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ABSTRACT

The simplest block design is considered and Tukey’s non-additive model

?ij = n + /?. +  r- +  0/3-T- +  is adopted, where the parameters n , /?. , r. , 
J 1 J 1 J 1J I J

tave their usual significance. A meaningful definition of estimability of 6 , the 

Waaction parameter, under this general set-up is considered and it is 

observed that the parameter is not always estimable.

A simple and interesting characterization of the block designs providing 

^nation of 6 is obtained. Next some aspects of optimality for inference on



6 are discussed. Some extensions of the above model are also considered and 

relevant results on estimability presented.

1. INTRODUCTION 

A model incorporating non-additivity in case of two-way classified data 

ith only one observation per cell was first suggested by Tukey (1949). The 

model proposed by him assumes the form

yjj =  /* +  /* +  Tj +  W f  j +  fjj with £/?. =  Etj =  0 (1.1)

where 6 is the interaction parameter or non-additivity parameter, the other 

notations/parameters having their usual significance. Tukey provided an 

estimator of 6 as also a test for Ho : 9 =  0 based on the residuals

eij =  yij -  ^ ~  ^i ~  rj w**ere ^ i /?j , 7j are ordinary least squares (LS) 

estimates of the parameters under the usual additive model (i.e., without the 

non-additivity term). Later, Milliken and Graybill (1970) considered an 

extension of the general linear model, hinted at earlier by Scheffe (1959). Thus, 

for example, in a randomized block design (RBD) instead of just one term 

0/?j7j in (1.1) to describe non-additivity, one could consider a model of the 

type

yjj =  ** +  4  +  r. +  0 ^  +  e2f2 + ... +  6t  ft +  (1.2)

where fj, , ..., ft are any known functions of /3L and/or Tj . Again an 

F-test for Ho : 8 =  0 has been derived under the usual assumption on the law 

of distribution of e - ’s .



It is somewhat surprising to note that the testing problems have been 

formulated and solved without any reference to estimation of 0 as such. Our 

concern in this paper is to initiate a study in the latter direction. Specifically, 

we adopt Tukey’s non-additive model (1.1) in the set-up of a block design and 

write yjj =  n +  /SL +  h rh +  0/?. (E ^  h Th) +  e.j with

=  Erh =  0 , 1 < j < kd i , 1 < i < b (1.3)

where k^ is the ith block size for a design d and ^ =  1 if hth treatment 

occurs in the jth plot of the ith block; =  0 , otherwise.

In sections 2 and 3 we point out that the non-additivity parameter 0 is 

not necessarily estimable (through an analysis of the residuals) for any 

arbitrary choice of the design. With this observation, we provide a simple 

characterization of designs allowing estimation of 0 . For the general model of 

the type (1.2), in section 4, we make an investigation on estimability of the 

flj’s , assuming special forms of the f ’s . Finally, in section 5, we try to 

develop reasonable optimality criteria and make a relative comparison of 

designs for efficient estimation of 0 .

2. CONCEPT OF ESTIMABILITY OF 6 UNDER 

GENERAL LINEAR MODEL

Following Milliken and Graybill (1970) (as also Kshirsagar (1983)), we 

may consider a general linear model

—Nxl “  XNxp apxl + FNxk 4 x 1  +  £ (2.1)



E(e) =  0 , Var (e) =  <r2IN

where # =  vector of unknown (additive) parameters 

£  =  vector of non-additivity parameters 

F =  matrix associated with non-additivity parameters.

The functional forms of the elements of F, fjj (•)  say, are known and in 

general, they are arbitrary functions of estimable parametric functions of j 

under simple linear model

Y =  Xn +  t  (2.2)

Estimation of 6 from the model (2.1) as such is formidable as basically 

it is non-linear in g  . One may adopt the ad-hoc procedure of premultiplying

(2.1) by I -  Px , the orthogonal projection operator of X , to get rid of g and 

convert (2.1) to one which describes in a sense a linear model involving £ only 

Thus denoting (I -  PX)Y , (I -  Px)F , and (I -  Px )e by Z , M , and e* 

respectively, from the model (2.1) using the fact that (I -  Px )X is null, we 

get,

Z =  M 9 + e* (23)

n
where E(e*) =  0 , Var (t*) =  a  (I -  Px) =  E say. Assume momentarily that 

the matrix M (even though its elements involve the unknown parameter 1 

through F) is completely known. Following Rao (1965, Chapter 4, section 4i.4) 

we get formally,



I  =  (M'SM) " M'SZ as M(£) 2 M{M)

=  [F' ( I - P x) F ] ~ F ' ( I - P x )Y (2.4)

where M(S) is the column space of E .

In practice, for estimation and testing purpose, we replace the functions of X3 

in F by their blue Xrj , obtained under the model (2.2). In other words, we 

compute

i  = [p ' ( x , )  <2'5>

(here denotes F with Xt; replaced by X j ). At this stage, one might

wonder as to whether £  is as such estimable or not irrespective of the choice of 

2 in the relevant parameter space. To settle this, we first incorporate the 

following formal definition of estimability of 0 . For simplicity in notation, 

from now onwards we write I -  Px and I -  Px as I -  P and I -  P-

respectively.

Definition 1. Under model (2.1), the interaction parameter vector 6 is 

estimable iff

Rank [ F '(I  -  P)F] =  k

i.e. F'(I -  P)F is nonsingular for all choices of g in the relevant parameter

space.

^en next theorems justify some intuitive feelings regarding estimability of £ .
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Theorem 2.1. Suppose 6 is estimable (in the above sense) under the modd

(2.1). Then 0 is also estimable under an extended set-up with additions! 

observations (involving the same fl parameter as in (2.1)).

Proof. Clearly, it suffices to prove the result with one additional 

observation. Let the extended set-up be

where

V = ( | ^ ) , x 0 = ( £ .  ( l0> ■ N<0' ^ )  ■

Let e be the relevant parameter space of g . Now to ensure estimabilityof I 

under this extended set up we distinguish between two cases: L e Af(X') a*l 

h i  M IX') and show that

Rank [ (I -  P0)F J  =  k for all g e e  

whenever Rank [ (I -  P)F ] =  k for all g e e

CaseliV. L * M (X ') .

Then

a) (X 'X  +  L L ')~  is a g-inverse of X 'X  .

b) ^ ( X 'X  +  L J L 'P t '= 0  .

c) L '(X 'X  +  LL) ~L =  1 .

Below we sketch a brief outline of the proofs.

The identity



(X'X + L L ') (X 'X  +  L L')~X 'X  =  X 'X  [see Rao-Mitra (1971)]

implies

X'X[I -  (X'X +  L L 'p C 'X ] =  L L '(X 'X  +  L L 'P C 'X  =  0

As Af(L) n M (X ') =  {0} , writing L =  LJL'Dj and X ' =  X 'X D 2 for some 

Dj and D2 , (a) and (b) follow immediately. Further (c) follows as a 

consequence of

(X'X +  i  It') (X 'X  +  L L ')L L ' =  L L' and through an application of the 

result stated in (b).

Case (ii): h  e M (X') .

Then writing k  =  X 'X n for some j i , we get

r i - x u i
; - p0] =  [o i  J

i  -  p o
-  u 'X ' 1

m T F1 +  u 'X 'X u (2.7)

As
I -X u
0 1 is non-singular, and rank [(I -  P)F] =  k for all #  e e  , it is 

readily seen from (2.7) that

rank [(I -  p 0)F0] =  k for all j c e  .

Lemma 2.2. Suppose 9 is not estimable under the model (2.1). Then 0 

is also not estimable under the extended set-up (2.6) when L =  X 'e  and g =  

F'gj, e- bang a N * 1 vector with 1 in the ith position and 0 elsewhere. In 

tie context of block designs, an applications of the above results simplifies



verification of estimability of the interaction parameter (as a scalar) in Tukey's 

non-additive model and also of the vector parameter 6 in the generalized 

set-up.

3. ESTIMABILITY OF 0 UNDER TUKEY’S MODEL IN A 

BLOCK DESIGN SET-UP 

Suppose under the model (1.3) =  0 for some i . This means that for 

the design d , for each of the observations in the ith block the

multiplicative interaction term would vanish and hence, no information on the 

non-additive parameter $ would be available from this ith block. A similar 

consideration applies to the set of observations under hth treatment if = 0 

for some h . Again =  ^V(rh =  rh ^  would mean that we have to work 

effectively with a model where the treatment -  block incidence matrix is 

suitably modified in the sense that the corresponding columns (rows) of the 

original incidence matrix are merged to form a new column (row). Therefore, 

the relevant parameter space can be and will be taken as

e  = (m > I  i i )  '■ - “> < / * <  . £ ' i  =  o i i ' I  =  o .
f  01' i  0 for a 11 i t  i ' , 1 < i , i ' < b , 

rh * rh * 0 for a11 h * h ' > 1 - h > h ' -  v (3.1)

Without any loss of generality, we will be working with connected designs only 

Arranging the observations serially blockwise, the model (1.3) can be 

rewritten as

X = [ l : X ^ : X rH l , 5 ' , r ' ] '  +  M + & (3.2)

where 1 is N «1  vector of all l ’s ,



is N * b coefficient matrix corresponding to the block effects,

X is N * v coefficient matrix corresponding to the treatment effects,

X is N * (b +  v +  1) coefficient matrix [1 : : XT] ,

2 is (b +  v +  1) * 1 parameter vector (/i, Q' , r ' ) '  ,

{ = ^r^)) is the N x l  column vector associated with the

interaction parameter 0 .

Now, the question of estimability of 9 through an analysis of the residuals Z 

(see (2.3)) is equivalent to the following: Is the column vector (I -  P)f 

non-null for all % t  ® for any choice of the design matrix X ? The answer is 

hopelessly,in the negative as we will demonstrate shortly. In this context, the 

following result is useful.

Property 1: The form of X =  [1 : : X^] above indicates 

(I -  P)Xp =  0 , (I -  P )X T =  0 . That is, in each row of (I -  P) , the sum of 

entries corresponding to each block and each treatment is zero.

The following lemma demonstrates that it suffices to settle estimability of 0 in 

* binary design. Let =  ((ndhj)) ^  treatment x  block incidence 

®4trixunder an arbitrary non-binary design d(v , b , k jj , . . . ,  k ^ ) .

Let d be reduced to d(v , b , k ^  , ..., k ^ )  as follows:

ndhi =  1 i f  n dhi * 1 

=  0 otherw ise l < h < v , l < i < b

( t  our later discussions we will refer to such d as binary reduction of d).

k?nma 3.1. 6 is estimable under d iff & is estimable under d
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Proof. We first note that connectedness of d retains connectedness of 4 

"If part." Follows as an immediate application of Theorem 2.1

"Only if part.1' We can construct d starting from d by adding tbt

observations one by one for all treatments appearing more than oncemabloi 

Now the proof follows by using Lemma 2.2.

The following Theorem provides a simple characterisation of a large das 

of connected block designs ensuring estimability of 0 .

Theorem 3.1. Under Tukey’s model, applied to the block-design set-up 

(1.3), a connected block design d(v , b , k ^  , k ^  > —. ^ 5) ^  Pt(m* 

unbiased estimation of 6 whenever at least one pair of treatments (h , V) 

say, occur in two different blocks.

Proof. The proof is by contradiction. Suppose h and h' occur together 

in ith and i'th  blocks. Let dj be the sub-design of d formed by only ith and 

i'th  blocks and hth and h 'th  treatments with the incidence struct m e

^ h i  =  “djh 'i =  “djhi' =  ^ j h ' i '  =  1

Now suppose 0 is not estimable in the original design d . Then

[I -  P]f =  0 for some e e  . . .  (3 3)

Writing X and f  as X =  ( £ l )  , f =  (-1) where X, and L  correspond to
2 '  f2

the sub-design d  ̂ , (3.3) implies

(-1) e Af (^ 1) foT e s  
-2 2 

=> A^(Xj) for Uj 1 0

=» (I -  P j)fj =  fi for e e  .

As rank (I -  P j) ~  \  — error d.f. using Property 1 one can develop any 1 * *

row vector of (I -  P^) , say ith row vector as a^(l -  1 1 - 1 1 ) where â ’s ate



real numbers, not all zero’s. The sets of two positions each in the above 

partition correspond to treatments h and h' in order applied to the blocks i 

and i' respectively. Then a typical element of (I -P ^ )f j  is a-(/?• -  0 [ )  -  

r̂ ') and thus (I -  =  Q for any e e  implies (0̂  ~ 0^') -  t^ ')  =  0 

which can only happen if for t/p/?j = /?j, and/or =  r^' holds. This leads 

to a contradiction in the description and coverage of the parameter space e 

(see (3..1)).

Theorem 3.2. Let d(v , b , , k ^  , •••, k ^ )  be a connected block design 

for which each elementary treatment contrast has a unique (unbiased) 

estimator under the simple linear model (2.2). Then 9 is not estimable from 

d .

Proof. It is evident that under the given hypothesis, from the ith block of

d , we obtain exactly k^ -  1 distinct independent elementary treatment 

contrasts. Again, any estimable treatment contrast is a linear function of the 

within block elementary treatment contrasts. Since d is a connected design, 

®der the given hypothesis,

(kdl -  1) +  (kd2 -  1) +  ... +  (kdb -  1) =  v -  1

i.e. rank (I -  P) =  (Sk^j -  1) -  (b - 1 )  -  (v -  1) =  0 .

Corollary 3 3. Let the binary reduction d of a design d be such that the

condition of Theorem 3.2 holds for d . Then 9 is not estimable under d 

The proof is immediate from an application of Lemma 3.1.



Remark 1. There are still many designs which neither satisfy the condition of 

Theorem 3.1 (ensuring estimability of 8) nor do they satisfy the condition of 

Corollary 3.3 (leading to non-estimability of 0 . For example, for a BIBD 

with A =  1 , estimability of 9 could not be settled. However, we have a 

strong feeling (as indicated by several examples) that the "sufficient" condition 

stated in Theorem 3.1 will turn out to be "necessary" also. Below we 

demonstrate two examples in justification of our conjecture.

Example 1. BIBD (b =  v =  3 , X -  1) .

Block Varieties

1 1 ,2

2 1,3

3 2 ,3

For this design, taking a choice of Q and r as

( 1 ,— 1 ~ , — J -) ' ,  and t  — ( l ,  2, -3 ) ' ,  (I -  P)f =  0 . 

Example 2.

Block Varieties

1 1, 2, 3

2 2, 4, 6

3 3, 4, 5

4 1, 5, 6



For this design, one can easily verify that (I — P)f — 0 for the choice of (3 and

estimable under these two designs.

4. ESTIMATION OF INTERACTION -  PARAMETER VECTOR 8 IN A 

GENERAL BLOCK DESIGN 

In this section we take up a model of the type (1.2) in the context of 

general block design set-up and show that it is not generally true that all the 

components of 6 in the model of the type ( 1.2) are estimable through an 

analysis of the residuals.

Lemma 4.1. Consider the model

Then for no block design 6̂  and 6̂  are estimable.

Proof. Writing the observations blockwise in order, (4.1) can be rewritten 

as

r  as rr  =  (1, -  1, 2, -  4, 4, -  2 )', 0  =  (-11, 13, 1, -3 ) ' . Thus 6 is not

...(4.1)

y =  [1 :Xp : X r] fi +  [Fp F j, Fg] 6  ̂ +  c

r

It can be easily seen that under this model

where the elements of and are /3?’s and r^’s respectively. Thus
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referring to Property 1, we observe that both the second and third columns o!

(I -  P)F are null vectors.

Scheffe (1959) developed a different argument to ascertain a similar result 

in the context of RBD set-up. As a matter of fact, in view of Property 1, it 

turns out that whatever the block design set-up adopted in a n o n -ad d itiv e  

model of the type (2.1), the interaction parameters corresponding to higher 

powers of and alone cannot be estimated. What if instead we

introduce more terms involving both /?• and in (4.1)? Take, for example, 

the model involving up to second powers of and r^’s, i.e.

y,j =  » + ( ! ,  +  Eiy t rh +  V l ,  +

+  V K h ’ l, +  V f a j . l . ’ h +  fij " (4!|

Clearly, not all designs will provide estimation of 9 =  (8^, ^ ) '  as we

have seen in case of single interaction parameter. Following the same 

arguments as given in section 3, under (4.2) also, the relevant parameter space 

can be taken to be the same as <j> and similar results as stated in Lemma 3.1, 

Theorem 3.3 and Corollary 3.3 also hold here.

The following theorem establishes estimability of i  under RBD, and 

using this result the next theorem gives a sufficient condition under which i  is 

estimable.

Theorem 4.1. An RBD with b > 3, and v > 3, provides unbiased estimation of 

9 under the model (4.2).



Proof. Since F '(I -  P)F is invariant under any rearrangement of

treatments among the plots within a block, without loss of generality, we

assume that in the RBD considered, the jth plot within any block receives the

jth treatment (j =  1, 2, ..., v). Thus, writing the observations block-wise and

in order, (I -  P) =  (I -  J) 0 (I -  J). Under (4.2), [(I -  P)F] is a N x 4 
b v

matrix (N =  bv) and let its pth row (p =  (i -  l)b  +  j) corresponding to the 

observation in jth plot of ith block, be denoted by a'jj . It is not difficult to 

verify that this typical row takes the form

Consider the following 9 * 4  submatrix A of [(I -  P)F] formed by the rows 

corresponding to i, j =  1, 2, 3. Let



Suppose

2 2 '
1 0 ,  0 1 1 rx rj

2 2
1 $2 @2 e 1 r2 r2

2 2— 
■ 

i 
CO

1 1 r3 r3

Here © denotes the Kronecker product. It is trivially known that the columi 

vectors of B are independent whenever Ti t  T2 t  Ty  t   ̂ ^3 ' 0̂# 

expressing the column vectors of A as linear functions of the column vectors of 

B, one can easily verify that whenever the column vectors of B are 

independent, the column vectors of A are also independent. Hence rank (A ) 

=  4 for all n e e  which in turn implies that rank (I -  P)F =  4 for all % f e

Theorem 4.2. A connected block design d(v, b, k ^ , k ^ , • k ^ )  with 

3, v > 3 and ^ > 3  for at least three blocks, will provide estimation of I 

under the model (4.2) whenever at least one triplet of treatments (h, h ', h") 

say, occur in three different blocks.

The proof follows (through contradiction) essentially along similar line of 

arguments as in Theorem 3.2.

5. OPTIMAL ESTIMATION OF 0 IN A BLOCK-DESIGN 

UNDER TUKEY’S MODEL 

Now we focus our attention to the problem of efficient estimation of 

single non-additivity parameter 6 under model (1.3). For fixed N (total



number of experimental units) and v (number of treatments), let fi(N , v) 

denote the class of all connected block designs (with block sizes < v) providing

estimation of 0. For a design d e fi(N, v) let v^(0) denote the variance of 9 

(see (2.5)).

Assume at this stage that r and are consistent for t  and This 

could be achieved, for example, using the existing data set in combination with 

otherwise available consistent estimators for r  and @ from independent

sources. Note that the passage from 9 in (2.4) to 9 in (2.5) is not affected by 

use of such independent auxiliary information. Since we are primarily 

interested in making a relative comparison of various designs e fi(N, v), the 

above assumption is not unrealistic. On the other hand, this justifies the 

approximation

vd(b  * vd(0) =  [f'(I -  P I C 1 (see (2.4))

and it depends on r and Q through f. We will make use of this approximate

expression for v^(^) while comparing the relative efficiencies of different 

designs. For this sort of comparison, one may certainly restrict to the effective 

parameter space:

e !  =  { ( r , 0 ) : t ' t  =  1 , r ' l  =  0 , =  1 , ? !  =  0  

rh * rh ' * 0  h # h ' ,

P i* P i *  0 i * i ' }  - (5 .1 )

Note that in the above we have not unnecessarily bothered to include jt in the 

description of effective parameter space.



Now we recall the following two definitions.

Definition 2. A design d* t fl(N, v) is uniformly best if for every other

d e fl(N , v), < vd(tf) for all (t , e with strict inequality at sow

point.

Definition 3. A design d* in fl(N, v) is a minimax design if

max vd*(0) =  min maxv^(tf)

d € fl(N, v)

If we confine only to binary designs in ft(n, v), the following results may 

be derived.

Lemma 5.1. For an RBD <7 ^ ( 0 )  =  I for all (r, @) e .

Proof. For an RBD with parameters b and v,

( I - P )  =  ( I - i j ) ® ( I - i j ) a n d

=  1 in

This result is reported in Kshirsagar (1983).

—2 *Lemma 5.2. For any binary design d, a v^[0) varies between la n d s .



Proof: We have for d, a  ^v^(0) =  (f'(I -  P)f) 1

Since for an incomplete binary block design all combinations of /^r^, i =  

1, 2, b and h =  1, v do not appear in f, we augment ( I - P )  to a bv 

x bv matrix by inserting suitable null columns and null rows corresponding to 

the combinations which are missing in f  . With this in view, we may 

write

o~2vd (0) =  (f°'(I -  P)0f°)_1 , where f° =  (£  ® r) and (I -  P )° is the 

augmented ( I - P )  .

Now, f ^ f 0 - 1 since r 'r  =  1 and Q'Q =  1 in .

Also, f° 1 =  0 since r' 1 =  0 and @'1 =  0 both hold in even 

though one of them would have been enough.

Let e2 =  {(r, £) : f ' f  =  (£® r)' (g® r) =  1 

f ° ' l  =  (2 ® z ) ' l  =  0} .

Obviously ®2 D ®1 and, consequently,

m in f ' O - P f f 0 < m in f ° ' ( I - P ) 0f°
e 2 e 1

and

max ! ° ' ( I - P ) 0f°>  max f ' ( I - P ) ° f  .
e,'2 e

1

As (I -  P) is idempotent, so also is (I -  P )° and (I -  P )° has the 

eigenvalues o (multiplicity > 1) and 1 (multiplicity > 1) as trace of (I -



P )° <  bv -  b -  v +  1 . So m in f°'(I ~ P )° f°  =  0 and max f° '(I  -  P)°f° = 1
6 2 ®2

and, hence,

a- 2vd (6) =  {f° '(I  -  p )0f°}-1 lies between 1 and w . T hus, summing up 

the above two lemmas, we immediately obtain the following result.

Theorem 5.1. Whenever N is a multiple of v , an RBD is the uniformly 

best among all binary designs in fi(N , v) .

If now non-binary designs are allowed to be considered, the RBD no 

longer remains uniformly best, but it turns out to be minimax. To prove this, 

we first establish one structural property of non-binary designs with block sizes 

< v •

Lemma 5.3. For any non-binary design d with b > 2 and k ^  < v foi 

all i , there exist at least one pair of blocks say (i , i ' )  such that considering 

these two blocks only, the hth treatment replication n^^ +  n ^ ,  is strictly 

less than 2 for some h e { 1, 2, . . . ,  v} .

Moreover,

(i) if for some h, n ^ j  +  n^ - , =  0, then there exists some 

h '(fh ) « {1,2, ..., v} such that n ^  +  n ^ ,  < 3;

(ii) if for some h, n^ ; +  =  1, then there exists some 

h'(* h) e { 1, 2, . . . ,  v} such that ndh/i +  < 2 .

Proof. We first establish for some treatment h and for some pair of 

blocks (M ') ,n dhi +  ndhi/ < 2  .



Suppose in the design d , there exists at least one block say i , such that

k . < v Then pairing this block with any other block, say i' , we get 
di

Zi i ' \  =  h l l  (n<ihi +  ndhi/) =  kdi +  kdi' < 2 .

H ence, for at least one treatment h e {1, 2, v} , +  a^hi' < 2

If the design has constant block size k =  v , then the proof also follows

b y  contradiction unless b =  2 .

Now we are ready to prove (i) and (ii).

( i )  if for any pair of blocks (i, i ')  , ndH +  ndhi, =  0 for some h , there

e x is ts  some other h' with ndh'i +  ndh'i' - 3 as otherwise

kdi + kdi' =  J 1 (ndhi +  nd h i ' )^ 4(v - 1) > 2 v

whenever v > 3 and this is a contradiction to kdi < v for all l .

Using a similar argument (ii) can be verified.

T h e  following theorem furnishes a relative comparison of efficiencies in the class

Q (N , v) including non-binary designs.

Theorem 5.2. For any non-binary design d i n(N,v),

max a 2 V d( 0)  ̂ *

(r,0) e

P roof. We prove this theorem by contradiction. Suppose, if possible,

a~2v d{0) =  (f'(I -  P )0  1 < 1 for all (r, g) e ,



then it follows that

f ' f  >  f'(I  -  P) f  > 1 for all (r,8) t

b v
Now f ' f  =  £ £ a $  Tl  

i= l h=1 dhl 1 h

We will show that this leads to a contradiction .

SEndhi^i rh * 1 f o r a l l ( r ,^ ) f e 1 .

The lemma 5.3 above guarantees that we can always get hold of a pair of blocks 

(i, i ' )  say, in non-binary design d with b > 2  such that considering these 

two blocks only, there exist at least a pair of treatments (h, IT) say, for which1 

the sum of four terms corresponding to replications in these two blocks (n^ 

+  ndh'i) +  (ndhi' +  ndh 'i'} strictly less than 4 . W e set these two block 

effects viz 0̂  and /?-, as ± j-jg  and other block effects as zero. Similarly: 

setting these two treatment effects viz. and as ± and other

treatment effects as zero, we get for this particular choice of r and

S. i f f  < 1. But this point obviously does not belong to the relevant parametei

space . However, as vd(#) is a continuous function of r  and § ,  this 

particular choice indicates that in the neighborhood of this point, there exists 2 

point in for which f 'f  <  1

Hence, for any non-binary design d with b >  2 , the theorem holds.

It remains to prove the theorem for b =  2 . For b =  2 the only 

non-trmal case corresponds to rdfa =  2 for all h .



From the very structure of the design it follows that for all points in 

with (jSj, 02) =  ± J  up to a permutation)

Moreover, P f  can be shown to be f  0 , yielding thereby 

f'(I -  P) f <  f ' f  =  1 for some points in .

Thus, we get the final result:

Theorem'5.3. RBD is a minimax design within the class of designs ft(N ,v ).

Remark: It is interesting to note that, there are non-binary designs, for

which. v{j(#) is strictly less than 1 for some parameter points. As for 

example, with b blocks, having constant block size v , take the design dQ, 

(1,2,..., v denoting treatments)

1 1 3 4 . . v
1 2 3 4 . , v

-
11 2 3 4 . . V

which differs from an RBD only in the first block. Now, making the choice,



vd (0) turns out to be strictly less than 1. Hence, by continuity of the 
o

variance function, there exists a parameter point in the neighborhood of this

point for which v^ (6) is strictly less than 1 . 
o

In the above we have established that RBD is the "best" (in some sense) 

for estimation of single interaction parameter. With this in view, as regards 

multiple interaction parameters as in (4.2), we first study the dispersion matrix

of i  under an RBD. Let the dispersion matrix be denoted by var(|) . Then

[var(i)]~* is given by the matrix

i ' i  ‘ l 'Z t ' t

t ' t

i ' i  • t ' A 2 ) ;

rt(2)'/J . T' j ( 2)

i ' i  • 1 ( 2 ) ' ( I - 7 ) l (2 )-

B ' d f i  • r ' r ( 2)
£ $ ) '  (I - J) / / 2) ■ r'r<2)

g p ) .  r ^ ' d - ^ 2)

i{2)' (i -  e) / 2) • i (2)/ (2)

Over the restricted parameter space

D o  v ,
e3 =  { ( T>ff) '■ (t, 0) f =  0} the dispersion matrix

on the simple form, viz.,



[var(0)] 1 =

1 0 

0
0 0

0
P 4 1 

h v

Now Amin[yar^ )] 1  ̂ -  J) (S V  ?) and ‘Ms RHS expression can be 

made arbitrarily small for some choice of r and £  in the parameter space e^. 

Thus, if we bring in E-optimality criterion which may be relevant to this 

multiparameter problem, RBD behaves very badly. Since F '(I  -  P)F 

becomes intractable for an arbitrary design, it is very difficult to establish any 

such optimality result for multiple interaction parameter. Maybe, we have to 

redefine the parameter space appropriately so that the RDB achieves a better 

standing.
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	(r,0) e

	i'i • t'A2)	;

	gp). r^'d-^2)






