ) /> («) {  Pi(s, xv ?1)— } dsdzx

t 1 [0, or) T d - 1  *• V 2 7TS 1

+  <P(*) P(z) { p i  (s> xv ° ) — } d*  ] ds

t+T 9 r \
+  lim J" 7 a=  J J /(*1» *) PW  ds dzl 'T—>oo i V27TS L10, «) tpd-l

+  J \  P(«) ds ... (3.28)
T a-1  *  J

As w e <?1; l.h.s. o f (3.28) tends to 0 as t—> oo. By (3.25), the first term on the 
r.h.s. o f (3.28) goes to zero as t—* oo. Sinoe / ,  <p satisfy (B2), note that the 
second term on the r.h.s. of (3.28) is 0 (t~1/2). The desired conclusion now 
follows. This completes the proof.
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4, NstTMANN PROBLEM : SELF-ADJOINT X  PERIODIC CASE 

In this section we consider the case when Lx is self-adjoint and L% has 
periodic coefficients. We assume that (Al)—(A3) hold. As before, let p x

denote the transition probability density function of the î Lv j

diffusion in [0, oo). Since px is obtained by the method of images from the 
transition probability density function of the Lx—diffusion in it  and since L x 
is self adjoint, by a theorem of Aronson (1967) we have

mx t~m  exp |— (yx—a ^ j  +  exp - j ?  (?/i+zx)2} j

<  Pi  (*» * i .  Vi)

<  kxtrW  |©xp | - y  (sh—*i)*}+© xp { —~* ( y ^ i ) 2} ]  ••• (4.1)

where the constants mx, m2, hx, kt are independent of t, xx, yx.
in this section we make the following assumptions on the prescribed data

/>  ?■

(Cl) : Same as (Bx).

(C2) ; .  lim sup \f(xx,x)\  = 0
• 5. ..................

(03) : for all t >  0, xx >  0

S ... J  f ( y v y )P i i * ’ x» y i ) p ( y ) dy dv\
[<>,•) T d-1

+ i  $ % ( o) 9(y)Pi(t> xv Q)p(y)du =  0 
z  T d- 1

Lemma 4.1. Let (Al)—(A3) hold ; let / ,  <p satisfy the conditions (Cl)— 
(C3). Let e >  0. Then there exists r0 >  0 such that for any 0 <  tx <  f2 <  oo 
and x1 ^  r0,

sup
x

+•

I [ J f(y)p{t,(%i>x),y)dy
*x 1 a v.

\  J  an(0)<p(y)p(t, (xv x), (0, y))dy 1 dt 
& 30 J

<  2 r0 kx cx H/iU J t~w  exp I j dt

+ ci e~ f  C ^ .d t -^ ~ k xcx ||«p|U «n(°) J t-1̂ ^  exp  ̂ j  dt ••• (4-2)



only on e ,f.

Proof. By our assumptions note that /  is bounded. Let e >  0. By 
(C2) there exists r0 >  0 such that

sup \f(yi> y) I < e for a11 Vi >  roA
V

Consequently by (4.1) we get for all t >  0, x1 >  r0, y  

J xi> Vi)dy11 <  e +  H/Jloo J px(t, xv yx)dyx
I®*) [o.r0]

<  e+2r0 kx H/ll. trV*exp [ -  A  (r0- x x)» ]. ... (4.3)

Note that, because of condition (03), 

l.h.s. of (4.2) =  sup | u(tv ta ; xx, x )
X

~  sup | I x(tx, #a) j xx, ae)+Ia(tv ta ; xx, x ) | ... (4.4)
X

where u, I x, I3 are defined analogous to the correspoing objects in Section 3. 
Applying (4.1) to p x(t, xx, 0), using (2.12), (4.3), (4.4) we can now easily prove 
(4-2). □

Note : For e >  ||/||, we may take r0 =  0.

Theorem 4.2. Let (Al)—(A3) hold ; let f .  9 satisfy (Ql)—(G3).Let u(x) 
be defined by (3.18). Then

(а) u is a bounded continuous function on G ;

(б) u is periodic in x2, . . . ,x a ‘,

(c) u is a stochastic solution to (3.1) ;

(d) lim sup | u(xX) x )  | = 0 .
*1 - »  "  *

Moreover u is the unique stochastic solution to (3.1) in the class

<®2 =  jv  : G—>R : (i) v is bounded measurable ; (ii) v is periodic in (xg, ...,

x#)), and (Hi) lim sup| v(xv x )  | =  0.\ ••• (4-5)
X



Proof. From the preceding lemma it is clear that u is well defined, boun
ded, periodic in (x2, ..., x&). Continuity of u can be proved as in Section 3. 
The proof o f u being a stochastic solution is also similar to the one in Section 3. 
In view o f (4.2), the assertion (d) is easy to establish. In particular u e <?2.

Finally, let v e be a stochastic solution to (3.1). To prove uniqueness 
it is enough to show that

lim sup | E (v(X («))) | =  0. ... (4.6)
t—> CO X

Let e >  0. Since v e <*2, there is r0 >  0 such that sup I v(yv y) | <  -j-e for allA Jl
y

Vx ^  r0. Consequently by the upper bound in (4.1) we get for any (xv  x2, 
..., xa) e O , t >  0,

\Ex[v(X{t))] | <  y 6+ 2 V o  IML l~ X/%

From the above inequality (4.6) is obvious. This completes the proof. □
We now prove the necessity o f the condition (03) for the homogeneous 

problem.
Theorem 4.3. Let (Al)—(A3) hold ;le t fs=  0 and cp 6e a bounded periodic 

function on dO. Suppose there is stochastic solution in the class (Bt to the prob

lem (3.1) Then J <p(y)p(j))dy =  0
ydf-l

Proof. Note that in the proof of the uniqueness part of Theorem 4.2 
we have not used the condition (03). So, if u e  <?2 is a stochastic solution 
then by the representation

«(a?) =  u(xlt x ) =  lim E f  J <p(Z(s))^(s)l
T -»  oo o J

1  T

lim — J j1 an(0)op(t/)2)1(a, xx, 0) [p2[s, x, y )-p {y )]d y d s
T - + m  *  0 T d- 1

+~2 au(°){ I /  Pi(s, xv  0)c?s| ... (4.7)

By the upper bound in (4.1), and (2.12)
sup | first term on r.h.s. of (4.7) |

X

^  au(0) cx kx J t e ** exp £— x\ dt—> 0 as x1—> oo.



By the lower bound in (4.1)
T

lim lim J p t(t, z v  0)dt
oo T -+00 o

>  lim lim J 2m1 t~V2 exp — rn̂ -1 1
Xx~* 00 T —> * x2 *• t i

>  2m 1e 2 lim lim \-\/T—z x] ... (4.9)
®i-* oo T -+  oo

As ue<?2, l.h.s. of (4.7) tends to 0 as x±—> oo. In view o f (4.7)—(4.9) this is 

now possible only if J1 <?(y)p(y)dy =  0. This completes the proof. □
y(?-l

Remark 4.4. Suppose / ,  <p satisfy

J f{y i> y) P(y)dy =  0, for any yx >  0.
rd-l

I 9 (y)p(y)dy =  o
rpd—1

(4.10)

Then clearly / ,  <p satisfy the condition (C3). Conversely, if  f  is o f the form

f(Vi> V) =  A(yi)My), then the condition (C3) implies (4.10) ; for, by (03)

J1 fi(yi)Pi(t, yi)dyx =  const. p x(t, xv  0)
[0, «,)

unless J1 f 2(y)p(y)dy =  0, and consequently either / x =  0 or J f 2(y)p(y)dy =  0.

Remark 4.5. In view of the preceding remark, the condition (03) is not 
sufficiently general. (In particular, /  can not be a function o f yx alone, unless 
/  =  0). A more satisfactory condition would be an analogue of (B3) ; but 
we have not been able to carry out the analysis under such a condition. How
ever, in the homogeneous case (as (02) trivially holds), by  Theorems 4.2 and 
4.3, the condition (03) is a necessary and sufficient condition for the existence 
of a unique solution in the class (®2 ; and the solution is given by

u(xv x )  =  lim i  f  I ®u(0) 9 (y)Piis> xv 0)?a(«, V) dy ds.
T—■>» 0 ytf-1

(Note that, u ^  0 in general. Indeed, using the uniqueness o f  Doob-Meyer 
decomposition, sample path continuity, Corollary 2.3 o f Stroock and Varadhan 
(1971), and proceeding as in the proof o f Proposition 3.2 o f Hsu (1985), it can



be shown that, if <p is continuous and u == 0 then <p =  0). It may be noted 
that, in the homogeneous case, (C3) is the same as (B3). Thus, for the homo
geneous problem our analysis gives a complete picture.

5. Neumann problem : L =  laplacian
In this section we assume that ay (.) =  8y , (.) =  0, 1 <  i, j  d ; that 

is, {Px : x  e 0 } is the Brownian motion in G with normal reflection it the boun
dary. For x  =  (xv x), y  =  (ylt y ) , t >  0 observe that

p(t, x, y) =  pj{t, xv  1/1) p 2(t, x , y)
where

p jf.  =  ( H - )  I « P  { -  }  +  “ P { -  <JT T ^  } ]

d-1

p S , k y ) =  ( - ^ )  2 exp { - I  s  i y i -x t ? ] .
%

The case when/. 9 are periodic in the variables x2, xa has already been 
dealt with in Section 3. Here we make the following assumptions on the 
prescribed data / ,  9.

(Dl) : f e L m (G), e L a(dG) ;

(D2) : M r ^ S  \y\r \f(y)\dy+ f  |y|r|<p(y)l d y < c o , r  =  0, 1, 2 ;
w "

A A

(I>3): f  f(y)dy+j<  J f(y)dy  =  0.
S’ 0e

For 0 <  <  £2 <  00, sc =  (%, ae) e (?, let m( ,̂ #2 ; x )  be defined by 
(3.5), with {Px} denoting the reflected Brownian motion in Q. Let F  be 
the extension o f f  as in the proof of Lemma 3.4. By Remark 2.2 and condition 
(D3) it is seen that

A A -11 I «  «  I2> I A
: ... (5.1)+  f t fa  { exp \dz

- I \ 2s > J

In view o f the conditions the following lemma can now be proved easily.
<* 32

Lemma 5.1. Let L =  A S -=-5-. Letf, 9 satisfy conditions (D l)—(D3).
<=1



A  ~

Then fo r  a n y  0 <  <  t2 <  oo, (a?lf x )  e  G t

d
'* \ M ^ \ X \ * M 0 |

u

d L  (d+2 )
|«{<i, t2; a^, * )|  <  4 ( — ) \^MZ+  |at?|2 J f0 J J1 s 2 <fe . . .  (5.2)

and

|it(0, ij ; x v  x )  | ^  || /  ||oo | ~  j II <p Hoo a / ( ® * 3)

where the constants M n, M % are as in (D2). □
We now have the following theorem.

& ga
Theorem 5.2. Let i  =  f  S  and let / ,  9 satisfy conditions (Dl)—

i=1 O&j

(D3). Let u be defined as in (3.18). Then

(a) u is a continuous function on O such that

| u(*) | <  K  (1+  | *  j2), for ail x  e 0,

(b) u is a stochastic solution to (3.1) ;
(c) lim E^_a(X(t)Y\ — 0 uniformly over compact subsets of G.

Moreover u is the unique stochastic solution to (3.1) in the class

<2s =  { v :G - > R :  (i) | v{x) | <  K{1 +  | x\2), (ii) lim Ex[v(X(t))] =  0 for all x e G }
00

... (5.4)
Proof. In view of the preceding lemma, all the assertions except (c) oan 

be proved as in Section 3.
In view of (D3), by an argument similar to the derivation of (3.26), (3.27), 

using Chapman-Kolmogorov equations, we get for t >  1.

| Ex[u(X(t)))] | = |  lim u(t, T + t ; xv x) |
T —> «>

_ d _

< C ( i + M a) *  2

whence assertion (c) follows. This completes the proof. □
Our next result concerns the necessity of the condition (2)3).

1 d d%
Proposition 5.3. Let L  =  y  £  and let f, 9 satisfy (Dl), (D2).

Suppose there is a stochastic solution in the class <?3 to the problem (3.1). 
Then f, 9 satisfy the condition (D3).



Proof. Note that the condition (D3) is not used in the proof of the uni
queness part of the preceding theorem. So, if u e (2% is a stochastic solution 
then

u{x) =  u{xx, x ) =  lim E x f U (X (s)) ds+  (X («))# («)]
l o o 1

+ „ L  ^  **  1 *

T

+  lim J ( ^ ) 2 [ f f t v W y + i  t ••• {6,5)r  —» oo o ' &ns o

By the proof o f Lemma 5.1, using only conditions (Dl), (D2), it is easily seen 
that first term on the r.h.s. of (5.5) is well defined. The second term on the 
r.h.s. o f (5.5) is well defined only if  (D3) is satisfied. □

In Theorem 5.2 uniqueness is guaranteed in the class C% given by (5.4). 
It would be desirable to replace the condition (ii) in the definition o f <?3 by a 
condition not inovlving the parameter t. The following result is in that 
direction.

Theorem 5.4. Let L be as before ; let f, cp be integrable functions on 6, 
dG respectively. For z e R d, put

l -
W  =  J ( ^ ' ) 2 F { y ) e - %<» ’ * >  dy.

Rd > i

1 —

9  ^  =  r L i  f e )  2  f  ^  6 X P  <  ( 0 ’  d

u(«) =  2\z\~2 {F (s )+ f(« )}r

f  fiy^y^  ■■■,ya), y e G  
where F{y) — ■< _

t  •■■>yA),y*G

Suppose u is an integrable function on R d. Let u be defined as in (3.18). Then 
u is the unique bounded continuous function vanishing at infinity, which is a sto
chastic solution to (3.1).
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Proof. By the spectral representation o f the transition probability den
sity of the Brownian motion note that

»< • .« .* )= - /  « ' < * ■ « >  . - < < » • * >  &

Rd \2nI

for all s >  0, x ,y e O ,  where y* =  (—ylt y%, ..., ya)- Consequently under the 
given assumptions it can easily be verified that

v{x) =  J u(z) eHx’ *) ds 
R*

whence it follows that u is a bounded continuous function vanishing at infinity. 
It can be established as before that u is a stochastic solution to (3.1).

Suppose v is another such function. Given e >  0 one can find a compact 
set K £ _G  suoh that I v(x) | <  for x  e K . Therefore

sup|^|>(X(*))]| <  -2- e+IMI. | K | (27rt)~dli
35

where | K  | denotes the Lebesgue measure of K. From the above inequality 
it follows that sup | Ex[v(X(t)Y\ | —► 0 as i —» oo. It is now easily seen that 

*
v =  u, completing the proof. □

Remark 5.5. The hypotheses o f the preceding theorem imply that P(0)-f
*
<p(0) =  0 which is just condition (D3).

1 A d2 a d 
6. N eu m a n n  p r o b le m  : L  =  —  2  2—  S  xi2 <=i dxf t=1 dxt

In this section we consider the Neumann problem for L  when L  is the 
generator o f the Ornstein-Uhlenbeck process ; that is a#(£c) =  Sy, bi(x) — —a*. 
The transition probability density is given by (2.14)—(2.16). Unlike the 
preceding cases, now one has an invariant probability measure v(y)dy given 
by (2.17)—(2.19). We make the following assumptions on the prescribed 
data / ,  <p :

(El) : M 0 ==;  \f(y)\dy +  f  lq>(y)ldy <  oo ;
0 ao

(E 2 ) : ff(y)  v(y)dy +  -^ (0 )  /  f(y)v^y)dy  =  °-
o  ~ SG



In what follows {Px} denotes the distribution of the Ornstein-Uhlenbeck 
process.

1 £  d2 3Theorem 6.1. Let L = —  S 9xf Xi dxi

Let u be defined as in (3.18). Then u is a continuous function on G such that

(а) | u(x) | ^  K 1-^K2 |as|, where the constants K v K % are as in (2.20) ;
(б) u is a stochastic solutoin to (3.1) ;
(c) J u(x) v(x)dx =  0. 

a

Moreover, u is the unique stochastic solution in the class

<®4 =  {h :G^> R  : (i) |A(a>) | <  Z ( l +  |*|), (ii) [h (x) v(x)dx =  0} ... (6.1)
a

Proof. In view of Proposition 2.4 and conditions (El), (E2) we have for

, and ftp satisfy (El), (E 2 ).

0 <  tx <  <  oo, X e G,
h  
J U (y W , y )d y + i  J <?(y)q(t, x, (o, y))dy 

a dG

f  I  IM11 ?(<> y) -Ay) I %  *
l G

dt

t.
+  i  f  J I9(y) 11 «, (o.»)) - ^ ( o w y )  I %  *

*i 9G*

*2
<  ( i^ x + Z a la : ! )  J . . .  (6 .2 )

«i

From (6.2) it follows that u is well defined and that (a) holds. Continuity of 
« , and assertion (b) can be proved as in the earlier sections.

Note that ^ (0) =  j“ q-jfi, xv 0) v1{x1)dx1 for any t. Since v is the invariant 
10, « )

measure, by (E2) we now have
T

J u{x)v(x)dx =  lim J J J f(y)q{t, x , y)v(x)dy dx dt 
a t-**  0 a o

T
+  lim i  !  J1 J J (?(y)q(t,x,{0,y))v1{x1)pi(x)dydxdx1dt

5 C _ »«  0 [0, or) ZO d a

=  lim J [ $f(y)v(y)dy+  | Vj(0) J1 <p(£)v2(t/)dy] dt =  0 ... (6.3) 
r - » «  o L ^ * so J

establishing (c).



Finally, by Proposition 2.5, ifor any stochastic solution h e <®4, note that 
[h{y) q{t, x, y) | ^  [polynomial in | y  | ] v{y). C o n se q u e n tly  by the dominated 
convergence theorem, lim Ex [A(X(£))] =  /  h(x)v{x)dx =  0, and the conver-

{  ̂ 0c
gence is uniform on compact sets. It can now be proved that h =  u, complet
ing the proof of the theorem. □

Theorem 6.2. Let L be as in the preceding theorem ; let f. cp satisfy (El). 
Suppose there is a stochastic solution in the class to the problem (3.1). Then
f, 9 satisfy the condition (E2).

Proof. In view of the derivation o f (6.3 ), the theorem can be proved as 
in the earlier sections. □

Remark 6.3. It may be noted that Propositions 2.4 and 2.5 are the essen
tial ingredients for proving the above theorems. Therefore, for any ergodic
diffusion in G (with normal reflection at dG) such that zero is an isolated point 
of the spectrum of the generator (on the i 2-space with respect to the invariant 
probabi.ity) and for which Proposition 2.4 and 2.5 hold, our analysis can be 
extended. However, it is not clear to us for what class of diffusions Proposi
tions 2.4 and 2.5 hold.
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