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A bstract

This paper proposes the minimax criteria for obtaining the sample sizes 
to different strata when only the ranks of the stratum variances, apart from 
the stratum sizes, are known, and obtains a very simple and elegant solution 
to this problem.

1 Introduction
In many practical situations in sample survey it may not be possible to know the 
exact values o f the stratum variances or it may even be very difficult to get good 
estimates o f the stratum variances, whereas the order of the stratum variances may 
easily be found out from other sources. To be specific, suppose we have strata with 
known sizes N i , N 2, . . . ,  Ns and unknown variances <Tj, a j , . . . ,  cr*. The problem is 
to minimize V { y st) with respect to n i, n2, . . .  ,n s, the respective sample sizes, where

( i - i )  y r t ^ W h V h
1

with Wh =  Nh/N, N  — J2 Nh and y /, =  for all h,yhi denoting the value of the
i-th unit o f the sample from the /i-th stratum. yst is unbiased for the population 
mean under simple random sampling scheme. Expression for variance o f yst is (e.g., 
Cochran (1974))

vhuh
nh

'T h e  problem  o f  finding an optim al a llocation o f  sam ple sizes to different strata under a given 
ordering/spacing o f  stratum  variances was in itially  raised by Professor S. P. M ukhopadhyay o f  
University o f  C alcu tta  before the audience in the “Seminar on P roblem s o f  Large Scale Sample 
Survey in India: 26 -  27 December, 1990” - conducted by C om puter Science Unit o f  Indian 
Statistical Institute.
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Since the stratum variances are not known, minimization of V  is not possible. How
ever, if it is possible to know the order of the stratum variances, say,

( 1 .2 ) a 2 <  o\ <  . ■ . <  cr2,

then one can hope to minimize V  with respect to n\, n2, . . . ,  ns as well as a\, cr|,. . . ,  a] 
subject to  the conditions Y1 nh — n, >  0 for all h together with the condition 
(1-2). It is necessary to introduce further restriction such as — K  to  avoid
trivial solutions like a\ — 0 for all h for the case where the condition (1.2), say, 
is imposed. The value of K ,  as we shall see later, does not affect the optimum 
values for the problem considered in this paper. Thus the value of K  need not be 
known apriori. In Pal and Maiti (1991), the solution for the same problem has been 
obtained.

A possible criticism of the above approach stems from the fact that we have 
no control over the cr2 values. The minimization problem described above will give 
some optim um  values of u^’s. But, there is no guarantee that the optimum values 
will be equal to the actual values. In fact, it is perfectly possible that the optimum 
values becom e far different from the actual values. A more reasonable approach to 
tackle this problem  would be to get

(1.3) Min Max V,
n  a  2

where n and a 2 are the vectors o f and a? values respectively, subject to the same 
conditions as described earlier. This procedure, thus, tackles the adverse situations 
so far as cr2 is concerned. One may also find

(1.4) Max Min V
( j2 n

to see what will be the maximum possible value over <J2 o f the minimum variance, 
since <r2 is not known.

In this paper we present the minimax solution for the problem  where the condi
tion (1.2) is imposed. It so happens that the minimax and the maximin solutions 
give the same optimum values for n (and cr2) and hence, also for the values of the 
objective function.

To summarize the above points, our object is to find

s 1X/2 2
(1.5) Min Max V  — —  

subject to
5

(1.6) 0 <  cr,2 <  a\ <  . . .  <  a 2s and J2 al =
h = l

S

(1.7) 7ih >  0 for =  and nh =
h= 1

n.



Here Wh — N^/N, N  =  Yli=i Ni, N i , , N3, n and K  are given positive constants. 
Even though the n/,’ s should be integers, the optimization problem  becom es too dif
ficult under this constraint. So we solve the problem allowing n^'s to be nonnegative 
and approximate the optimal n^’s by integers hoping that it will give a near optimal 
solution.

2 Solution of the Optimization Problem
We start with a result which can be used to find the maximum in (1.5) for given n 
satisfying (1.7).

Lem m a 2.1 Let aj, a2, . . . ,  as be positive constants. Then, M ax „ 2  Ylh=i ah&\ subject 

to (1.6) is K  m a x ,a < s bh, where bh =  — ̂  T.)-h aj-

Proof: Define

Z h =  (s -  h +  \){a2h -  cr^_j) for h =  1 , 2 , . . . ,  s,

where we take aI =  0. Then it is easy to check that Ylh=i aha \ =  £ iU i ^hZh and
(1.6) is equivalent to

S

(2.1) Zh >  0 for h =  l , 2 , . . . , s  and Y ' Zh =  I\.
h = 1

Let bj =  m a x i< K , i(,. It is clear that m ax^fe/,/?/, subject to (2.1) is Kb3, which is 
attained when Zj =  K  and Z^ =  0 for all h ^  j .  □

Theorem 2 .2  For given n satisfying (1.7), M axCT2 Y.h=i Wha l/n h subject to (1-6)

is

(2-2) ^ XS a<X>
where

1 s N 2
(2-3) f h =  ------ j— r E — •s - h + 1  jr'h Uj

This Theorem  follows from Lemma 2.1 on taking a/, =  W^/nh =  N%/(N2n.h). 
Thus, to find the minimax solution of (1.5) subject to (1.6) and (1.7), we have 

to solve the following problem:

(2.4) Min max fh (n )
"■ 1 <h<s ~

subject to (1.7), where fh (n) is given by (2.3).

Theorem 2 .3  The minimum in (2-4) is attained at some n satisfying (1.7).



P roof: If we take n^aNI (i.e., nh =  nNl/J2j N j ) ,  then m a x fh (n )  — YlNf/n = 
A  (say). Hence for the minimization in (2.4), all n ’s for which m a x //,(n ) is larger 
than A  can be ignored. Now for any fixed h, there exists 8  ̂ >  0 such that if n/* < 5j, 
then max, fh {n ) >  A  whatever be the other n /s . Thus the problem  (2.4) subject to
(1.7) is equivalent to (2.4) subject to

S

(2.5) rik >  8h for h =  l , 2 , . . . , s  and =
/i=i

Since the set of n's satisfying (2.5) is a compact set in 1RS and m ax,<h<s fh (n ) is 
a continuous function on it, it follows that the minimum is attained at some n 
satisfying (2.5) and so satisfying (1.7).

Choose and fix an optimal solution n° of (2.4) subject to (1.7). We introduce 
some notations. Let

{m u m 2, . . . , m k} =  { i  : f , (n °)  =  max f h(n0) } ,~ h

where
1 <  mi <  m 2 <  . . .  <  mk <  s.

We shall write rrik+i =  s +  1 for convenience. Also let

Ar =  { m r, m T +  1 , . . . ,  mT+i — 1}

and tr =  \Ar\ =  m T+\ — mr for r =  1, 2 , . . . ,  k. 0

Lem m a 2.4  ni\ =  1.

Proof: Suppose not. Consider n* defined by

( n° — ke if i =  1 
ni =  S n° +  £ if i € { m j , . . . ,  m k} .

[ n° otherwise

Then for sufficiently small e >  0, it is easy to see that n* satisfies (1.7), fi(n*) < 
f i (n ° ) for i =  2 , 3 , . . .  ,s  and a contradiction to the optimality of

L em m a 2.5  Let 1 <  i <  j  <  s. Then

N, > Nj_
Tl° ~ 11°

Moreover, if  i , j  G A r for  some r, then equality holds in (2.6).

(2 ‘6) n° -  n° '



Proof: Suppose (2.6) does not hold. Let n* be defined as

Then for sufficiently small e  > 0, n* satisfies (1.7) and

( 5  -  h +  1 ) ( / a K )  - f h ( n ° ) )  = _____
W + iK

if /i <  I

\i i <  h <  j  ' 

if A >  j0

Thus //i(n*) <  fh (n°) for h — 1,2, . . . , s ,  strict inequality holding at least for 
h = 1,2,.  . .  , i. It follows that n* is also optimal for (2.4). So by Lemma 2.4, 
maXftA(M*) =  f i (n * ) .  Since fi (n*)  <  =  m a x (,/i(n 0), we have a contradic
tion to the optim ality of n°. This proves the first statement. If i , j  £  A r and strict 
inequality holds in (2.6), we arrive at a contradiction in a similar way by taking e 
to be negative with sufficiently small absolute value. Here it should be noted that 
when i <  h <  j , / / ,( « * )  <  fh {n°) is not true but fh(n*) <  f i {n ° )  holds since |e| is 
sufficiently small. This proves the lemma. □

We now introduce some more notations. We define

for any i , j  with 1 <  i <  j  <  5 and let

jV(r) =  N (m r,m T+i — 1) 

for r =  1 , 2 , . . . ,  k. The quantities X ( i , j )  and X (r) are defined analogously. 

Lemma 2.6
(2.7) N(1) < N ( i ) < . . . <  Nw

and

Also let

(2.8) N (m r, i) >  7V(rj if i £  A T.

Proof: Since fh(n°) =  X (h ,s ) ,  we have X ( m i , s )  =  X ( m 2, s) =  . . .  =  X ( m k,s) .  
Hence
(2.9) X (1) = X {2) = . . .  = X(k) =  X ( m T,m u -  1)



for any r and u such that 1 < r < u < k  +  l. Let the com m on value of N{/n° for 
all i € A r be denoted by cT. Then

^ ( r) =  ~j~ ^  ~  T  12  =  Cr N(r)-
tT i £ A r '  T t € A r

Since c t >  c2 >  . . .  >  ck, (2.7) follows from (2.9). To prove (2.8), let i € A r. Then 
X ( i  +  1,5) <  X ( m r,s )  gives X ( m r,i )  >  X ( m r, s ) =  X ^ y  Since XhCtNh within Ar,
(2.8) follows. D

Theorem  2 .7  (i) m\ =  1 and fo r  any r with 1 <  r <  k, m r + 1 — 1 is the smallest 
i in the range m T <  i <  s at which

(2.10) min N (m T,i)mr<t<5

is attained.

(ii) If i 6  A T, then
0  _  N { r ) N j(2.11) w? =  ( 1 x n.

'Pk t N2

Proof: W e first show that the minimum in (2.10) is attained at i =  m r + 1 — 1. By
(2.7) and (2.8), we have N (m u,i)  >  whenever i £  A u with u >  r. So it
easily follows that N (m r,i) >  =  N (m T, m r+] — 1) for i =  m r, m T +  1 , . . . ,  s. We 
next show that m r + 1 — 1 is the smallest i at which the minimum in (2.10) is attained. 
Suppose not. Let the minimum be attained also at j  with m r <  j  <  m T+\ — 1. Then 
N {m r, j )  -  N(t ), so N (j  +  l , m r+i -  1) =  JV(r) and X ( j  +  l , m r+1 -  1) =  X {ry 
Hence X ( j  +  1,3) =  X ( m r,s ) ,  a contradiction, since j  +  1 does not belong to 
{m i ,  m 2, . . . ,  m k}. This proves (i).

To prove (ii), we first show that

t /V2
(2.12) $ > ?  =  ^ - 4 ^ -  x

, t c  ‘ E t i  tuN2u)

For this, we have
Ni trN [r) _  trN 2T)

$ > ? = £ -  =  y  ■
i € A r  l € A r  r  T ( r )

Since X (r) is independent of r, (2.12) follows. Now since n°a7V,- within A r, we 
have

—  > ri: =  — t——— x n.
tr (r) ]£Ar £u=l t^ ( u )

From Theorem  2.7 it follows that the optimal n° is unique and can be determined
by the following Procedure: First find mi =  l ,m 2 , . . .  ,m (  using (i). Then find n°, 
using (ii).



The optim um  sample sizes have to be approximated roughly to the nearest in
tegers (nl  values, say), though the optim um  sample sizes that would have been 
obtained if we restrict the values to natural numbers m ay not be same as the 
n*h values. It should be pointed out that a more desirable criterion for optimum 
allocation would be to impose the set o f restrictions 2 <  n /,(<  N h) and n /, is an 
integer for all h. This problem has not yet been solved. □
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