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A  self-organizing neural network model that computes the smallest circle (also called 
minim um  spanning circle) enclosing a finite set of given points was proposed by Datta.3 
In the article,3 the algorithm is stated and it is demonstrated by simulation that the 
center o f  the smallest circle can be achieved with a given level of accuracy. No rigorous 
p roo f was given in support of the simulation results. In this paper, we make a rigorous 
analysis o f  the model and mathematically prove that the model converges to the desired 
center o f  the minimum spanning circle. A suitable neural network architecture is also 
designed for parallel implementation of the proposed model. Time complexity of the 
algorithm is worked out under the proposed architecture. Extension of the proposed 
m odel to  higher dimensions is discussed and demonstrated with some applications.
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1. Introduction

This paper deals with the problem of finding the minimum spanning circle (MSC) 
or the smallest enclosing circle (SEC). The issue is to find the radius and the center 
of the smallest circle that encloses n given points in the Euclidean plane. In location 
theory this is the unweighted Euclidean one-center problem in the plane.

The MSC has applications in optimization, pattern recognition, image analysis, 
statistical estimation, etc. It has applications in transmission and transportation 
problems. Suppose a community of users needs the service of some facility, for 
example, radio/TV receivers with signals from a single transmitter. The problem 
is to find the optimum location of the transmitter (facility). In other words, we 
need to find where the facility should be located so as to minimize the maximum 
distance from the facility to any user. It is clear that, if we imagine the users as 
points in the plane, then the center of the MSC for this set of points is the solution
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of the problem. In a different kind of application, for example in transportation, 
the center of the MSC can be the optimal location for a service station if we want 
to minimize the maximum distance that a customer would have to travel from his 
place to the service station. Here the locations of the residences specify the set of 
points.

The MSC problem has a long history. After it was posed by Sylvester20 in 1857, 
it attracted several researchers and as a result many solutions4-6,9,11’12’16-19’21 
have been suggested. The (worst-case) time complexities for the above solutions 
range from 0 (n3) to O(nlogn), where n is the number of input points. Megiddo9 
formulated this problem as a linear programming problem which could be solved 
in 0(n) time. A randomized algorithm is available for computing the MSC that 
takes the expected O(n) time.22 Apart from the time complexities, many of these 
algorithms suffer from implementation complexities. That is, they are not simple 
from the point of view of actual programming and implementation.

An algorithm, based on a self-organizing neural network, was proposed by 
Datta3 to find the MSC for a given set of points. The author demonstrated, by 
computer simulation, how the algorithm finds the optimum position of the center 
of the MSC iteratively (Figs. 1 and 2). Against each presentation of input signals 
(here points) the network adapts without any supervision and finally converges 
to the optimum solution. In this paper, we mathematically analyze Datta’s MSC 
algorithm and give a rigorous proof of convergence. We also propose a multilayer 
architecture for an efficient and parallel implementation of Datta’s self-organizing 
algorithm. The article is organized as follows. Section 2 briefly describes the MSC

Fig. 1. A result obtained by Datta3 when the minimum spanning circle is determined by two 
points. “+ ” represents the initial position of the weight vector and “x” represents the final center 
of the circle (i =  50).



Fig. 2. A result obtained by Datta3 when the minimum spanning circle is determined by three 
points (t =  70).

algrithm. Section 3 contains the mathematical analysis and the proof of conver
gence of the algorithm. The proposed architecture for the MSC model is presented 
in Sec. 4 where the time complexity is also worked out. Intuitively, the proposed 
model is straightaway extendable to higher dimensions. This has been demonstrated 
by some applications in Sec. 5.

2. The MSC Algorithm

The formal description of the MSC problem is as follows:
Let S =  {P i,P 2 , . . . ,  Pn} be a set of n given points in the Euclidean plane. The 

problem is to find the center and radius of the smallest circle such that no point of 
S falls outside the circle. Such a circle is called the minimum spanning circle. The 
problem can be stated as:

Find the point W  =  (u>i, W2 ) so that

max ||Pj — W\\ (1)
3

is minimized over all choices of W  in the plane. In other words, we compute

r =  min max{((wi -  aj)2 +  (u>2 -  (2)
(wi,w2) j

where (aj,bj) is the co-ordinates of P j,j  =  1,2, The radius of the MSC is r
and the optimum (w\, W2 ) is the center.

Assign one processor to each point of S. Another processor 7r stores a weight 
vector W  =  (w 1 , 1112)- This weight vector will be updated iteratively in the self- 
organization process. The weight vector here represents a position in the plane 
where the processor 7r can be thought to be located.



The initial value, W (0), of the weight vector W  is set at random. At iteration t 
we find the farthest point (w.r.t. Euclidean distance) from W(t). Let Pk — (flk-, t>k) 
be the farthest point, k € {1 ,2 ,. . . ,  n}. That is,

(l-Pfc -  =  max \\Pj — W \\. (3)
i

Then the weight vector W  is updated as follows :

W(t + 1) =  W(t) +  a(t)(Pk -  W(t)) (4)

where a(t) is a decreasing function of iteration number t satisfying some condition 
as stated in the next section.

The idea is as follows. Find the farthest point Pk from W  (0). Since we desire to  
minimize the distance dist(Pfc, W(0)), we try to move W  toward Pk. With a suitable 
value of a (as discussed later) we update the weight vector W  according to Eq. (4). 
This process is repeated enabling W  to gradually move towards Pk- After each 
weight update the farthest point from W  is recalculated. It is clear that during this 
process, some new point Pk>(k' ^  k) becomes the farthest point from the weight 
vector W  and, as soon as it happens, W  starts moving toward Pk' instead of moving 
toward Pk- The weight update process is continued repeatedly with a(t) 0 as 
t —> oo enabling the process to stabilize when the difference between the weight 
vectors at two successive iterations is negligible.

The Algorithm MSC

Step 1. Initialize iteration number t = 0; Initialize W(t) =  (w\(t),w2 {t)) with 
random values.

Step 2. Calculate dj =  dist(W(t),Pj) for all j  =  1 ,2 ,... ,n.
Step 3. Find the maximum dj, and the point Pk such that maXj dj — dist 

(W{t),Pk).
Step 4. Adjust weight vector W(t) according to Eq. (4).
Step 5. Set t =  t +  1 and repeat from Step 2 until the weight vectors of two 

successive iterations are sufficiently close.

3. Analysis and Convergence o f the MSC Algorithm

In this section, we do mathematical analysis of the Algorithm -M SC and study its 
convergence properties. Before going into the details of these we need the following 
definition to be stated.

Definition 1. For the set S, the farthest point Voronoi diagram (FPVD) is a 
partition of the plane defined by the convex regions Vr, 1 < r < n where

K  =  { P : | | P - P r| | > | | P - P t || V ^ r }  (5)
VT is the farthest point Voronoi polygon corresponding to Pr, 1 < r < n. Farthest 
point Voronoi diagrams are shown in Fig. 3.



Fig. 3. Farthest point Voronoi diagrams for two planar sets. MSC is determined by (a) three 
points, (b) two points.

We shall now prove that in Algorithm-MSC. the weight vector W(t) converges 
to the center (say, W*) of the minimum spanning circle. The major cases of the 
proof are as follows. We prove

Case-1. If S =  {P i} then W* =  Pi where W * is the limiting value of W(t). 
Case-2 . If S =  {Pi, P2} then W* =  ±(Pj + P2).
Case-3. If S =  {Pi, P2 , P3 } then W* is either (a) the midpoint of one of the sides 

of the triangle P1P2P3 or (b) the common FPV vertex of the three FPV 
polygons V1,V2,V3.

Case-4. If 5  =  {Pi, P2, . . . ,  P „} then

(a) If the MSC is determined by two points Pi,Pj then W* = \{Pi + Pj).
(b) If the MSC is determined by three points Pi,Pj,Pk then W* = the common 

FPV vertex of the three FPV polygons Vi,Vj,Vk.

Before going into the proof, we state below a few known results.11,14,17

Result 1. If there is a circle C  passing through three points, Pi, Pj and Pk such 
that they do not lie on any open semicircumference of C  and if C con
tains all the points, then C  is the MSC.

Result 2. If the MSC passes through exactly two points Pi and Pj, then the line 
segment PiPj forms a diameter of the MSC.

Result 3 . If no two points of S form a diameter of the MSC, then the MSC passes 
through at least three points which do not lie on any open semicircum
ference of the MSC.

Result 4. The MSC is unique.



Let X(t) € 5, t =  0 ,1 ,2 ,... be such that \\X(t) — W(t)\\ =  max* ||Pj —W(f)||,0 < 
a (t) < 1 for all t and a(t) decreases to 0 as t tends to oo such that = 00 •

Note that the points of 5  come from a bounded region. Hence, 11^(0) — Pi|| < K 
for all i, for some K  >  0. It is easy to see that \\W(t) — Pj|| < K  for all i, for all t.

Lemma 1. ~ a W] =

Proof. Since 0 < a(t) < 1 for all t, o Q(̂ ) =  oo if and only if Ilt^o — a (̂ )j = 0 
(see Ref. 1). □

We shall now prove a result on a(t). For any given to, let 5 (0) =  a(io) and 
S(t +  1) =  [1 — ot(to + 1 +  l)]5(i) +  a(to + 1 +  1) for t =  0 ,1 ,2 ,....

Note that

5(1) =  a(to)[l — ct(tQ +  1)] + a?(£o +  1)

5( 2) =  a(to)[l — cx(to +  1)] [1 — oc(to + 2)] 4- a(to +  1)[1 — &(to +  2)] +  a(to + 2)

5(3) = a(i0)[l -  a(to + 1)][1 -  a(t0 + 2)][1 -  a(t0 +  3)]

+ a(to + 1) [1 — cx(to +  2)][1 — a(to +  3)]

+  &{to + 2)[1 — a(to +  3)] +  a(to + 3).
In general,

S(t) =  a(«o)[l -  a(i0 +  1)][1 -  a(i0 + 2)] • • • [1 -  a(t0 Hr t)}

+ &(ta +  1)[1 — a(to +  2)] • • • [1 — a(to +  f)]

+ a(£o +  2) [1 — a(to +  3)] • • • [1 — a (to + 1)\ +  ■ ■ •

+ a(to +  t — 2) [1 — a(to + 1 — 1)] [1 — a(to + £)]

+ a(to +  t — 1) [1 — a(to + i)] +  a(to 4- t).

Lemma 2. 5(f) goes to 1 as t goes to oo.

Proof. It is easy to see that

1 -  ^ (l) =  [1 -  a(<o)][l -  a(t0 +  1)]

1 ~ 5(2) = [1 — 5(1)][1 — a(t0 +  2)]

= [1 -  a(i0)][l -  a(t0 +  1)][1 -  a(t0 +  2)]

1 — 5(3) =  [1 — 5(2)] [1 — a(t0 +  3)]

=  [1 -  a(t0)][l -  a(t0 +  1)][1 -  a(t0 +  2)][1 -  a(t0 +  3)].
In general,

1 -  S(t) =  [1 -  a(t0)][l -  a(t0 +  1)][1 -  a(t0 + 2)] • ■ • [1 -  a(t0 +  f ) ] .



From Lemma — QW] — 0 . Hence Lemma 2 . □

Applying Eq. (4) repeatedly we get 

W(t0 + 1 +  1) =  [1 -  a(f0)][l -  a(t0 + 1)][1 -  Q(t0 + 2)] • ■ • [1 -  a(t0 + t)}W{t0)

+ a(i0)[l -  a(t0 + 1)][1 -  a(t0 + 2)] • • • [1 -  a(t0 + t)}X(t0)

+ a(f0 + 1)[1 -  a(t0 +  2)j ■ • • [1 -  a (<0 + t)\X(to +  1)

4- a(t0 -f- 2)[1 — a(io + 3)] ■ • • [1 -  a(f0 -f t))X(t0 +  2) + • • •

+ a(t0 + 1 -  2)[1 -  a(t0 + t -  1)][1 -  o(i‘o + t)}X{t0 + t -  2)

+ ct(to +  t — 1)[1 — a(to + t)\X (to + t — 1)

+  ct(to + t)X(to + 1).

Case l .n  =  l.
Here, X(t)  =  Pi for all t. Hence, from above, we get

W(t0 + t +  1) =  [1 -  S(t)}W(t0) + S(t)Pi..

Lemma 3. For Case 1, W(to + t )  goes to Pi as t goes to oc.

Case 2 . n =  2 . The center of the MSC is (̂P\ + P2).

Lemma 4. For Case 2, W(to +<) goes to (Pi + )/2  as t goes to oo.

Proof. It is based on Propositions 1 and 2 below.

Proposition 1 . W(to +  t +  1) can be made arbitrarily close to the straight line L 
passing through Pi and P2.

Note that

Pi — W(to + 1 +  1)

=  [1 -  a (t0)][l -  a(t0 + 1)][1 -  a(t0 +  2)] • • • [1 -  a(t0 + t)][Pa -  W(t0)]

+  a(io)[l _  a (to + 1)][1 -  ot(to + 2)] • • • [1 -  a(t0 +  f)][Pi -  X(h)}

+  a(tQ +  1)[1 -  a(t0 +  2)] • • • [1 -  a(to + <)][Pi -  X (t0 +  1)]

+  a(t0 +  2)[1 -  a(t0 +  3)] • • • [1 -  a(t0 +  t)][Pi -  X(t0 +  2)] H 

+  a(t0 +  t -  2)[1 -  a(t0 +  t -  1)][1 -  a(£0 +  f)][Pi -  X(t0 + t -  2)]

+  a (£0 + t -  1)[1 -  a(t0 +  f)][Pi ~ X ( t 0 +  t -  1)]

-f a(to + 1) [Pi — X  (to +  i)]

♦here X  is either Pi or P2.
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Now,

||Pi — W ( t 0 + t  +  1)||

<  [ l - a ( i o ) ] [ l - a ( t o  +  l ) ] [ l - a ( t o + 2 ) ] - - - [ l - a ( < o + i ) ] | | i Ji -  W { t 0)\\ 

+  a(to)[l — ce{to +  1)][1 ~  a (to +  2)] ■ • • [1 — a(to +  f)]||Pi — X(to)\\

+  a(to +  1)[1 — a(to +  2)] • • • [1 — a(to + t)} ||Pi — X(to  +  1)||

+  &(to +  2)[1 — a(to +  3)] • • • [1 — a(to +  i)]||Pi — +  2)|| +  • ■ •

+  a(to +  t — 2) [1 — a(to +  t — 1) j [1 — a(to + 1)] ||Pi — X  (to +  t — 2) ||

+  cn(to + 1 — 1) [1 — a(to + t)] 11 P i — X(to  + 1 — 1)||

+  a(to +  Oll-Pi — X (to  +  i)||.

Similarly,

\\P2 - W ( t 0 + t  +  l)\\

<  [1 -  a ( f0)][l -  a(t0 +  1)][1 -  a(t0 +  2)] •••[!-  a (t0 +t)]\\P2 -  W ( t 0)||

+  a(io)[l — a(io +  1)] [1 — &(to +  2)] • • • [1 — a(to +  t)]\\P2 — X ( t o )  ||

+  a(to +  1)[1 — a(to +  2)] • • • [1 — a(to +  f)]||p2 — X(to  +  1) ||

+  oi(to +  2)[1 — a(to +  3)] • • • [1 — a(to +  f)]l|P2 — X(to  +  2)|| +  • • •

+  a(t0 + t -  2)[1 -  a (t0 +  t -  1)][1 -  a(t0 +  t)]||P2 - X ( t 0 +  t -  2)||

+  a(to + 1 — 1)[1 — a(to +  f )]\\P2 — X(to  + t — 1)||

+  a(t0 +  t)\\P2 — X (to  + 1)||.

Hence,

||Pi -  W ( t 0 + 1 +  1)|| +  ||P2 -  W ( t 0 + 1 +  1)||

< [1 -  a(t0)][l -  a ( t0 +  1)][1 -  a(t0 +  2)] • ■ ■ [1 -  a (t0 +  i)][||Pi -  W ( t 0)||

+  \\P2-W(t0)\\}

+  a( t0)[l -  a(t0 +  1)][1 -  a (t0 +  2)] ■ • • [1 -  a(t0 +  *)][||Pi -  X ( t Q)\\

+  HP2 -  ^(io)||]

+  a ( t0 +  1)[1 -  a(t0 +  2)] • • • [1 -  a(t0 +  «)][||Pi -  X ( t 0 +  1)||

+  IIP2 -  X ( t 0 +  1)||]

+  a(t0 +  2)[1 -  a(t0 +  3)] • ■ • [1 -  a(t0 +  i)][||Pi -  X ( t 0 +  2)||



+ HA — X(to +  2)||] + • • •

+ a(t0 + 1 -  2)[1 -  a(t0 +  t -  1)][1 -  a{to + OHIIA -  X (t0 +  t -  2)|| 

+  II-P2 — X(to +  t -  2)||]

+ q(t0 + t -  l) [ l -  a{t0 + 0][ll-Pi - X { t 0 + t - i ) W + ||P2 -  X{ t0 + t -  1)||] 

+ a(t0 +  0[||Pi -  X(to +  OH + IIP; ~ X(tQ + 0||]

= [1 -  a(t0)][l -  a(t0 +  1)][1 -  a(t0 +  2)] • • • [1 -  a(t0 +  0 ][||Pi -  W ^0)ll 

+ \\P2 - W ( t 0)\\)

+  a (*o )[l -  a(t0 +  1)][1 -  a(t0 +  2)] • ■ • [1 -  a(t0 + f)]||P i -  P2||]

+ a(t0 +  1)[1 -  a (t0 +  2)] • • • [1 -  a(t0 + t)]||Pi -  P2||

+ a(t0 +  2)[1 -  a(t0 + 3 )] ■ • ■ [1 -  a(t0 +  0 ][||Pi -  P2|| +  • • •

+ a(t0 + 1 -  2)[1 -  a(t0 + t -  1)][1 -  a(t0 + OHIIA -  All

+ a(to + 1 — 1)[1 — a(to +  0 ]||Pi — P2||

+ a(fo + Oil A  — All

= [1 -  5 (0 ][iiP! -  ^(to)ii + m  -  ^ ( t 0)ii] + 5 (0 11 Pi -  p2n.

Mow, 5(0 goes to 1 as t tends to 00. So, W(to + 1 +  1) gets arbitrarily closc to the 
line segment joining Pi and P2. Hence Proposition 1. □

Proposition 2 . W(to + 1 +  1) can be made arbitrarily close to the perpendicular 
bisector L1 of the line segment PiP2.

Let Hi and H2 be the two half planes defined by L1 such that Pi belongs to Ht 
[i =  1, 2). Without loss of generality, let W  (to) lie in Hi. From Lemma 3, we know 
W(to +  0 will belong to H2 for some t. This is because W(to +  t) moves towards 
?2 until it falls in H2 [Fig. 4(a)], Suppose W(to + 1), W(t0 + 2) , . . . ,  W(t0 + ti -  1) 
belong to Hi and W(to + ti) belongs to i / 2. Now, the perpendicular distance of 
ty(t0+ti) from Li is less than or equal to \\W(t0 +  ti -  1) -  W(t0 +  ti)\\ [Fig. 4(a)], 

Note that \\W(t0 +  1) -  W(*o)ll =  «(*o)||-X’(<o) -  W(*o)ll < a(t0)K.
Since a(t) —>• 0 as t —> 00, for any <5 > 0, we can take to to be sufficiently large 

so that \\W(tQ +  1) — Ŵ (to)|| < S and in general, \\W(to +  t) - W ( t 0 +  t -  1)|| < 5 
for all t > 0.

Now, W(tQ+ ti+ t )  will belong to Hi for some t. Suppose, W(to +  ti), . . . ,  W(t0 +  
*1 +  *2 -  1) belong to H2 and W(t0 +  h  + 12) belongs to Hi. From Fig. 4(a), it is 
dear that the distance between W(t0 -Mi +  0  an  ̂ ^1 is less than 5 for all t > 0. 
Hence Proposition 2.



Fig. 4. (a) The trajectory of W(t) for Case 2; (b) the FPVD for Case 3(a); (c) the FPVD for 
Case 3(b). The FPVD is denoted by solid lines and the triangle formed by the input points is 
denoted by dashed lines.

,Case 3. Suppose n =  3. Consider the farthest point Voronoi diagram (FPVD) of 
the points. The only vertex of the FPVD of Pi, P2, P3 may lie either (a) outside 
[Fig. 4(b)] or (b) inside [Fig. 4(c)] the triangle AP1P2P3 formed by Pi, P2 , P3. The 
FPV polygon corresponding to the point Pi is V* (i =  1,2,3).

Case 3(a). In the former case, for some large t0, W(t) will lie outside V2 for all 
t > to. From Case-2 , it is then clear that W(t) converges to (Pi +  P3 )/2  which is 
the center of the MSC.

Case 3(b). In the latter case, consider the three perpendicular bisectors L,j 
the line segments PiPj (1 < i ^  j  < 3). From the arguments given in the proof of 
Proposition 2 in Case-2, W(t) will be arbitrarily close to each of the three Ly’s-



Thus W(t) converges to the intersection point of the three bisectors which is the 
FPV vertex where the FPV polygons Vi, V2, V3 meet. Here, the FPV vertex is the 
center of the MSC. Note that for any large to and for any i, there will be a ti > to 
such that W(ti) lies in Vi. In other words, each V* will be visited by W(t) infinitely 
many times.

Denote the limiting value of W(t) by W*.

Lemma 5. For Case-3, W(to +  t) goes either to the midpoint of a side of AP 1 P2P3 

or to the vertex of the FPVD of Pi, P2, P3 as t goes to oc.

Case 4. Suppose n > 3.
We claim that W* will lie either (a) on an open edge (an edge excluding the 

vertex points) or (b) on a vertex of the FPV diagram of the point set 5. Suppose 
not. Suppose, W* lies in the interior of some Vp. Then, after some time, W(t)'s will 
always lie in the interior of Vp in which case, the limiting value of W(t) will be Pp 
(from Case 1). It is a contradiction since Vp cannot contain Pp. Hence we have two 
subcases:

Case 4(a). The limiting value W* lies on an open FPV edge. Suppose this edge is 
the common edge of the two FPV polygons V* and Vj. That means, for sufficiently 
large to, W(t) will lie either in Vi or in Vj for all t > t0. Moreover, for any t1 there 
will exist t i , t j  >  t' such that W(ti )  and W (t j )  are in Vi and Vj, respectively. In 
other words, both Vi and Vj (and only they) will be visited by W(t )  infinitely many 
times. This case is similar to Case 2 and hence W*  =  \(Pi +  Pj)  [see Fig. 3(b)]. 
Now construct a circle C, centred at W*  passing through Pi,Pj.  Obviously, PtPj 
forms the diameter of the circle C  and since Pi, Pj are the farthest points from 
W * ,  C  contains all the points of S. Hence, by Results 1-4, C  is the MSC.

Case 4(b). The limiting value of W* lies on an FPV vertex. Suppose W* lies on 
the common FPV vertex vijk of three FPV polygons say, Vit Vj and Vk. That means, 
for sufficiently large t0, W(t) will lie either in Vj or Vj or Vk for all t > t0 and each 
o f  Vu Vj, Vfc will be visited by W(t) infinitely many times. Then it will be similar 
to Case 3(b). Note that W* will be equidistant from Pi, Pj and Pk. Construct a 
circle C, centred at W* and passing through Pi: Pj and Pk. We claim that Pl, P3 
and Pk do not lie on an open semicircumference of C. Suppose not. Then vljk falls 
outside the triangle APiPjPk- Hence, from Case 3(a), W* cannot lie on vijk [see 
Fig. 4(b)], This is a contradiction since W* lies on vijk. Moreover, since Pi, Pj and 
Pk are the farthest points from vijk, C contains all the points of S. Hence C is the 
MSC from Results 1-4.

Lemma 6. For Case-4, as t goes to 0 0 , either (a) W(t0 +  t) goes to \(P% + Pj) for 
some Pi, Pj (when the MSC is determined by the two points Pi, Pj) or (b) W(t0 +t)  
goes to the vertex of the FPVD of Pi, Pj,Pk for some Pit Pj,Pk (when the MSC is 
determined by the three points Pi,Pj,Pk).



Summarizing the above we have:

Case-1. If 5 =  {P i} then W* =  Pi.
Case-2 . If S =  {P i,P2} then W* =  |(PX + P2).
Case-3. If S =  {Pi, P2, P3} then W* is either (a) the midpoint of one of the sides 

of the triangle P1P2P3 or (b) the common FPV vertex of the three FPV 
polygons VUV2, V3.

Case-4. If S =  {Pi, P2, . . . ,  P „} then

(a) If the MSC is determined by two points Pj, Pj then W* =  \{Pi + Pj)-
(b) If the MSC is determined by three points Pj,Pj,Pt then W* = the common 

FPV vertex of the three FPV polygons Vi,Vj,Vk-

Definition 2. The points by which the MSC is determined are called the contact 
points of the MSC.

4. The Architecture Design
It can be seen that the above model works as a self-organizing process. We present 
a set of input vectors to a network of processors against which a competition takes 
place and the network generates some feedback (the maximum dj and the point 
Pk in Step 3 of the algorithm). Depending on the feedback the processor 7T adapts 
and moves accordingly. It should be kept in mind that the processor never moves 
physically. The movement is in terms of the changes in the weight vector. If the 
process is repeated iteratively, the process converges and the processor 7r positions 
itself to the desired center of the MSC. Moreover, the above learning is unsupervised. 
In brief, from the inputs the network learns without any supervision and finally 
outputs the MSC. Similar things essentially happen in self-organization.7

We now describe a neural network architecture to implement the MSC model. 
The network consists of three layers (Fig. 5) where the bottom and middle layers 
contain n (n =  input size) neurons each and the top layer contains only one neuron. 
The input vectors are stored into the n neurons of the bottom layer and the neuron 
in the top layer stores the weight vector W. The jth neuron in the bottom layer 
is connected to the jth neuron in the middle layer. All the neurons in the bottom 
and middle layers are connected to the single neuron in the top layer. Additionally, 
the middle layer is a fully connected network, that is, every neuron is connected to 
every other neuron. Similar types of multiple layers of neurons communicating via 
feedforward and feedback connections have been used by several researchers2,13,15 
in self-organizing models.

Every neuron in the middle layer is composed of a building block (Fig. 6 ) as 
used by Pal et al,13 in their RANKNET model. The RANKNET model ranks all 
input values presented to the neurons in a single iteration where the neuron with 
the maximum input value outputs rank n. Thus the maximum input value can be 
obtained in a single clock time.



Fig. 5. The architecture of the MSC model. Empty circles denote fixed processors and the solid 
circle denotes floating processor.

Fig. 6. The architecture for a neuron in the middle layer (Fig. 5). The internal threshold (H ) of 
the ith neuron is its input value di.

The RANKNET is a fully connected network composed of n neurons, where n 
is the number of input values. Every neuron is connected to every other neuron 
and every input value is associated with a neuron. Let di denote the input value 
to the ith neuron. Denote the output of the ith neuron by Oj. The ith neuron, 
i =  1 , 2 , . . . ,  n, computes

n
0i(o) =  ' £ H (dj ,di)

3=l



where
f 1 if dj > di 

H{dj ,di) =  \
I 0 otherwise.

Thus, H is a hard-limiter that uses the respective neuron’s input as the internal 
threshold. The ith neuron computes H(dj,di),j =  1,2,... ,n and then adds them 
to get the output Oj. Hence 0{ gives the rank rt e { 1, 2 , . . .  ,n } of the input value 
di. All the neurons compute their outputs ot's simultaneously. Thus, the ranks of 
all input values are obtained in a single iteration.

The hardware implementation of the proposed network is much simpler than the 
existing MAXNET (or MINNET) models. Every neuron in Fig. 5 (middle layer) is 
composed of a building block as given in Fig. 6. The difference between our neuron 
architecture and the same in the MAXNET model proposed by Lippman et al.8 is 
that each neuron in the MAXNET model first computes the weighted sum of the 
input values and then uses a threshold logic function to compute the output while 
every neuron in the RANKNET model first uses hard-limiters and then computes 
the sum.

Computational Cost

The present algorithm works in parallel with the help of multiple processors (see 
Fig. 5). The input points are assigned to each processor in the bottom layer. Initially, 
the weight vector W  in the processor 7T in the top layer is assigned to a random 
value. The value of W  is passed to every neuron at the bottom layer and the neurons 
in the bottom layer simultaneously compute d{,i =  1,2, . . .  ,n. This computation is 
done in constant time. Now the ith neuron of the bottom layer passes the computed 
di value, along with the corresponding Pi, to the ith neuron of the middle layer. 
The middle layer, by the RANKNET algorithm,13 computes the ranks (and hence 
selects the winner neuron, that is, the neuron with rank n) in constant time. The Pi 
value of the winner neuron is passed to the neuron n in the top layer which updates 
the value of W  by Eq. 4. Thus one complete cycle (top layer —> bottom layer —>• 
middle layer —> top layer) takes constant time. The cycle (iteration) is repeated 
until W(t) converges, that is, W(t + 1) and W(t) are sufficiently close. Thus, in the 
whole process, complexity does not depend on the size of the input.

5. Applications

5.1. Outlier detection

We have proved, for the two-dimensional case, that the MSC model3 converges and
yields at the center of the minimum spanning circle. Although the general case is
not proved, it is not difficult to conjecture that the model can be extended to any
higher dimensional case. This can be done by replacing the 2D weight vector by
d-dim (d > 2) weight vector and computing the cf-dim Euclidean distance. Other



Fig. 7. A  planar point set with outliers. Empty dots (tiny circles) represent valid points and solid 
dots represent outliers.

computations remain the same. Thus a similar architecture, as proposed in the 2D 
case, can be used in higher dimensions also.

W ith the above notion, an experiment is carried out that detects the outliers 
from an input set in a high dimensional space. We first explain the problem on a 2D 
input set. In Fig. 7, a set of planar points with a few outliers are shown. The MSC 
of the point set is computed and the contact points are removed from the input 
set. This is repeated for several iterations. In this process, after all the outliers get 
removed from the input set, it is expected that the radius of the (newly) computed 
MSC will become relatively steady.

Outlier detection in a high dimensional space is a challenging problem. We 
have taken data points from a very high dimensional space (d — 153) and have 
successfully detected the outliers using the higher dimensional version of the MSC 
model. The outlier detection algorithm goes as follows.

Fig. 8. The graph of successive radii.



Table 1. Average errors in estimating 
the radius and the center.

n O 
! 

OI KG' — (100,100,100)11

5 25.1572 28.3163
10 12.1049 21.5907
20 4.6939 7.3968
50 1.3422 2.8645

100 0.9841 2.0011
500 0.1011 0.3753

Outlier Detection Algorithm
Step 1. Compute the MSC of the input set and its radius.
Step 2 . Remove the contact points (see Definition 2) from the input set.
Step 3. Repeat from Step 1 until two successive radii are relatively close.

Figure 8 is the graph showing the successive radii. It is found that there is a 
significant fall of the value of the radius upto iteration 4 after which it becomes 
relatively steady. Hence after iteration 4, one can reasonably conclude that the 
remaining data set has no outliers.

5.2. Statistical estimation

The algorithm proposed in this paper can be used for statistical estimation of 
parameters of a certain type of statistical distributions. Suppose, /  is the prob
ability density function of the uniform distribution over a hyper-sphere in d 
dimensions. The unknown parameters in /  here are the radius and the center of 
the hypersphere.

Let P\,P2 , . . . ,P n (each a d-dimensional point) be a random sample of size 
n drawn from this distribution. The maximum likelihood estimators of the pa
rameters here are the radius and the center of the smallest hyper-sphere contain
ing Pi, P2 , ■.., Pn. We made an empirical study of how these estimators perform 
when d =  3. The radius and the center are taken as 100 and (100, 100, 100). 
Six different values of n are considered, namely, 5, 10, 20, 50, 100, 500. For 
each of these six values, the algorithm has been tested for 20 random seeds for 
the starting vector. In each such case, the difference |r — 100| and the distance 
y/(ci -  100)2 + (02 — 100)2 +  (03 — 100)2 are computed where r and C =  (ci, C2, C3) 
are the estimates for the actual radius and center. For each value of n, the averages 
of the two error quantities are computed (Table 1). It can be seen that both these 
errors decrease as n increases and the maximum likelihood estimators based on the 
smallest enclosing hyper-sphere perform satisfactorily.



6. Conclusions

During the last few years, there has been a great interest in applying neural networks 
technology in various fields of conventional computing. This is due to the facts that 
neurocomputing provides parallelism, it is adaptive and it sometimes simplifies a 
problem. A number of processors, each performing simple computations, when work 
collectively, can solve a complex problem. Datta3 proposed a self-organizing model 
to compute the minimum spanning circle for a given set of points. The present work 
is a theoretical study of the model that proves the convergence of the algorithm. It 
discusses an efficient architectural design and some applications of the model.

It is shown that the MSC algorithm, proposed by Datta,3 converges to the center 
of the desired smallest circle. There exist several algorithms4-6,11’12,16-19’21 for the 
MSC problem. The proposed algorithm is iterative in nature and we have suggested 
an architecture for parallel implementation of the problem. The worst-case time 
complexities of these algorithms range from 0 (n3) to 0(n  log n), excepting the work 
due to Megiddo9 which has 0(n) worst-case time complexity. Using randomized 
algorithm expected 0(n ) complexity is achieved by Welzl.22 The worst-case time 
complexity of the proposed implementation does not depend on the input size 
when 0 (n ) processors are used. As can be seen, the individual processors perform 
very simple computations like finding the Euclidean distance (dj) here, which is an 
important phenomenon of neural network models.

It can be conjectured that the present work can be straightaway implemented 
for any higher dimension. For a similar problem in d dimensions (d > 2) one has 
to simply calculate the Euclidean distances in d dimensions. The complexity of the 
algorithm remains the same. The extendability of the model in high dimensions is 
empirically demonstrated here with the help of two applications. Among the above 
cited algorithms only a few (for example, Welzl’s model22) are extendable to high 
dimensions.

The present model is self-organizing in that it learns the center and the radius of 
the MSC in an unsupervised manner. In Kohonen’s self-organizing model,7 all the 
processors in the network take part in the weight update process. The present model 
uses a network of processors where all the processors have fixed weights excepting 
one i.e. all other processors are fixed (in the bottom and middle layers) while a 
single floating processor (in the top layer) takes part in the process of positioning 
itself in the proper location. The fixed processors are used for parallel computations. 
In Kohonen’s model, the “winner” processor moves itself toward the input vector 
presented while in the present model, the winner processor draws the processor 7r 
toward itself (toward its associated input point).
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