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Abstract

Using nested balanced incomplete block designs, new families o f optimal block designs for a certain type o f diallel 
cross experiments are obtained. It is further shown that triangular partially balanced incomplete block designs satisfying 
a certain parametric condition also lead to optimal designs for diallel crosses. These results unify and extend some o f the 
earlier results on optimality o f block designs for diallel crosses.
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1. Introduction

The diallel cross is a type of mating design used in plant breeding to study the genetic properties of a set of 
inbred lines. Suppose there are p  inbred lines and it is desired to perform a diallel cross experiment involving 
p ( p  -  l) /2  crosses of the type (i x j ) ,  i < j ,  i , j  =  1,2 , . . . , p .  The lines are to be compared with respect to 
their general combining abilities. Customarily, diallel cross experiments o f the type mentioned above have 
been conducted using a completely randomised design or a randomised complete block design. However, with 
increase in the number of lines p,  the number of crosses in the experiment increases rapidly, and in such a 
situation, adoption of a complete block design is not appropriate. Gupta and Kageyama (1994) and Dey and 
Midha (1996) have recently obtained some optimal incomplete block designs for diallel crosses. A related paper 
is by Singh and Hinkelmann (1995). Gupta and Kageyama (1994) make use o f nested balanced incomplete 
block designs of Preece (1967) to arrive at two series of optimal block designs for diallel crosses. Dey and 
Midha (1996) show how a certain sub-class of triangular partially balanced incomplete block designs can be 
used to derive some optimal designs for diallel crosses.

The purpose of this communication is to investigate further the problem o f obtaining optimal designs for 
diallel crosses. The optimality criterion chosen is the universal optimality criterion o f  Kiefer (1975) which, in
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particular, includes the criterion of minimization of the average variance of the best linear unbiased estim ators 
o f  all elementary comparisons between the general combining ability effects of the lines involved. In Section 2, 
we show how in general, nested balanced incomplete block designs with sub-block size two can be u sed  to 
obtain universally optimal designs for diallel crosses. We also show that nested balanced incomplete block 
designs satisfying a certain parametric condition lead to optimal designs for diallel crosses with a m inim al 
number o f experimental units. Several new families o f optimal designs with minimal number of experim ental 
units are presented in Section 3.

In Section 4, we show that triangular partially balanced incomplete block designs satisfying a certain 
parametric condition also lead to optimal designs for diallel crosses. This generalizes the result o f  D ey  and 
M idha (1996) and settles the question of optimality o f some designs left open by them.

2. Nested designs and optimality

Let d  be a block design for a diallel cross experiment of the type mentioned in Section 1 involv ing  p 
inbred lines, b blocks each o f size k( ^ 2  ). This means that there are k  crosses in each of the b locks o f  d. 
Further, let rdi denote the number of times the ;th cross appears in d, i = \ .2 , . . . ,  p( p  — l)/2 , and sim ilarly, 
let Sdj denote the number of times the /th line occurs in crosses in the whole design d, j  =  1 ,2 , . . . ,  p .  It is 
then easy to see that

P ( P ~ 1)12 P

y ;  rdi =  bk and ^  sdj  = 2 bk.
i=\ j=i

We also let n = bk denote the number of observations generated by d. For the data obtained from the d esig n  d, 
we postulate the model

Y = p \ n + A\g + A2P + £, (2.1)

where Y is the n x 1 vector of observed responses, u is a general mean effect, 1„ denotes an ^-com ponent 
column vector o f all ones, g and [i are vectors o f p  general combining ability effects and b b lock effects, 
respectively, A \ ,A i  are the corresponding design matrices, that is, the ( s , t )th element of A 1 is 1 i f  th e  5th 
observation pertains to the fth line, and is zero, otherwise; similarly the (s, t)\h element of A2 is 1 i f  th e  5th 
observation comes from the ?th block, and is zero, otherwise; s is the vector o f random error com ponents, 
these components being distributed with mean zero and constant variance a2. In (2.1), we have not included 
the specific combining ability effects. Under the model (2.1), it can be shown that the coefficient m atrix  o f  the 
reduced normal equations for estimating linear functions of general combining ability effects using a  design 
d  is

Cd = Gd -  NdNd/k, (2.2)

where Gd = {gdii>), Nd = {ndij), gdii= s di, and for i ^ i ' ,  gdii> is the number of times the cross (i x / ')  appears 
in d; ndiJ is the number of times the line i occurs in block j  of d.

A design d is called connected if  and only if Rank{Q )  =  p - 1, or equivalently, if  and only if all elem entary 
comparisons among general combining ability effects are estimable using d. We denote by £3(p ,b ,k)  th e  class 
o f  all such connected block designs {d}  with p  lines, b blocks each of size k. We need the follow ing well- 
known result [(see, e.g., Cheng, 1978, p. 1246).]

Lemma 2.1. For given positive integers s and t, the minimum o f  n\+n\+- ■ -+nj subject to « i+ « 2+ - • -+ n  = t  
where n^s  are non-negative integers, is obtained when f—5[?/s] o f  the n f s  are equal to [*/■*] +  ! and



are equal to \t/s\, where [z] denotes the largest integer not exceeding z. The corresponding minimum o f  
n\  +  n\ -j- ■ •• +  n2s is t(2[tjs] +  1) -  s[t/s]([t/s] +  1).

We then have

Theorem 2.1. For any design d  C- (S( p, b, k),

\x{Cd) ^ k ~ xb{2k{k — 1 — 2x) +  px{x + 1)},

where x = [2k/ p \  and fo r  a square matrix A, tr (A) stands fo r  the trace. Equality holds i f  and only i f  ndy = x  
or x  + 1 fo r  all i = \ , 2 , . . . , p , j = \ , 2 , . . . , b .

Proof. For any d e2>(p,b,k),  we have

P  P  b

o '  sdi k EE Kdij 
i =  l i = l  j =  1

P  b

= 2  bk — k ~ [
1=1 j= 1

Now, i i ndij = 2bk. Therefore, using Lemma 2.1,

P bEE n2dij  ^  b{2k(2x +  1) — px(x +  1)},
i = 1 ./= !

where x =  [2k/p]. Hence,

tr(Crf) ^  2bk — k ~ xb{2k(2x  +  1) — px(x + 1)}

=  k ~ lb{2k(k  — 1 — 2x) +  px(x  +  1)}.

By Lemma 2.1, equality above is attained if  and only i f  ndij = x  or x +  1, for i = l , 2 , . . . , p ;  j =  1 ,2 ,. . . ,b .  
This completes the proof. □

Note that i f  2k < p  then x =  0 and in that case we have 

t r ( Q ) < 2 £ ( A - 1), d  £ 3>{p,b,k). (2.3)

Kiefer (1975) showed that a design is universally optimal in a relevant class o f competing designs if:
(i) the information matrix C  o f the design is completely symmetric in the sense that C has all its diagonal 

elements equal and all its off-diagonal elements equal, and
(ii) the matrix C has maximum trace over all designs in the class of competing designs.
Recall that a universally optimal design is, in particular, also /4-optimaI, that is, such a design minimizes 

the average variance o f the best linear unbiased estimators o f all elementary contrasts among the parameters 
o f interest, that is, the general combining ability effects. Making an appeal to this result of Kiefer (1975) and 
to Theorem 2.1, we have the following result.

Theorem 2.2. Let d * &Sd(p,b,k) be a block design fo r  diallel crosses, and suppose Q . satisfies
(i) t r (Q . ) = k~ 'b {2 k (k  -  l - 2 x )  + px(x + 1)}, and

(ii) Cd* is completely symmetric.



Then d* is universally optimal in Qs{p,b,k), and in particular minimizes the average variance o f  the  best 
linear unbiased estimators o f  all elementary contrasts among the general combining ability effects.

We now show a connection between nested balanced incomplete block design o f Preece (1967) and op tim al 
designs for diallel crosses. For completeness, we recall the definition of a nested balanced incomplete b lock  
design.

Definition 2.1. A nested balanced incomplete block design with parameters {v ,b \,k \ ,r* , X\,b2,k2,X2, m )  is a 
design for v treatments, each replicated r* times with two systems of blocks such that:

(a) the second system is nested within the first, with each block from the first system, called hencefo rth  as 
‘b lock’ containing exactly m blocks from the second system, called hereafter as ‘sub-blocks’;

(b) ignoring the second system leaves a balanced incomplete block design with usual parameters v , b \ , k \ ,
* 1 r  ,Xi\

(c) ignoring the first system leaves a balanced incomplete block design with parameters v, b2,k2,r * ,  X2.

From the well-known parametric relations for a balanced incomplete block design, it is easy to see th a t the 
following parametric relations hold for a nested balanced incomplete block design:

vr* = b\k \  =m b\k2 = b2k2, (v — l)Ai ={k\ — l) r* , (v — \)X2 =  (k2 — l)r* .

Consider now a nested balanced incomplete block design d  with parameters v = p ,b \ ,k \ ,  k2 —l , r * .  I f  we 
identify the treatments of d  as lines of a diallel experiment and perform crosses among the lines appearing  
in the same sub-block of d, we get a block design d* for a diallel experiment involving p  lines w ith 
vc =  P iP  -  l) /2  crosses, each replicated r = 2b2/ { p ( p -  1)} times, and b = b\ blocks, each of size k ~ k \ j 2 .  
Such a design d* s  2>(p,b,k)-, also, for such a design, =  0 or 1 for i=  1 ,2 , . . . ,  p, j =  1,2, . . . , b  a n d

C d* = ( p  ~  \ r l2b(k -  \ )(Ip -  p ~ lJp), ( 2 .4 )

where Ip is an identity matrix of order p  and ,Jp is a p  x  p  matrix of all ones. Clearly, Cj- given by (2 .4 )  is 
completely symmetric and t r ( Q . ) =  2b(k -  1) which equals the upper bound for tr (Q )  given by (2 .3 ). Thus, 
from Theorem 2.2, the design d * is universally optimal in 3i{p ,b ,k).  It is also easy to see that u s in g  d * , 
each elementary contrast among general combining ability effects is estimated with a variance

(/? — 1)ct2/{6(* — I)}. (2 .5 )

Further, if  the nested balanced incomplete block design with parameters v = p ,b \ ,k \ ,  b2 = b \k \/2 ,  k2 =  2 is 
such that X2 — l or equivalently if,

bik l = p ( p - \ ) ,  (2 .6)

then the optimal design d* for diallel crosses derived from this design has each cross replicated ju s t  once 
and hence uses the minimal number of experimental units. Summarizing, therefore, we have

Theorem 2.3. The existence o f  a nested balanced incomplete block design d with parameters v = p ,  /5] — ^ 
b2 = b k ,  k\ = 2k, k2 = 2 implies the existence o f  a universally optimal incomplete block design d* f o r  d ia lle l  
crosses. Further, i f  the parameters o f  d satisfy (2.6), then d* has the minimal number o f  e xp er im en ta l  
units.

Instead of the design d* e  £/( p, b. k ) based on the nested balanced incomplete block design d, if  one adopts
a randomized complete block design with r ~ 2 b k / { p { p — 1)} blocks, each block having all the p ( p _ l) /2
crosses, the C-matrix can easily be shown to be



C r  =  r (p  —  2)(Ip —  p ~ lJp ),

so that the variance of the best linear unbiased estimator of any elementary contrast among the general com
bining ability effects is 2 a 2j{ r { p  — 2)}, where <J\2 is the per observation variance in the case of randomized 
block experiment. Thus, the efficiency factor of the design d* e  !3{p,b,k), relative to a randomized complete 
block design is given by

2b(k  -  1) ^  p { k - \ )
€ r { p - 2 ) ( p - \ )  k ( p  — 2)

3, New families of optimal designs

Gupta and Kageyama (1994) obtained two families of nested balanced incomplete block designs, leading 
to optimal designs for diallel crosses. These families, in our notation have the following parameters:

Series 1: v = p  =  2t +  1 =  b\ , b2 =  t(2t +  1), k \ =  21, k2 =  2;
Series 2: v = p  — 2t, b\ =  2t — 1, b2 = t(2t — 1), k \ =  2t, k2 = 2.
It is easy to verify that the designs in Series 1 and 2 above satisfy (2.6) and, hence, use the minimal number 

o f experimental units. In this section, we show that several other families of nested balanced incomplete block 
designs satisfying the condition (2.6) exist and can therefore be used to derive optimal designs for diallel 
crosses with minimal number o f experimental units. Henceforth, we denote the parameters of the design for 
diallel crosses by vc,b ,k ,r  where vc — p { p  — 1 )/2 is the number of crosses, b, the number of blocks, k, the 
number of crosses per block or the block size and r is the number of times each cross is replicated in the 
design.

Family 1: Let v — p = 4t + 1, t ^  1 be a prime or a prime power and x  be a primitive element o f the Galois 
field o f order v, GF(v). Consider the t initial blocks

{(x‘,x t+2‘), (x‘+‘,x l+3t)}, i =  0 ,1 ,2 ,...  , t  -  1.

As shown by Dey et al. (1986), these initial blocks, when developed in the sense of Bose (1939), give rise 
to a nested balanced incomplete block design with parameters v = p  = 4t + 1, k \ =  4, b\ = t(4 t  +  1), k2 = 2. 
Using this design, one can get an optimal design for diallel crosses with minimal number of experimental 
units and parameters vc = 2 t(4 t  +  1), b = t(4t +  1), k  =  2, r =  1. It is interesting to note that this family of 
designs has the smallest block size, k  = 2.

Example 3.1. Let t = 2 in Family 1. Then a nested balanced incomplete block design with parameters 
v = p  = 9, £>i =  18, k \ =  4, k2 =  2, X2 — l can be constructed by developing the following initial blocks over 
GF(32):

{(1,2), (2x +  1,x +  2)}; {(x, 2x), (2x +  2,x +  1)},

where x is a primitive element of GF(32) and the elements of GF(32) are 0, l ,2 ,x ,x +  l ,x  +  2 ,2 x ,2 x +  l,2 x  +  2. 
Adding successively the non-zero elements of GF(32) to the contents of the initial blocks, the full nested design 
is obtained. The design for diallel crosses is exhibited below, where the lines have been relabelled 1-9, using 
the correspondence 0 —> 1, 1 —> 2, 2 ^ 3 ,  x —> 4, x +  1 —> 5, x + 2 —> 6, 2 x ^ 1 ,  2x +  1 —► 8, 2x +  2 —> 9:

[2 x 3 , 6x8] ;  [ 1 x 3 , 4 x 9 ] ;  [1 x 2 , 5x7] ;  [5 x 6 , 2x9] ;  [ 4 x 6 , 3 x 7 ] ;  [4 x 5,1 x 8]; 

[ 8 x 9 , 3 x 5 ] ;  [ 7 x 9 , 1 x 6 ] ;  [ 7 x 8 , 2 x 4 ] ;  [ 4 x 7 , 5 x 9 ] ;  [ 5 x 8 , 6 x 7 ] ;  [ 6 x 9 , 4 x 8 ] ;  

[1 x 7 , 3x8] ;  [ 2 x 8 , 1 x 9 ] ;  [3 x 9 , 2x7] ;  [1 x 4 , 2x6 ] ;  [2 x 5 , 3x4] ;  [3 x 6,1 x 5].



This is a design for a diallel cross experiment for p  =  9 lines in 18 blocks each o f size two; e a c h  c ro s s  
appears in the design just once. Two designs for p  = 9 have been reported by Gupta and Kageyama ( 1 9 9 4 ) ;  
both these designs have blocks of size larger than two. Further, no nested design listed by Preece ( 1 9 6 7 )  
leads to an optimal design for diallel crosses with p  =  9 lines in blocks of size two.

Family 2. Let v = p  = 6t +  1, 1 be a prime or a prime power and x be a primitive element o f  G F ( » ) .  
Consider the initial blocks

{(x!',x i+3'), (xi+t, x i+4t), (x i+2!, x i+5t)}, I =  0 ,1 ,2 ,. . . ,  t -  1.

Dey et al. (1986) show that these initial blocks, when developed give a solution of a nested balanced in c o m 
plete block design with parameters v =  p = 6t + 1, b\ = t(6t +  1), k \ —6, k2 = 2, ).2 =  1 ■ Hence, u s in g  th is  
series of nested balanced incomplete block designs, we get a solution for an optimal design for diallel c r o s s e s  
with parameters vc = 3t(6t +  1), b = t(6t + 1 ) ,  k = 3, r =  1.

Example 3.2. Let t = 2 in Family 2. Then a nested balanced incomplete block design with p a ra m e te rs  
v = p =  13, b] — 26, k\ =  6, k2 =  2, / 2 =  1 is obtained by developing over GF(13) the following tw o  in i
tial blocks:

{(1,12),(4 ,9),(3 ,10)}; { (2 ,11),(8 ,5),(6 ,7)} .

Using this nested design, an optimal design for diallel crosses with minimal number o f experim ental u n its  
and parameters vc = 78, b = 26, k =  3 can be constructed.

Family 3. Let 12? +  7, 0 be a prime or a prime power and suppose x = 3 is a primitive e le m e n t  o f  
GF(12? +  7). Then, as shown by Dey et al. (1986), one can get a nested balanced incomplete b lock  d e s ig n  
with parameters v = p =  \2t +  8, b\ = ( 3 1 +  2)( 121 +  7), k\ = 4 , k2 = l  by developing the following 3 t  +  2 
initial blocks:

{(l,oo),(x3 m ,x6'+3)}, { (x ' ,x i+3t+l)(xi+3t+2,x i+6t+3)}, i = \ , 2 , . . . , 3 t +  1,

here oo is an invariant variety. Using this family of nested designs, one can get a family o f optimal d e s ig n s  
for diallel crosses with minimal number of experimental units and parameters vc =  (12/ +  8)(12/ +  7 ), b =  ( 3 * -f 
2)(12f +  7), Jfc =  2 , r = l .

The next family of nested designs has X2 =  2 and, hence, in the design for diallel crosses derived f r o m  th is  
family, each cross is replicated twice. However, this family of designs is of practical utility as the o p t im a l  
designs for diallel crosses derived from this family of nested balanced incomplete block designs have a  b lo c k  
size, k = 2.

Family 4 : Let v ~  p = 2 t+  \, ?>  1 be a prime or a prime power and x  be a primitive element o f G F ( 2 1 +  1) 
Then as shown by Dey et al. (1986), a nested balanced incomplete block design with parameters v =  2 1 -\- 
\ ,b \  = t(2 t  + 1), k\ = 4 , k2 =  2, k2 = 2 can be constructed by developing the following initial b lo c k s  o v e r  
GF(2<+ 1):

{(0,x1-1 ) ,(x ',x '+1)}, i =  l ,2 , . . . , f .

Using this family of nested designs, a family of optimal designs for diallel crosses with parameters vc t ( 2 t +  
\ )  = b, k = 2  — r can be constructed.

In particular, for t = 3,5 we get optimal designs for diallel crosses with parameters

p — 7, vc = 2 \ = b ,  k = 2 = r and p =  11, vc = 55 = b, k = 2 = r.



For these values o f p,  no designs with block size two are available in Gupta and Kageyama (1994).

Exam ple 3.3. Let t =  3 in Family 4. Then a nested balanced incomplete block design with parameters 
v = p  = l ,  6 1 = 2 1 , k \= 4 ,  k2 = 2, /.2 = 2 is obtained by developing over GF(7) the following three initial 
blocks:

{(0 ,1),(3 ,2)} ; {(0,3), (2 ,6)}; {(0,2), (6,4)}.

Using this nested design, an optimal design for diallel crosses with parameters vc = 2 l = b ,  k .= 2 = r can be 
constructed and is shown below:

[Ox 1 ,2 x 3 ]  

[1 x 2,3 x 4] 

[2 x 3 ,4 x 5 ]  

[3 x 4,5 x 6] 

[4 x 5,0 x 6] 

[5 x 6,0 x 1] 

[0 x 6,1 x 2]

[Ox 3 ,2 x 6 ]  [Ox 2 ,4 x 6 ]  

[1 x 4 ,0  x 3] [1 x 3,0 x 5] 

[2 x 5,1 x 4] [2 x 4,1 x 6] 

[3 x 6 ,2 x 5 ]  [3 x 5 ,0 x 2 ]  

[0 x 4,3 x 6] [4 x 6,1 x 3] 

[1 x 5 ,0 x 4 ]  [Ox 5 ,2 x 4 ]  

[2 x 6,1 x 5] [1 x 6,3 x 5].

Here the lines are numbered 0 -6 .

Rem ark 3.1. In Section 2, a connection between nested balanced incomplete block designs and optimal designs 
for diallel crosses was shown. Nested balanced incomplete block designs can be generalized to a wider class of 
nested designs, which may be called nested balanced block designs in the same manner as balanced incomplete 
block designs have been generalized to balanced block designs. Nested balanced block designs with sub-block 
size two can be used to derive optimal block designs for diallel crosses. One such family of designs, leading 
to optimal designs with minimal number of experimental units is reported below. Several other families of 
such designs will be reported elsewhere.

Family 5: Let p  = 2t +  1, where t  ̂  1 is an integer. Then a nested balanced block design with parameters 
v = p  = 2t +  1, k\ = 2 (2 1 + 1 ) ,  b \= t ,  kj = 2 , X2 =  1 can be constructed. The blocks are

{ ( j , 2 t +  1 y ), (1 + 7 , 1  - j ) , ( 2 + j , 2 - j ) , . . . , ( 2 t + j , 2 t - j ) } ,  y ' =  1 ,2 , . . . , * ,

where parentheses include sub-blocks, and the symbols are reduced modulo p. Making crosses among lines 
appearing in the same sub-block, one gets a solution o f a block design for diallel crosses with parameters 
vc = t(2t  + 1 ) ,  b = t, k = 2t +  1, r =  1. If  d  is a design for diallel crosses derived from this family of nested 
designs, then the C-matrix o f d  can be shown to be

Cd = ( 4 t - 2 ) ( I p -  p ~ lJp). (3.1)

Clearly, Q  given by (3.1) is completely symmetric. Also, t r ( Q )  =  2t(4t — 2), which equals the upper bound 
given by Theorem 2.1 for x  = [2k/p]=2.  Hence, the design d  is optimal and has each cross replicated just 
once.



4. Optimal designs based on triangular PBIB designs

It has recently been shown by Dey and Midha (1996) that triangular partially balanced incomplete block 
designs with two associate classes can be used to derive block designs for diallel crosses and, in particular, 
triangular designs satisfying = 0 lead to optimal designs. The optimality of designs derived from triangular 
designs not satisfying A] = 0  was left unsettled by Dey and Midha (1996). In this section, we give a general 
parametric condition on triangular designs, leading to optimal block designs for diallel crosses. This condition 
includes the condition of Dey and Midha (1996) as a special case and helps in settling the question of 
optimality of some designs left open by them.

To begin with let us recall the definition of a triangular design.

Definition 4.1. A binary block design with v = p ( p  — l) /2  treatments and b blocks, each of size k  is called 
a triangular design if

(i) each treatment is replicated r times,
(ii) the treatments can be indexed by a set of two labels (i.j) , i< j ,  i , j  = 1 ,2 , . . . , / ; ;  two treatm ents, 

say (a ,/?) and (y ,d ) occur together in X\ blocks if  either u = y,P ^  5, or a ^  y, [1 = 5 or, a =  <5, /? ^  y or, 
a ^  5, P = y\ otherwise, they occur together in ).2 blocks.

Observe that all triangular designs with parameters v = p {p  — 1 )/2, b, r,k,X\, a2 and treatments indexed  by 
( i , j )  can be viewed as nested incomplete block designs with p  treatments, b blocks of size 2k and sub-blocks 
o f  size two. Now, following Dey and Midha (1996), we derive a block design d  e  9)(p ,b ,k )  for diallel crosses 
from a triangular design d\ with parameters v = p ( p  — 1 )/2, b, r, k, ).\, ).2, by replacing a treatment ( i , j )  in  d\ 
with the cross ( ix  j ) ,  i< j ,  i , j  = \ , 2 , . . . , p  . Then, using Lemma 3.1 of Dey and Midha (1996) it can  be 
shown that

Cd =  d(Ip -  p- ' jp) , (4.1)

where 9 = p k ~ x{r(k — 1) — ( p  — 1)a\ }. Therefore, using the design d, any elementary comparison am ong 
general combining ability effects is estimated with a variance 2a2/9, and the efficiency factor of the design 
relative to a randomized complete block design is 6 /{r (p  — 2)}. Further, from (4.1), it follows that

triCd) = k ~ l p i p -  l ) { r ( f c -  l ) - ( / ? - 2 ) A i } .  ( 4 .2 )

Also, as shown in Theorem 2.1, for any design in 3>(p,b,k), the trace of the C-matrix is bounded above by

k ~ x b{2k{k  — 1 — 2x) +  px{x + 1)}, (4.3)

where x = [2 k /p \ .  Equating (4.2) and (4.3), we have the following result.

Theorem 4.1. A block design fo r  diallel crosses derived from  a triangular design with parameters v =  p ( p -  
1 ) /2 ,b ,r ,k , l \ ,k 2 is universally optimal over S ((p ,b ,k )  i f

P iP  -  1)(P -  2)Ai =bx{4k  -  p { x +  1)}, ( 4  4 )

where x = [2k/p]. Further, when the condition in (4.4) holds, the efficiency factor is given by

e = p{2 k ik  -  1 -  2x) + px{x  +  l)} /{ 2 k2( p  -  2 )}. (4 _5)

We now prove the following result.

Lemma 4.1. For a triangular design with parameters v = p ( p  — 1 )/2, b, r, k, = 0, /'2, the inequality 2 k  ^  p  
holds. '



Table 1
Optimal designs for diallel crosses based on triangular designs

No. P k b e Ref.

1 5 3 30 0.92 T 13
2 5 4 10 0.94 T33

3 5 5 6 1.00 T44
4 5 6 10 0.97 T60

5 6 6 10 1.00 T62

6 8 7 28 0.98 Til

7 6 9 10 1.00 T83
8 9 9 28 1.00 TS5

9 10 9 45 0.92 T9 1

Proof. Since X\ = 0 , from the basic identity r(k  — l )  = n\X\ +  n2X2 for a partially balanced design with two 
associate classes (see, e.g., Dey, 1985, p. 159), we arrive at

r ( k -  l )  = n2X2 = (p  - 2 ) ( p  - 3 ) X 2/2,

so that

2k — ( p  — 2) (p  — 3)X2/r +  2.

Hence,

p  -  2k = ( p -  2 ) r~x{r -  ( p  -  3)X2}.

Also, it is well known (see, e.g., Dey, 1985, p. 180) that if  N  is the incidence matrix of a triangular design, 
then one of the eigenvalues of NN',  say 0\ = r  + ( p  — 4)X\ — ( p  — 3)X2 = r — ( p  — 3)X2, as X\ = 0  by hypothesis. 
Since N N ' is non-negative definite, and we have p ^ 2 k ,  completing the proof. □

It follows from Lemma 4.1 that for a triangular design with X\ =  0, x =  [2k/p] =  0 if 2k < p  and 4k — p(x + 
1) =  0 if  2k = p. Hence, for triangular designs with X\ = 0, the condition in (4.4) is always satisfied. Thus, 
we have the following corollary to Theorem 4.1, obtained earlier by Dey and Midha (1996).

Corollary 4.1. A triangular design with parameters v = p ( p  — l ) /2,b, r ,k,X\ ,X2 satisfying X\ = 0  leads to a 
universally optimal design fo r  diallel crosses.

Dey and Midha (1996, Table 2) reported several efficient designs for diallel crosses, without claiming the 
optimality of these designs. Out of the designs reported in Dey and Midha (1996, Table 2), the designs listed 
in Table 1 are indeed optimal, as for these designs, the condition in (4.4) is satisfied. Designs obtained by 
repeating the blocks of a smaller design have been left out in Table 1, because the repeated design has the 
same efficiency factor as the smaller design. In Table 1, e denotes the efficiency factor of the design for diallel 
crosses given by (4.5) and the entries under Ref. are the design numbers from the catalogue of Clatworthy 
(1973).
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