
Statistics & Decisions 12, 281-291 (1994)

SEQUENTIAL ESTIMATION BY ACCELERATED STOPPING TIMES IN 
A TWO-PARAMETER EXPONENTIAL FAMILY OF DISTRIBUTIONS

Arup Bose and Nitis Mukhopadhyay

Received: Revised version: March 8, 1994

Abstract. We reconsider the minimum risk point estimation problem discussed in Bose 
and Boukai (1993) in the framework of a particular class of two-parameter exponential fam
ily of distributions. We make their purely sequential estimation rule more attractive by cut
ting sampling operations significantly via performing purely sequential sampling part of the 
way followed by appropriate batch sampling. In this note, we provide the asymptotic second- 
order approximation for the “regret” function associated with such accelerated sequential 
estimation methodology. The unified theory discussed in Mukhopadhyay and Solanky (1991) 
does not apply here and hence we opt for direct derivations.
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1. INTRODUCTION

We consider a regular two-parameter exponential family of distributions whose proba
bility density function (p.d.f.), with respect to Lebesgue measure on R, is given by

f (z ;8 )  =  a (x) exp &̂iUi (x) +  OiUi ( i )  +  c(0 )j , (1 .1)

0= (0i,0]). See Brown (1986). The natural parameter space is defined by

ft =  { ?  e Ra : e ®  =  j  a(x) exp \0iU\ (x) + O2U2 (2 )] dx < 00 j  ,

so that ft0 =  interior of ft, which is assumed to be nonempty. It is well known that for any 
6 eft0, the random vector U= (C/j, Uj) has moments of all orders. In particular, one writes

Ee(U) =  (/*\,Hi) , t*i =  -dc(0)/dOi, * =  1,2 (1.2)

and
W )  =  t o )  =  - d 2c(e)/de,d8„i,j =  1,2. (1.3)

Here, Ve(U) is the associated positive definite variance - covariance matrix.
Let X i , . . . ,  X n, . . .  be a sequence of independent and identically distributed (i.i.d.) ran

dom variables having the p.d.f. given by (1.1). Let Ti;n =  £?=i Ui(Xj) and denote by 
Ti-n,i  =  1,2, the usual averages. The joint distribution of Tn =  (2i:„, T2:„) is a member of 
the same two-parameter exponential family (1 .1) where

Ee{Tn) =  ,Ve(Tn) =  =  1 , 2. (1.4)

Bar-Lev and Reiser (1982) considered a particular subfamily of (1.1) that is characterized 
by the following two conditions which we assume to hold throughout this discussion.

Assumption A l . Tie parameter 02 can be represented as 02 =  —9itp' (fi?) where %l>' (fi2) = 
dxf) (/x2) /dfa for some function if) (•).

Assumption A2. {/j (a:) =  h (x) where h (1 ) is a 1-1 function on the support o f (1.1).

The family of distributions (1.1) under the Assumptions A l and A2 is known to include 
the normal, gamma and inverse Gaussian distributions. The problem here is to estimate 
H2 in the presence of the nuisance parameter In the three examples mentioned above, 
this problem reduces to one of estimating the mean in the presence of appropriate nuisance



parameters. In what follows, we collect some of the pertinent properties associated with 
the p.d.f. (1.1). See also Bose and Boukai (1993) for a few details. We mention that

(a) m m )  =  - [ « 10"(W )]_1, (L5) 

where rf>" (fi2) =  d2ij> (p.2) /d/x£;

(b) c (0!,/i2) =  M / '2V’, (/*2) - V ’ (/i2) ] - G ( 0i ) ,

Pi =  0 (w ) +  G '(* i), (1 -6)

where G (-) is an infinitely differentiable function for 0i e fii, an 
appropriate set;

(c) f2i C R_ or fij C R+ and without loss of generality, 
we will assume that fti C R_ .

The minimum risk point estimation problem for /i2 was introduced in the following way 
by Bose and Boukai (1993), and other relevant citations can also be obtained from the same 
paper. Having recorded . . . ,  X n, n >  1, we have already defined 7i;n and T,:n, i =  1,2. 
Let 6ln and fi2n denote the respective maximum likelihood estimators of 9\ and and it 
can be shown that

H2n =  T2:n =  ji-1 £  U2 (Xi) and (1.7)
1=1

nG' (6ln) =  Tim -  nxji ( f 2;n) =  Zn, say. (1.8)

We assume that the loss function in estimating fi2 by T2:n is given by

L ,(n ) =  p \ r(ti2 )\ {f2..n - V 2) 2 +  n, (1-9)

where p (>  0) is a known number. One may note that p \i>"(fi2)\ represents, in some sense, 
the importance of the estimation error relative to the cost per unit observation. The risk 
associated with (1.9) is given by

Rp(n) = E(Lf,{n)) =  —/>(ji0i)_1 + n , 0-10)

which is minimized if n =  n0 where n0 «  [fl/ (—0i)]’ • Here and throughout, we write 
a {p )*b (p ) if a (p)/b(p) -► 1 as p —»oo and .asymptotic analysis is carried out as p —► oo. 
The goal is to achieve approximately the minimum risk, namely,

Rp{n0) =  2n0. (1-11)

Since no is unknown, Bose and Boukai (1993) had proposed a purely sequential estimation 
procedure. In the next section, we briefly summarize some of the associated results.



1.1. Purely Sequential Methodology

One starts with X i , . . .  ,X m with m >  1 and proceeds sequentially by taking one sample 
at a time according to the stopping rule

No = No (p) =  inf {ji >  m : — 9i„ > />2n-2}  , (1-12)

which can be equivalently written as

No =  inf |n >  m : < nG' (—p /” 2) }  • 0-13)

The parameter p.2 is finally estimated by Ti-.N- Bose and Boukai (1993) had proved that 
I (N0 =  n) is independent of T2:n for all fixed n > m and verified that the risk function 
associated with T2-.N0 ' s given by

R; =  E (LNo) =  tiqE (No 1)  + E ( N o ) . (1-14)

Hence, the risk efficiency and regret functions, as introduced in Robbins (1959) and Stan 
(1966), are respectively given by

e (p) =  K J R , (n0) =  1 {E  (N0/n0) +  E (n0/N0)} , (1-15)

and
u>(p) =  R ; - R l) (no) =  E  {(AT„ -  no)2 /N0}  . (1-16)

Bose and Boukai (1993) imposed two further conditions on the function G and the initial 
sample size m in order to ensure sufficient smoothness on the stopping boundary.

Assum ption A3. For some a > 5, supI>4|ei| x°G' (—x) <  M  < 00.

Assum ption A 4. The initial sample size m is such that for some /? > 2 (2a — 1) 1 and 
for all 0i eft 1, < 00.

The following results were obtained in Bose and Boukai (1993). As p —► 00,

(a) under Assumptions A1-A2, one has

No (p) /no —* 1 a.a., E (No (p)) /no —♦ 1; (1-17)

(b) under Assumptions A1-A4, one has

e(p) -»  1; (1.18)



(c) under Assumptions A1-A3 and A4 with f) > 3 (2a — 1) 1, one has

E (N0 (p)) =  no +  T) +  o ( l )  where rj is a real number; (1-19)

(d) under Assumptions A1-A3 and A4 with j3 >  5 (2a  — l ) -1 , one has

« ( / . ) - »  [4tf?G* (1-20)

Now, given all these, let us add that in specific cases, it is known that the distribution 
of N0 given by (1.12) can be very skewed to the right. Hence, as a plausible alternative to 
(1.12), one may first proceed purely sequentially and go only partly by estimating a suitable 
fraction of no, followed by taking the remaining necessary samples, all in one single batch. 
Such a modification will then make the original sampling scheme (1.12) operationally more 
attractive. In other words, we opt for a suitable accelerated version of (1.12) in order to cut 
sampling operations and yet maintain second-order properties for the associated regret func
tion along the lines of (1.20). Hall (1983) first proposed such a procedure for constructing 
a fixed-width confidence interval for the mean of a normal distribution when the variance 
is unknown. A general theory of accelerated stopping times has been recently developed in 
Mukhopadhyay and Solanky (1991) and several sequential estimation problems have been 
included in that paper. We should remark that the development in Mukhopadhyay and 
Solanky (1991) parallels that of Woodroofe (1977) in the sense that the boundary condition 
for stopping depended on the comparison between certain powers of “n” and the corre
sponding sample mean of n i.i.d. positive random variables. It is far from trivial to extend 
the existing unified theory of accelerated stopping times in the setup of Lai and Siegmund 
(1977,1979). Bose and Boukai (1993) indeed combined the tools from Woodroofe (1977) 
and Lai and Siegmund (1977, 1979) in order to obtain (1.19) - (1.20) because the bound
ary condition in (1.13) involved a sample mean of i.i.d. positive random variables plus a 
sufficiently smooth random “fudge” factor.

In the next section, we propose a suitable accelerated version of the sequential stopping 
time given in (1.12). The machineries available in Mukhopadhyay and Solanky (1991) are 
not directly applicable in the present situation. However, in what follows, one will find a 
direct and straightforward approach that eventually leads to the asymptotic second-order 
expansion of the regret function associated with the corresponding estimator of fi-i- Some 
of the proofs are provided in Section 3. Throughout, I  (■) stands for the indicator function

2. ACCELERATED SEQUENTIAL METHODOLOGY

Instead of (1.12), Bose and Boukai (1993) in fact proposed the following slightly general 
Purely sequential scheme. Let

No =  No (P) =  inf { «  >  m  : Z nan <  n G ' ( ~ P / « 2) }  (2-l)



where an >  1 and an =  1 +  a0n-1 +  o (n -1). We write (x) for the largest integer <  x and 
provide the accelerated version of (2.1). Note that N0 can be equivalently written as

N0 =  No (P) =  inf jn  >  m : n [-5  (z „a n) ] 2 > p* | , (2.2)

where g =  G'-1 . Indeed we utilize the representation (2.2) for developing the accelerated 
sequential methodology.

We choose and fix 7 ,0 < 7  <  1 and define

t =  t (p) =  inf jn  >  m : n [-5  (z „a „ ) ]2 >  7 />» j  . (2.3)

With q >  0, let

Ni  =  N ! (p) =   ̂[ - p / g  2 + 9) + :> 2̂'4̂
N =  N (p) =  max {t(p ), N\ (/>)} . (2-5)

One starts sampling with X \ ,..., X m, m >  1 and proceeds purely sequentially by taking 
one sample at a time according to the stopping rule (2.3) and obtains X u ..., X m, .... 
X t. Observe that the stopping variable t estimates 7n0, a fraction of n0. Now, based on 
X i , . . . , one estimates n0 by means of N\. If t > Ni, then we do not take any more 
samples. However if Ni > t, then we sample the difference (N\ — <), all in one single batch. 
The sampling operations needed in the accelerated sequential sampling scheme (2.3) - (2.5) 
amounts to about 100 7 % of that needed in the purely sequential methodology (2.2). In 
other words, the operational convenience of (2.3) - (2.5) over (2.2) is quite obvious. Once 
one determines N  and obtains X i , . . . ,  X n  by means of (2.3) - (2.5), /J2 is estimated by Tjjv. 
The expressions of the risk efficiency and regret functions associated with the corresponding 
T2.N are again given by (1.15) and (1.16) respectively once one replaces N0 by N.

From the analysis given in Bose and Boukai (1993), one can conclude the following 
properties for the stopping variable t =  t(p) defined in (2.3). As p —> 00, one has

(a) t/jno -+ 1 a.s., E {t) fano —» 1; (2-6)

(b) for every e > 1 and all n > e~fn0, there exists c* (>  0) 
depending on e and G(-) such that

P{< > n} < e x p { - ( n - 7«o)c*} ; (2.7)

(c) Under Assumptions A1-A2,
(f -  7«o) /  (7*10)* 4  N  (0, [49*0" (0,)]"1) ; (2.8)

Under Assumptions A1-A4, one has as p —► 00, for any e € (0,1),

(2.9)



00 7

Under Assumptions A1-A3 and A4 with /3 >  3 (2a -  1)_\ one has asp -> oo and for 
any £ € (0,1),

(d) n0P  {< <  £7 rio} -+ 0; (2.10)

(e) E {(no/t)21 (t  <  e7Ro)} -»  0- (2-11)

Under Assumptions A1-A3 and A4 with /? >  (1 +  2k) / (2a — 1) for k >  1, one has as 
p-* oo, and for any e € (0, 1),

(f) UqP  { t  <  £7 n0} -*  0. (2-12)

We recall that (Z\,. . . ,  Zn) and Ti.n are independent for every n >  m and also one 
has the representation Zn =  ^  — in where {Vi : t >  1} is a sequence of i.i.d. random 
variables such that

i) E (Yx) =  G' (Oi) , V (Fi) =  G" (0 i); and (2.13)

(2.14)*0 {£>> : n > 1} is a sequence of slowly changing 
random variables;

iii) Zn —» G' (Oi) a.s. and ni \Zn — G'(0i)]
N  (0, G" ($i)) as n —> oo.

The main results are now summarized in the following Theorems.

(2.15)

THEOREM 1. For the decelerated sequential estimation procedure (2.3) - (2.5), we have as 
P-* oo :

i. Njno —► 1 a.s.;

ii. E(N/no) —> 1;

iii. no * (TV -  n0) 4  N  (o, [470?G" (flx)]"1) ; 

under Assumptions A l - A2.

THEOREM 2. Suppose that Assumptions A l  - A3 hold. T h e n ,  f o r  the accelerated sequential 
estimation procedure (2.3) - (2.5), we have as p —> oo :

i. e(p) —* 1, if G and m also satisfy Assumption A4;
ii. lo (p) —* [470J<j" (fl,)]-1, if G and m also satisfy Assumption A4 with ft > 

5 ( 2 a - I ) -1;



where e (p) and w (p) have respectively been defined in (1.15) and (1.16), replacing No by 
N.

The part (i) of Theorem 2 shows that the accelerated sequential estimation methodology 
is in fact asymptotically first-order risk efficient in the sense of Ghosh and Mukhopadhyay 
(1981). The same result is referred to as the asymptotic risk efficiency property in the 
sense of Robbins (1959). Part (ii) of Theorem 2 provides the asymptotic second-order 
expansion of the associated regret function u> (p). One may contrast Theorem 2 (ii) with 
(1 .20) and observe that the asymptotic regret for the accelerated sequential methodology 
exceeds that for the purely sequential methodology of Bose and Boukai (1993). This is quite 
apparent since 7  £ (0,1). On the other hand, this “loss in efficiency,” while implementing 
the accelerated sequential analog, can be thought of as a direct reflection on the “gain” 
obtained via substantial operational convenience. In specific instances, the experimenter 
will perhaps attempt to achieve some type of practical balance between the “loss” in one 
component and “gain” in the other.

3. PROOFS OF THEOREMS

In this Section, we provide the proofs for Theorems 1 and 2.

3.1. Proof of Theorem 1

Part (i) follows immediately from (2.5) and the first parts of (2.6) and (2.15). To prove 
part (ii), note that trinity > Ni) <  tn^1 which is uniformly integrable in view of (2.6). 
Thus, observing that P (t > Nx) -+ 0, it follows that E {tr in ity  >  TVi)} =  o ( l) . Hence it 
will suffice to show that

limsup E { n xrig11 (Ni > <)} <  1. (3.1)

Now, one combines (2.3) - (2.4) to write

E {N ino1I(N l >< ) }  <  E  |{p/ - g  n^1 +  (9 +  l jn ^1

< E [t/ (7710)] +  (q 4-1) rig1, (3.2)
and thus (3.1) follows from (2.6).

For part (iii), it will suffice to prove the same result having replaced “N ” by means 
° f  Ni =  P'21f* (^i) where f m(x) =  { —g (x)}^. Now, from (2.6), (2.15) and Anscombe’s 
(1952) result, we immediately note that (7710)* (z , -  G' (0j)) S  N  (0, G" (0i)) as p -* 00, 
and hence the claim, since one can write

(N, -  no) / 4  =  - 4 [ r { Z t ) - p > n o ' \ / f m{Zt)

= - 4 [ / - ( z , ) - / * ( G ' ( 0 1) ) ] / / * ( z <) . (3.3)



3.2. Proof of Theorem 2

It is easy to prove part (i) and hence we omit this. To prove part (ii), define B\ 
{<< |7n0}, N* =  Tit* (N -  n0). Note that the regret function

u(p)  =  E [Ar*2n0/Ar] =  Ai +  A2, say (3-4)

where A, = E [N ^n oN -'I  (5 ,)], A2 = E [N ^ n oN ^ I (Bf)]. Observe that A i < c*n%P(Bi) 
where c* is a positive generic constant independent of p. Thus, in view of (2.12), A\ —<► 0 as 
t -o o .  On the other hand, N-2n0N ~'I (B fi <  27 - 1JV*2, and hence A2 =  E (Nm2) + o (l), 
which completes the proof in view of Theorem 1, part (iii) and the following result.

Lemma 1 . For the stopping variable N defined by (2.5), N ml is uniformly integrable.

Proof: Fix 1 < {3 < 7 -1 and define C\ =  ^2 =  — /^7” o}i B —
{/J'Vo < t <  /?7 n0}, A =  {t > Nt + 1}, J =  {k : / 7 'V o  < * < D =  {t  >  7(»o

1 \ _ J.
-nix J j. Let f* =  n0 2 (t — 7 n0). Observe that

t < N i <  7 -1< +  9 +  1 ^

and

jV*2 =  N ‘ 21(CX) +  N' 2I (B ) +  N ,2I ( C2) . (3-6)

It is easy to see that

E[Nm2I(C2)] <  £, f(7"1< +  9 +  1)2/(C 2) J + n 0P{< > ^7«o}
-»  0 as p -> 00, (3'7)

in view of (2.7). Also, one has

E [iV*2 J (Cj)] <  c'n0P  (C i ) -> 0 as p -> 00, (3-8)

in view of (2.10). Now, we have

E[N'2I (B n A)] < c*n0P ( A n B )
< c*n0P {Zk <  kf f  (~p/k2) for some k £ J}  . (3-9)

One can use the martingale argument of page 500 of Bose and Boukai (1993) to verify that 
the bound given in (3.9) does not exceed c'tjq 1, that is

E  [Nm2I  (J5 0 A)] —> 0 as p * 00. (3-10)

Next, observe that P {N m > x , t e A c C\B} <  P \t* > x*j -  «o  2 (? +  1) ,< 6 £ ?j, and this 
ioes not exceed c'x~4, by the arguments of Bose and Boukai (1993). Also,

P { N * <  - x , t  e Ac n B n D c} < P { t m < - 7 x, t  e B } ,



and this does not exceed c*x 4, as in Bose and Boukai (1993). But, on the set Ac (~l B 0 

D fl {AT* <  —x }, one obtains Zt < tG '{—p j (n0 — n^x)2) , and hence

P { N ‘  < - x , t  e A c n B D D }
<  P  { r 1:* - k t n - k  [v- (fa*) -  v> (/**)] (3.11)

< k[G '(-p (n 0 -  4 * r 2) -  G"(0i)],i G B n  D }.

By means o f Taylor expansion and using the fact that t G B HD ,  one can show that the 
set on the right hand side of (3.11) is exactly of the form of the set considered on the top 
of page 500 in Bose and Boukai (1993). Hence, the bound in (3.11) does not exceed c*x-4. 
That is,

P{\N m\ >  x ,t  G Ac n B } < J*(x) ,  (3.12)

where x j*  (x) is integrable. Now, one combines (3.6)-(3.10) and (3.12) to complete the 
proof.

Rem ark 3.1. Note that we have not been able to provide the expression for limp_,oo 
E (N  — no) where N  is the accelerated stopping time defined in (2.5). From Theorem 3 of 
Bose and Boukai (1993), we can claim that

E[t )  =  7 n0 +  2>0 + o( l )  (3.13)

for an appropriate real number bo =  6o (#1,7 ) under Assumptions A l - A3 and A4 with 
/? > 3 (26 — l ) -1 . Now, from (3.5) and (3.13), one obtains

E (N)  <  n0 +  (&07-1 +  9) +  °(1) (3-14)

under similar assumptions.
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