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Abstract: An indicator method is used to derive a recurrence relation satisfied by the distribution of order statistics from n random 
variables having an arbitrary joint distribution.
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1. Introduction

Let X u X 2, . . . , X „  be n random  variables hav­
ing an arbitrary jo in t distribution, with X V n < 
^2 X n: „ as the o rder statistics ob­
tained by arranging these n variables. Let Fr .„(x ,)  
denote the distribution function of the order 
statistic X r.n. Further, let F}‘)n_ l( x ]) denote the 
distribution function of the order statistic Xl')n_ 1, 
where Xj:,.1n_ 1 denotes the r th  o rd er statistic in 
n -  1 variables obtained by dropping X t from the 
original n  variables.

For -oo  <X j <oo? let us define the events A i
as

= {Xj  ,

for i =  1, 2 , . . . ,  n. For any event A ,  let \ a be the 
indicator variable taking on the value 1 when A  
occurs and 0 otherwise.
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By considering the special case when Ays are 
independent and non-identically distributed, Bal­
akrishnan (1988) and B apat and Beg (1988) de­
rived some recurrence relations satisfied by distri­
butions of o rder statistics. Recently, Sathe and 
Dixit (1990) proved these relations for the gen­
eral case when the Ays are arbitrarily distributed 
by using set theoretic argum ents. Their results 
were used by Balakrishnan et al. (1992) to estab­
lish some general relations and identities satisfied 
by o rder statistics arising from  n arbitrarily dis­
tribu ted  variables. In this note, we use indicator 
functions of sets to prove these recurrence re la ­
tions for o rder statistics. This approach, in add i­
tion to being simpler, lends itself to  easy general­
izations for higher orders.

2. Relations for single order statistic

H ere, we prove the ‘triangle ru le’ (A rnold and 
M eeden, 1975; Arnold, 1977) for o rder statistics 
from arbitrary variables in the following theorem .



Theorem 1. For  1 <  r <  n — 1 and x , e  R,

r F r + \ : n ( x l )  +  ( n  ~  r  ) F r : n(  X j )

=  Z f v [,: U i ( * i ) -  i 2 -1)
1=1

Proof. L et us consider

41 =  E  n  ( / i X A j ■ + 2̂(1 — X A j i )  (2-2)
i  =  1

=  E  (2.3)
r  =  0

w here /7r is the  probability of exactly r of the 
A / s  happening. It may be noted that for r = 
0, 1, 2

n r = Fr .„(X l) - / V + , 

or, equivalently,

(2 .4)

(2 .5)

w ith the  convention th a t F0.n( x l) = 1 and 
F„ + i ;„ (* i)  =  0. From  (2.3), we obtain

3<f) 9<f>

3 t  j  dt2

=  t  {rtr' trr + (n-r)t[t5-'-'}nr
r = 0

=  e '  t [ t r r-'{(r+ 1  ) n r+l + (n -  r)nr).
r=  0

(2.6)

A lternatively, from (2.2) we directly find 

d<f> 9</> "  "  /  ,  ^

j * i

which, upon using (2.3), yields

d± +*± = i: "i;\̂ rr"WJ, (2.7)
| 9f2 , = 1 r = Q

where

— Fj:‘)n _ i(  X 1 ) F r + 1 : /7 — l( 1 ) '

U pon com paring the coefficients of / t '' w" 1 in
(2.6) and (2.7), we get

n
( R + l ) n R + l + ( n - R ) n R= £11.. .

which may be rew ritten as

{ ( R  +  i ) n R + l - R n R} +  n n R =  t ^ ] - (2 .8)
/ - i

The triangle rule in (2.1) follows from  (2.8) by 
adding over R  from r to  n. □

3. Conclusion

The indicator function m ethod used in th is paper 
for deriving a recurrence relation for o rd e r  statis­
tics from arbitrary variables can be suitably 
adopted to extend many other known recurrence 
relations and identities for o rder statistics in the 
i.i.d. case to  the arbitrary case. W ork  in this 
direction is currently being done.
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