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Abstract

B obkov and Houdre (1997) proved that if c, r/ and £ are independent standard exponential random variables, then for any 
two absolutely continuous functions /  and g such that £ ] /(£ ) |2 < oo and E\g(£)|2 < oo, the equality Cov(/(f), </(<£)) = 
E f ' C € +  0  holds. We prove that the identity holds if and only if £, rj and £ or — £, —r/ and —( are standard
exponential random variables.

h f S C :  primary 62E10; 60E05; secondary 39B32; 30D05
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1. M ain  result

Suppose £, rj and £ are independent standard exponential random variables. Then for any two absolutely 
con tinuous functions f , g  such that E \ f ( c ) \ 2 <  oo and E\g(i,)\2 < oo are finite, the identity

C ov[/(£), g(Q)] =  £ [ / ' ( c  +  t fg ' i t  +  ?)] (I-1)

h o ld s .  This result is due to Bobkov and Houdre (1997). We now prove that the identity (1.1) characterizes 
th e  standard exponential up to a sign, that is, either c, or — ̂  have a standard exponential distribution.

T heorem . Suppose that c, t], C are independent and identically distributed random variables such that the 
id e n t i t y  ( I . I )  holds for  all absolutely continuous functions f  and g such that E \ f ( q ) \ 2 and E\g(Q)\2 are 
f i n i t e , then either c and hence rj and  £ are standard exponential random variables or — c and hence —tj, and 
— l are standard exponential random variables.

P r o o f. Suppose that the relation (1.1) holds. Let / ( x )  =  exp(irx) and g(y)  =  exp(i.vy) for some real t and 5. 
L e t  < ^(0  denote the characteristic function o f £. Then Eq. (1.1) reduces to

4 > i ( t  + S )  -  0c(O4>;OO = - t s Q ^ t W a i s W c i t  +  S ) (1.2)



for all —oo <  t, s < d o . We claim that (pAj) ±  0, -o o  <  t <  oo. In other words 4>-(.) is nonvanishing on 
the real line. On the contrary suppose that <̂ >=(0 =  0 for some t =  to. Then it follows from (1.2) that

4>c { to+s) = 0, — 00 < .? < OO.
Hence (j)c{t) =  0, —oo <  t < oo which is impossible since ^ ( 0 ) =  1. Let >A(0 =  [^c(0 ] ' • Then \j/{t) is well 
defined since <$>-c{t) is nonvanishing. Note that ij/(t) is continuous, »//(0) =  1 and ij/(t) = ij/(—t ). Eq. (1.2) can 
be written in the form

\j/(t)\j/(s) — \j/(t +  s) =  —ts, —oo <  t, s <  oo.

Define \jj{t)=A(t) +  iB{t). Then A(t)  = A ( - t )  and B{t) = - B ( - t )  since =  Furthermore, A(t)  and
B(t)  are both continuous with A(0) =  1 and S(0) =  0. The above equation implies that

(A(t) + \B{t))(A(s) + i B { s ) ) - ( A ( t +  s) + iB ( t +  s ) ) = - t s ,  —o o < t , s < o o .  (1.3)

Equating the real and imaginary parts of this equation, it follows that

A(t)A(s) — B(t)B(s) — A(t  + s) = —ts, —o o < t , s < o o  (1-4)

and

A(t)B(s) + B(t)A(s) — B(t +  s) = 0, —o o < t , s < o o .  (1-5)

Replacing s by —s in (1.4), we have

A(t )A(—s) — B(t)B(—s ) —A(t — s) = ts, —o o < t , s < o o  (1-6)

or equivalently

A(t)A(s) + B(t)B(s) — A(t — s) = ts, —o o < t , s < o o  (1.7)

since A(s) = /)(—.?) and B(s)  =  - B ( - s ) .  Adding (1.4) and (1.7) lead to the equation

2A(t)A(s) — A(t + s)  — A(t — s) =  0, —o o < t , s < o o  (1.8)

or equivalently

A(t + s) + A(t — s) = 2A(t)A(s), —o o < t , s <  oo, (1.9)

where A(t)  is continuous, A(0) =  1, and A(t)  =  A ( - t ) .  Applying the theorem on p. 120 o f Aczel (1966), it 
follows that the function A(t)  has to be o f the form A(t)  =  0 for all t or A(t)  =  cosh bt or A(t) =  cos bt for 
some real constant b. The solution A(t)  =  0 for all t is not possible since A(0) =  1.

Replacing s by — s in (1.5), it follows that

A{t)B(— s) + B ( t ) A ( — s) — B{t — s) =  0, —o o < t , s < o o .  (1-10)

Adding (1.5) and (1.10) and using the fact that A(t)  = A ( - t )  and B(s) + B ( - s )  = 0, we have

2B(t)A(s) — B(t + s)  — B(t — s) = 0, —o o < t , s < o o  (1-11)

or equivalently

B(t + s) + B(t — s) — 2B(t)A(s), —o o < t , s < o o ,  (1-12)

where A(t)  and Bit)  are continuous with A(0)  =  1 and B(t)  =  - B ( - t ) .  Applying Theorem 1 on p. 170 of 
Aczel (1966), the most general continuous solutions o f (1.12) are o f the form

B(t)  =  0 for all t and A(t)  arbitrary

or

B(t)  =  ccosbt  +  Csinfrf and A(t) = cosbt



or

B(t) =  c cosh bt + C sinh bt and A(t)  = cosh bt

or

B(t) =  c + Ct and A(t)  = 1 for all t,

where b, c and C are arbitrary real constants. In view o f the earlier remarks, the last three cases are the only 
possible solutions o f (1.9) and (1.12).

If the second case holds, then it follows that A(t)  = cos bt where b is not zero and B(t)  = c cos bt +  C sin bt. 
Since B(t ) = —B ( —t), it follows that B(t)  = 2c cos bt, —oo <  t < oo. Since £ (0 ) =  0, we have c =  0. Hence 
B(t) =  0 for all t.

If the third case holds, then it follows that A(t)  = coshbt  where b is not zero and B(t) = c cosh bt +  C sinh bt. 
Since B(t) =  —B ( —t), it follows that B(t) = 2ccoshbt,  —oo <  t <  oo. Since 5 (0 ) =  0, we have c — 0. Hence 
3(f) =  0 for all t.

If the last case holds, then A(t)  =  1 for all t and B(t) = c + Ct. Since 5(0) =  0, it follows that c = 0 and
hence B(t)  =  Ct, —oo <  t <  oo. _____

Hence a complex-valued function ij/(t) = A ( t )  +  \B(t) with i//(0) =  1 and ij/(t) =  tK—O is a solution o f the 
functional equation (1.3) if  and only if  i//(t) = cos bt or [j/(t) —cosh bt for some constant b different from zero 
or ij/(t) =  1 +  iCt for some real constant C.

Since tj/(t) is the reciprocal o f a characteristic function, it follows that \\J/(t)\ ^  1 for all t. Clearly this 
implies that ip(t)  cannot be equal to cos bt for some constant b not equal to zero. On the other hand suppose 
that il/(t) = cosh bt where b is not equal to zero. Then it follows that

from Eq. (1.3). Let 5 =  —t. Then it follows that 

(e~ht -  eh' f  = 4 t 2, - o o  < t < oo 

where b is not equal to zero. This is impossible. Hence 

\jj{t) =  1 +  iCt, —oo < t < oo 

for some real constant C. Let 5 =  t in Eq. (1.4). Then we have

A2(t) — B2(t) -  A(2t) — - t 2, - o o  < t < oo. (1-13)

Since A(t)  = 1 for all t and B(t) = Ct, it follws that —C2t2 = —t2 or C2 =  1. Hence 

t/<0 =  1 +  if 

for all t or

il/(t) = 1 — if

for all t.
This proves that either

(e~bt -  ebl )(e6'5 -  e~hs)
= —ts, —oo <  f <  oo

4

(1.14)

or

^ ( f )  =  { ( l - i O -1 }- (1.15)

Hence either £ or — ̂  is a standard exponential random variable. This completes the proof o f the theorem. □



Remark. (1) It is evident from the proof o f the theorem that it is sufficient if  identity (1.1) holds for functions 
o f the type f ( x )  = e'tx,g(x) = eLVT, -o o  <  /, ,v <  do for the validity of the theorem.

(2) Suppose £ has an exponential distribution with parameter A, that is, the density function o f c is given
by

Pc(x) =  Ae~/JC, 0 < x <  oo,

Pc(x) = 0 otherwise

for some fixed A > 0. It is easy to check that for any two absolutely continuous functions /  and g such that
E \ f ( 0 \ 2 <  00 and E\g( i) \2 <  oo,

A2 C o v [/(£ ),g (£ )] =  £ [ / ' ( £  + r,)g\£, +  »/)], (1.16)

whenever c, i; and C are independent exponential random variables with parameter A >  0. It is easy to show 
that the above relation holds for all such /  and g if  and only if  c, t] and £ are independent standard 
exponentials with parameter \A\ or - c ,  - t j  and - £  are independent standard exponentials with parameter 
|A|. In general for any absolutely continuous functions f , g  and h with £, rj, £ standard exponential random 
variables such that E \ f ( h ( ^ ) ) \2 <  oo and E\g(h(i;))\2 <  oo,

c o  + m x z + n ) g ' m + o w n + o i .  a n )

Conversely, if  this identity holds for £, t] and £ i.i.d. for all absolutely continuous functions f , g  and a fixed 
absolutely continuous function h with h'(x)  not equal to zero almost everywhere, then h(c). h(i]) and h(C) 
are i.i.d. where £, rj and £ are i.i.d. standard exponentials or —c, —r\ and —£ are i.i.d. standard exponentials. 
This can be seen by an application of the theorem for the functions f ( h ( . ) )  and g(h(.)).

2. Extensions

We assume that all the expectations of random variables discussed in this section exist and E=,Cov^, etc. 
denote the expectation and the covariance etc. with respect to the distribution of £.

Suppose that £| and c2 are independent random variables with £i as a standard exponential random variable. 
Let f ( x , y )  and g(x,y)  be real-valued functions such that f x = 8 f /d x  and gx = 8g/dx exist almost everywhere. 
Then

C o v [ /(£ 1,£2) ,0(£ ,,£ 2)] =  £e; [Cov;l( / ( £ 1,£ 2),g (£ 1,£2))]

+  Co v ^ E i J i ^ ^ l E c M Z u b ) )

= Ei2\ E iunUx m i  + m , t 2 ) g x(Zi +  C i,6 )]]

+ Covil( E r - J ( ^ \ ^ 1\ E ilg { ^ , & ) )  (for and £i are i.i.d. as £ ,)

=  £ [/v (£ i +  >?i ,£2)0.v(£ i + £ i ,£2)]

+  Cov. / ( £ , ,  £2),E ?1 g({u £2)). (2.1)

In general if  c,\ and (c2, . . . ,  ) are independent and £i is a standard exponential random variable, then

C o v [ /(£ i,£ 2,...,c a ) ,0 (c i,C 2 .......a ) ]  = £ [ / v, ( ci +  »?i, . . ,  &)0*,(£i +  £ u < ;2 ,-..,4 )]
+  Cov =2...(£■;, f(£_x, . . . ,  cA ) ,Eit (g(Ci, . . . ,& ) )  (2 .2 1

for functions /  and g with and gXl finite almost everywhere. This can be seen by following the above 
arguments using conditioning on (c;2, .. . ,£ * )  and the fact that q  is a standard exponential random variable.



Special cases: (i) Let f ( x \ , . . . , x k) = /o(xi H------ hx*) and g {x \ , . . . , x k ) = go(x\-\------ \-xk) where / 0 and go are
differentiable almost everywhere. Then f Xl(x\, .  , . , x k) = / 0'(xi + ■ ••+ * * )  and gXl(x i , . . . >xk) = g'Q(xi H------- \-xk )
where / 0' and <7q denote the derivatives o f /o  and go, respectively. Hence

C o v [ / o ( C l  +  • ■ ' +  £ , k ) , 9 o ( ^ \  +  • ■ • +  £ i ) ]

^ [ / o ( C l  +  ^1 +  C2 +  • • • +  )0o(£l +  Cl +  £2 +  • • ■ +  £*)]

• C o\. ...... (/; +  ■ • • +  Q ) , E ^ g 0(C] +  ■ • • +  £k))> (2.3)

whenever t i ,  and £1 are i.i.d. standard exponential random variables, £1 is independent of (£2, •••,&•) and
fo and go are absolutely continuous functions with E\fo{^\  4- • • • +  £,k)\2 < 0 0  and E\g0(c,i H-------1- Ck)\2 < 00.

(ii) Let f ( x \ , . . .  ,xk ) =  J2lj=\x i and g(.) as in (i). Then f X] =  1 and applying (2.2), we have

Cov

+  Cov=2...=( IE :, I I ,E c:,g(£h . . . , & ) ]  , (2.4)

whenever is independent of (£2, ■■•,&), and i \  and £i are independent standard exponential random 
variables and g (x \ , . . . , x k) is a function such that gXl exists almost everywhere. Hence

Cov ^ £ / , 0 ( | l , . . . ,  Qk) =  £[& ,(£i

• Cov........ (1 +  £2 +  • • • +  t k f E ^ g i t i,<̂ 2,- - .,  C*))

= £[0,,(£i
k

+  » o v , .....( ; - / : {2.5)

(iii) Suppose that C i,..., c,k are i.i.d. standard exponential random variables. Then Zk =  c H ------ h ck has a
gamma distribution with density

Pzk(z) =
z k 'e  ■

z > 0 , (2.6 )r(k) ’
p z k( z )  =  0 otherwise.

Applying the result obtained in (i), we have

Co v [ f { Z k \ g ( Z k) } = E [ f { Z k  +  m )g'{Zk + £,)] +  Cov .......[ E _ ( f ( Z k )).E. (g(Z>)) (2.7)

for any integer k  Js 1 where and £1 are independent standard exponential random variables independent of C]. 
Let / ( x )  =  e1,v and g(x) = e,sx. Then

C o v [/(Z * ),0(Zt )] =  <)>zk0  + 5) -  4>zt (t)(l>zk(s),

E [ f ' ( Z k +  nx)g'{Zk +  Ci)] =  ~ts <t>Zk{t +

and

/• Jo: /  1 e:r' ' ' :'(/) (f).

Hence,

Cov .... . ( £  ( / ( Z , )).£ . (.(/(/;))) =  < i > . ■ *) -  <;>,......... (O d ........  (2.8)



Identity (2.5) reduces to the equation

4>zt (t +  s) -  (^ .(O feO O  =  - t s  <t>Zi(t +  s)0,„(O<fc,(s)
+ 4>il(0<)}c](s)[(pc2 + ... + ct (t + s) ~  . ..... ..(1)0:; ■ ••...(•'))• (2'9)

Note that <£z*(0 =  ( 1 -  =  - i 0 ~ ‘ =  and <fe+-+& (0  =  0  - i 0 _*+‘;
It is easy to see that the functional equation (2.9) is satisfied by the above solution which in turn gives an 

alternate proof for (2.7) by the bilinearity in /  and g on both sides o f (2.7) (cf. Bobkov and Houdre, 1997).
(iv) Suppose Z is a random variable such that Z  = % + W  where c and W  are independent random variables. 

Further suppose that the characteristic functions of Z, |  and W  satisfy the functional equation

4>z(t +  s) -  4>z{t)<j)z(s) =  - t s  <pz(t +  s ^ c i O ^ ^ s )

+ (j>z(t)<))c(s)[<j>w(t + s ) -  (2.10)

for —oo <  t, s < oo where (f>̂ (t) denotes the characteristic function of c. Further suppose that the characteristic 
function of W is nonvanishing. It is easy to see that the functional equation (2.10) reduces to

0 g-(* +  s ) -  <^(f)<fo(s) =  -f,s <j>i(t +  s)<^(0 <£c(5) (2-U )

for —oo <  t, s < oo which characterizes the standard exponential distribution for c by the results obtained in 
Section 1. It can be checked that the functional equation (2.10) holds if  and only if  for every two absolutely 
continuous functions /  and g such that E \ f ( Z ) \ 2 < oo and E\g(Z)\2 < oo,

C o v ( f ( Z l g ( Z ) )  = E [ f ' ( Z  + r1)g'(Z + C)] + Covw(Ei ( f ( l ; +  W ) ) , E ^ +  W)),  (2.12)

where £, t] and £ are i.i.d. standard exponential random variables and Z  = c + W .

3. Covariance identity for the geometric distribution

Suppose X  is a discrete random varible with the geometric distribution P ( X  = k ) =  p q k~ \  k ^ \ ,  q = \ - p ,  
0 <  p  < 1. It is easy to check that

p 2 Cov [ f ( X ) , g ( X ) ]  =  qE [ ( f ( X  + Y ) - f ( X  + Y -  1 )){g(X + Z )  -  g(X + Z  -  1))] (3.1)

for any two functions /  and g such that E\ f ( X ) \ 2 <  oo and E\g(X)\2 < oo where X, Y and Z are i.i.d. as X. 
This can be seen by checking the identity (3.1) for functions of the type f ( x )  — e,,Jr and g(x)  =  elsr where 
t and s are arbitrary real numbers and then using the bilinearity (cf. Bobkov and Houdre, 1997). For such 
functions, we have the functional equation

P2[<t>x(t + s) -  <j)x (t)<l)x(s)]=<jr(l — e_,/)(l - c ~ ls)ct>x(t + s)(j>x (t)(j>x(s) (3.2)

and it can be easily checked that

0 .y(O  =  e‘'(  1 — q e " ) ~ \  — oo <  t <  oo

is a solution of (3.2).
Let us now suppose that X, Y and Z are i.i.d. nonnegative integer valued random variables such that the 

identity (3.1) holds. Let f ( x )  = tx and g(x ) =  ,vA where t and s are real. Then the identity (3.1) reduces to

p 2[m(ts) — m(t)m(s)] = q{t — l)(s  — 1 )(ts)~lm(ts)m(t)m(s),  0 <  t <  oo, (3.3)

where m(t)  is the probability generating function of X .  It is easy to see that m{t) is nonzero for all t. Define 
fi(t) = t m ( t )~ 1, 0 <  / <  oo and y(u) = J3(e"), - o o  < u < oo. Then Eq. (3.3) can be written in the form

y(u +  v) = y(u)y(v) -  /.(e“ -  l) (e r -  1), -o o  <  u, v < oo (3.4)



with y(0) =  1 and X = q p ~ 2 > 0 ,  q =  1 — p,  0 <  p  <  1. It is clear that

y(u) =  (1 — qe~u) p ~ l, —o o < u < o o  (3.5)

is a solution o f (3.4) and hence

m(t) =  p t ( l  — q t ) ~ l, 0 <  t < oo

is a solution o f (3.3) which is the probability generating function of the geometric distribution with parameter 
p. The problem that it is the only solution of (3.3) remains open. We conjecture that it is the only solution 
following the analogy of the characterization of the standard exponential distribution discussed in Section 1.
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