
International Journal of Pattern Recognition and Artificial Intelligence
Vol. 16, N o. 7 (2002) 797-815

A N E U R A L NETWORK MODEL FOR MINIMUM SPANNING
CIRCLE: ITS CONVERGENCE, ARCHITECTURE DESIGN

AND APPLICATIONS

AMITAVA DATTA* and S. K. PARUI*
* Computer and Statistical Service Centre,

t Computer Vision and Pattern Recognition Unit,
Indian Statistical Institute, 203 B. T. Road, Calcutta 700 108, India

* amitava@isical.ac.in

A self-organizing neural network model that computes the smallest circle (also called
minim um spanning circle) enclosing a finite set of given points was proposed by Datta.3
In the article,3 the algorithm is stated and it is demonstrated by simulation that the
center o f the smallest circle can be achieved with a given level of accuracy. No rigorous
p roo f was given in support of the simulation results. In this paper, we make a rigorous
analysis o f the model and mathematically prove that the model converges to the desired
center o f the minimum spanning circle. A suitable neural network architecture is also
designed for parallel implementation of the proposed model. Time complexity of the
algorithm is worked out under the proposed architecture. Extension of the proposed
m odel to higher dimensions is discussed and demonstrated with some applications.

Keywords'. Minimum spanning circle; one-center; neural networks; self-organization;
facility location; outlier detection; maximum likelihood estimator.

1. Introduction

This paper deals with the problem of finding the minimum spanning circle (MSC)
or the smallest enclosing circle (SEC). The issue is to find the radius and the center
of the smallest circle that encloses n given points in the Euclidean plane. In location
theory this is the unweighted Euclidean one-center problem in the plane.

The MSC has applications in optimization, pattern recognition, image analysis,
statistical estimation, etc. It has applications in transmission and transportation
problems. Suppose a community of users needs the service of some facility, for
example, radio/TV receivers with signals from a single transmitter. The problem
is to find the optimum location of the transmitter (facility). In other words, we
need to find where the facility should be located so as to minimize the maximum
distance from the facility to any user. It is clear that, if we imagine the users as
points in the plane, then the center of the MSC for this set of points is the solution

'Author for correspondence.

mailto:amitava@isical.ac.in

of the problem. In a different kind of application, for example in transportation,
the center of the MSC can be the optimal location for a service station if we want
to minimize the maximum distance that a customer would have to travel from his
place to the service station. Here the locations of the residences specify the set of
points.

The MSC problem has a long history. After it was posed by Sylvester20 in 1857,
it attracted several researchers and as a result many solutions4-6,9,11’12’16-19’21
have been suggested. The (worst-case) time complexities for the above solutions
range from 0 (n3) to O(nlogn), where n is the number of input points. Megiddo9
formulated this problem as a linear programming problem which could be solved
in 0(n) time. A randomized algorithm is available for computing the MSC that
takes the expected O(n) time.22 Apart from the time complexities, many of these
algorithms suffer from implementation complexities. That is, they are not simple
from the point of view of actual programming and implementation.

An algorithm, based on a self-organizing neural network, was proposed by
Datta3 to find the MSC for a given set of points. The author demonstrated, by
computer simulation, how the algorithm finds the optimum position of the center
of the MSC iteratively (Figs. 1 and 2). Against each presentation of input signals
(here points) the network adapts without any supervision and finally converges
to the optimum solution. In this paper, we mathematically analyze Datta’s MSC
algorithm and give a rigorous proof of convergence. We also propose a multilayer
architecture for an efficient and parallel implementation of Datta’s self-organizing
algorithm. The article is organized as follows. Section 2 briefly describes the MSC

Fig. 1. A result obtained by Datta3 when the minimum spanning circle is determined by two
points. “+ ” represents the initial position of the weight vector and “x” represents the final center
of the circle (i = 50).

Fig. 2. A result obtained by Datta3 when the minimum spanning circle is determined by three
points (t = 70).

algrithm. Section 3 contains the mathematical analysis and the proof of conver
gence of the algorithm. The proposed architecture for the MSC model is presented
in Sec. 4 where the time complexity is also worked out. Intuitively, the proposed
model is straightaway extendable to higher dimensions. This has been demonstrated
by some applications in Sec. 5.

2. The MSC Algorithm

The formal description of the MSC problem is as follows:
Let S = {P i,P 2 , . . . , Pn} be a set of n given points in the Euclidean plane. The

problem is to find the center and radius of the smallest circle such that no point of
S falls outside the circle. Such a circle is called the minimum spanning circle. The
problem can be stated as:

Find the point W = (u>i, W2) so that

max ||Pj — W\\ (1)
3

is minimized over all choices of W in the plane. In other words, we compute

r = min max{((wi - aj)2 + (u>2 - (2)
(wi,w2) j

where (aj,bj) is the co-ordinates of P j,j = 1,2, The radius of the MSC is r
and the optimum (w\, W2) is the center.

Assign one processor to each point of S. Another processor 7r stores a weight
vector W = (w 1 , 1112)- This weight vector will be updated iteratively in the self-
organization process. The weight vector here represents a position in the plane
where the processor 7r can be thought to be located.

The initial value, W (0), of the weight vector W is set at random. At iteration t
we find the farthest point (w.r.t. Euclidean distance) from W(t). Let Pk — (flk-, t>k)
be the farthest point, k € {1 ,2 ,. . . , n}. That is,

(l-Pfc - = max \\Pj — W \\. (3)
i

Then the weight vector W is updated as follows :

W(t + 1) = W(t) + a(t)(Pk - W(t)) (4)

where a(t) is a decreasing function of iteration number t satisfying some condition
as stated in the next section.

The idea is as follows. Find the farthest point Pk from W (0). Since we desire to
minimize the distance dist(Pfc, W(0)), we try to move W toward Pk. With a suitable
value of a (as discussed later) we update the weight vector W according to Eq. (4).
This process is repeated enabling W to gradually move towards Pk- After each
weight update the farthest point from W is recalculated. It is clear that during this
process, some new point Pk>(k' ^ k) becomes the farthest point from the weight
vector W and, as soon as it happens, W starts moving toward Pk' instead of moving
toward Pk- The weight update process is continued repeatedly with a(t) 0 as
t —> oo enabling the process to stabilize when the difference between the weight
vectors at two successive iterations is negligible.

The Algorithm MSC

Step 1. Initialize iteration number t = 0; Initialize W(t) = (w\(t),w2 {t)) with
random values.

Step 2. Calculate dj = dist(W(t),Pj) for all j = 1 ,2 ,... ,n.
Step 3. Find the maximum dj, and the point Pk such that maXj dj — dist

(W{t),Pk).
Step 4. Adjust weight vector W(t) according to Eq. (4).
Step 5. Set t = t + 1 and repeat from Step 2 until the weight vectors of two

successive iterations are sufficiently close.

3. Analysis and Convergence o f the MSC Algorithm

In this section, we do mathematical analysis of the Algorithm -M SC and study its
convergence properties. Before going into the details of these we need the following
definition to be stated.

Definition 1. For the set S, the farthest point Voronoi diagram (FPVD) is a
partition of the plane defined by the convex regions Vr, 1 < r < n where

K = { P : | | P - P r| | > | | P - P t || V ^ r } (5)
VT is the farthest point Voronoi polygon corresponding to Pr, 1 < r < n. Farthest
point Voronoi diagrams are shown in Fig. 3.

Fig. 3. Farthest point Voronoi diagrams for two planar sets. MSC is determined by (a) three
points, (b) two points.

We shall now prove that in Algorithm-MSC. the weight vector W(t) converges
to the center (say, W*) of the minimum spanning circle. The major cases of the
proof are as follows. We prove

Case-1. If S = {P i} then W* = Pi where W * is the limiting value of W(t).
Case-2 . If S = {Pi, P2} then W* = ±(Pj + P2).
Case-3. If S = {Pi, P2 , P3 } then W* is either (a) the midpoint of one of the sides

of the triangle P1P2P3 or (b) the common FPV vertex of the three FPV
polygons V1,V2,V3.

Case-4. If 5 = {Pi, P2, . . . , P „} then

(a) If the MSC is determined by two points Pi,Pj then W* = \{Pi + Pj).
(b) If the MSC is determined by three points Pi,Pj,Pk then W* = the common

FPV vertex of the three FPV polygons Vi,Vj,Vk.

Before going into the proof, we state below a few known results.11,14,17

Result 1. If there is a circle C passing through three points, Pi, Pj and Pk such
that they do not lie on any open semicircumference of C and if C con
tains all the points, then C is the MSC.

Result 2. If the MSC passes through exactly two points Pi and Pj, then the line
segment PiPj forms a diameter of the MSC.

Result 3 . If no two points of S form a diameter of the MSC, then the MSC passes
through at least three points which do not lie on any open semicircum
ference of the MSC.

Result 4. The MSC is unique.

Let X(t) € 5, t = 0 ,1 ,2 ,... be such that \\X(t) — W(t)\\ = max* ||Pj —W(f)||,0 <
a (t) < 1 for all t and a(t) decreases to 0 as t tends to oo such that = 00 •

Note that the points of 5 come from a bounded region. Hence, 11^(0) — Pi|| < K
for all i, for some K > 0. It is easy to see that \\W(t) — Pj|| < K for all i, for all t.

Lemma 1. ~ a W] =

Proof. Since 0 < a(t) < 1 for all t, o Q(̂) = oo if and only if Ilt^o — a (̂)j = 0
(see Ref. 1). □

We shall now prove a result on a(t). For any given to, let 5 (0) = a(io) and
S(t + 1) = [1 — ot(to + 1 + l)]5(i) + a(to + 1 + 1) for t = 0 ,1 ,2 ,....

Note that

5(1) = a(to)[l — ct(tQ + 1)] + a?(£o + 1)

5(2) = a(to)[l — cx(to + 1)] [1 — oc(to + 2)] 4- a(to + 1)[1 — &(to + 2)] + a(to + 2)

5(3) = a(i0)[l - a(to + 1)][1 - a(t0 + 2)][1 - a(t0 + 3)]

+ a(to + 1) [1 — cx(to + 2)][1 — a(to + 3)]

+ &{to + 2)[1 — a(to + 3)] + a(to + 3).
In general,

S(t) = a(«o)[l - a(i0 + 1)][1 - a(i0 + 2)] • • • [1 - a(t0 Hr t)}

+ &(ta + 1)[1 — a(to + 2)] • • • [1 — a(to + f)]

+ a(£o + 2) [1 — a(to + 3)] • • • [1 — a (to + 1)\ + ■ ■ •

+ a(to + t — 2) [1 — a(to + 1 — 1)] [1 — a(to + £)]

+ a(to + t — 1) [1 — a(to + i)] + a(to 4- t).

Lemma 2. 5(f) goes to 1 as t goes to oo.

Proof. It is easy to see that

1 - ^ (l) = [1 - a(<o)][l - a(t0 + 1)]

1 ~ 5(2) = [1 — 5(1)][1 — a(t0 + 2)]

= [1 - a(i0)][l - a(t0 + 1)][1 - a(t0 + 2)]

1 — 5(3) = [1 — 5(2)] [1 — a(t0 + 3)]

= [1 - a(t0)][l - a(t0 + 1)][1 - a(t0 + 2)][1 - a(t0 + 3)].
In general,

1 - S(t) = [1 - a(t0)][l - a(t0 + 1)][1 - a(t0 + 2)] • ■ • [1 - a(t0 + f)] .

From Lemma — QW] — 0 . Hence Lemma 2 . □

Applying Eq. (4) repeatedly we get

W(t0 + 1 + 1) = [1 - a(f0)][l - a(t0 + 1)][1 - Q(t0 + 2)] • ■ • [1 - a(t0 + t)}W{t0)

+ a(i0)[l - a(t0 + 1)][1 - a(t0 + 2)] • • • [1 - a(t0 + t)}X(t0)

+ a(f0 + 1)[1 - a(t0 + 2)j ■ • • [1 - a (<0 + t)\X(to + 1)

4- a(t0 -f- 2)[1 — a(io + 3)] ■ • • [1 - a(f0 -f t))X(t0 + 2) + • • •

+ a(t0 + 1 - 2)[1 - a(t0 + t - 1)][1 - o(i‘o + t)}X{t0 + t - 2)

+ ct(to + t — 1)[1 — a(to + t)\X (to + t — 1)

+ ct(to + t)X(to + 1).

Case l .n = l.
Here, X(t) = Pi for all t. Hence, from above, we get

W(t0 + t + 1) = [1 - S(t)}W(t0) + S(t)Pi..

Lemma 3. For Case 1, W(to + t) goes to Pi as t goes to oc.

Case 2 . n = 2 . The center of the MSC is (̂P\ + P2).

Lemma 4. For Case 2, W(to +<) goes to (Pi +)/2 as t goes to oo.

Proof. It is based on Propositions 1 and 2 below.

Proposition 1 . W(to + t + 1) can be made arbitrarily close to the straight line L
passing through Pi and P2.

Note that

Pi — W(to + 1 + 1)

= [1 - a (t0)][l - a(t0 + 1)][1 - a(t0 + 2)] • • • [1 - a(t0 + t)][Pa - W(t0)]

+ a(io)[l _ a (to + 1)][1 - ot(to + 2)] • • • [1 - a(t0 + f)][Pi - X(h)}

+ a(tQ + 1)[1 - a(t0 + 2)] • • • [1 - a(to + <)][Pi - X (t0 + 1)]

+ a(t0 + 2)[1 - a(t0 + 3)] • • • [1 - a(t0 + t)][Pi - X(t0 + 2)] H

+ a(t0 + t - 2)[1 - a(t0 + t - 1)][1 - a(£0 + f)][Pi - X(t0 + t - 2)]

+ a (£0 + t - 1)[1 - a(t0 + f)][Pi ~ X (t 0 + t - 1)]

-f a(to + 1) [Pi — X (to + i)]

♦here X is either Pi or P2.

804 A. Datta & S. K. Parui

Now,

||Pi — W (t 0 + t + 1)||

< [l - a (i o)] [l - a (t o + l)] [l - a (t o + 2)] - - - [l - a (< o + i)] | | i Ji - W { t 0)\\

+ a(to)[l — ce{to + 1)][1 ~ a (to + 2)] ■ • • [1 — a(to + f)]||Pi — X(to)\\

+ a(to + 1)[1 — a(to + 2)] • • • [1 — a(to + t)} ||Pi — X(to + 1)||

+ &(to + 2)[1 — a(to + 3)] • • • [1 — a(to + i)]||Pi — + 2)|| + • ■ •

+ a(to + t — 2) [1 — a(to + t — 1) j [1 — a(to + 1)] ||Pi — X (to + t — 2) ||

+ cn(to + 1 — 1) [1 — a(to + t)] 11 P i — X(to + 1 — 1)||

+ a(to + Oll-Pi — X (to + i)||.

Similarly,

\\P2 - W (t 0 + t + l)\\

< [1 - a (f0)][l - a(t0 + 1)][1 - a(t0 + 2)] •••[!- a (t0 +t)]\\P2 - W (t 0)||

+ a(io)[l — a(io + 1)] [1 — &(to + 2)] • • • [1 — a(to + t)]\\P2 — X (t o) ||

+ a(to + 1)[1 — a(to + 2)] • • • [1 — a(to + f)]||p2 — X(to + 1) ||

+ oi(to + 2)[1 — a(to + 3)] • • • [1 — a(to + f)]l|P2 — X(to + 2)|| + • • •

+ a(t0 + t - 2)[1 - a (t0 + t - 1)][1 - a(t0 + t)]||P2 - X (t 0 + t - 2)||

+ a(to + 1 — 1)[1 — a(to + f)]\\P2 — X(to + t — 1)||

+ a(t0 + t)\\P2 — X (to + 1)||.

Hence,

||Pi - W (t 0 + 1 + 1)|| + ||P2 - W (t 0 + 1 + 1)||

< [1 - a(t0)][l - a (t0 + 1)][1 - a(t0 + 2)] • ■ ■ [1 - a (t0 + i)][||Pi - W (t 0)||

+ \\P2-W(t0)\\}

+ a(t0)[l - a(t0 + 1)][1 - a (t0 + 2)] ■ • • [1 - a(t0 + *)][||Pi - X (t Q)\\

+ HP2 - ^(io)||]

+ a (t0 + 1)[1 - a(t0 + 2)] • • • [1 - a(t0 + «)][||Pi - X (t 0 + 1)||

+ IIP2 - X (t 0 + 1)||]

+ a(t0 + 2)[1 - a(t0 + 3)] • ■ • [1 - a(t0 + i)][||Pi - X (t 0 + 2)||

+ HA — X(to + 2)||] + • • •

+ a(t0 + 1 - 2)[1 - a(t0 + t - 1)][1 - a{to + OHIIA - X (t0 + t - 2)||

+ II-P2 — X(to + t - 2)||]

+ q(t0 + t - l) [l - a{t0 + 0][ll-Pi - X { t 0 + t - i) W + ||P2 - X{ t0 + t - 1)||]

+ a(t0 + 0[||Pi - X(to + OH + IIP; ~ X(tQ + 0||]

= [1 - a(t0)][l - a(t0 + 1)][1 - a(t0 + 2)] • • • [1 - a(t0 + 0][||Pi - W ^0)ll

+ \\P2 - W (t 0)\\)

+ a (*o)[l - a(t0 + 1)][1 - a(t0 + 2)] • ■ • [1 - a(t0 + f)]||P i - P2||]

+ a(t0 + 1)[1 - a (t0 + 2)] • • • [1 - a(t0 + t)]||Pi - P2||

+ a(t0 + 2)[1 - a(t0 + 3)] ■ • ■ [1 - a(t0 + 0][||Pi - P2|| + • • •

+ a(t0 + 1 - 2)[1 - a(t0 + t - 1)][1 - a(t0 + OHIIA - All

+ a(to + 1 — 1)[1 — a(to + 0]||Pi — P2||

+ a(fo + Oil A — All

= [1 - 5 (0][iiP! - ^(to)ii + m - ^ (t 0)ii] + 5 (0 11 Pi - p2n.

Mow, 5(0 goes to 1 as t tends to 00. So, W(to + 1 + 1) gets arbitrarily closc to the
line segment joining Pi and P2. Hence Proposition 1. □

Proposition 2 . W(to + 1 + 1) can be made arbitrarily close to the perpendicular
bisector L1 of the line segment PiP2.

Let Hi and H2 be the two half planes defined by L1 such that Pi belongs to Ht
[i = 1, 2). Without loss of generality, let W (to) lie in Hi. From Lemma 3, we know
W(to + 0 will belong to H2 for some t. This is because W(to + t) moves towards
?2 until it falls in H2 [Fig. 4(a)], Suppose W(to + 1), W(t0 + 2) , . . . , W(t0 + ti - 1)
belong to Hi and W(to + ti) belongs to i / 2. Now, the perpendicular distance of
ty(t0+ti) from Li is less than or equal to \\W(t0 + ti - 1) - W(t0 + ti)\\ [Fig. 4(a)],

Note that \\W(t0 + 1) - W(*o)ll = «(*o)||-X’(<o) - W(*o)ll < a(t0)K.
Since a(t) —>• 0 as t —> 00, for any <5 > 0, we can take to to be sufficiently large

so that \\W(tQ + 1) — Ŵ (to)|| < S and in general, \\W(to + t) - W (t 0 + t - 1)|| < 5
for all t > 0.

Now, W(tQ+ ti+ t) will belong to Hi for some t. Suppose, W(to + ti), . . . , W(t0 +
*1 + *2 - 1) belong to H2 and W(t0 + h + 12) belongs to Hi. From Fig. 4(a), it is
dear that the distance between W(t0 -Mi + 0 an ̂ ^1 is less than 5 for all t > 0.
Hence Proposition 2.

Fig. 4. (a) The trajectory of W(t) for Case 2; (b) the FPVD for Case 3(a); (c) the FPVD for
Case 3(b). The FPVD is denoted by solid lines and the triangle formed by the input points is
denoted by dashed lines.

,Case 3. Suppose n = 3. Consider the farthest point Voronoi diagram (FPVD) of
the points. The only vertex of the FPVD of Pi, P2, P3 may lie either (a) outside
[Fig. 4(b)] or (b) inside [Fig. 4(c)] the triangle AP1P2P3 formed by Pi, P2 , P3. The
FPV polygon corresponding to the point Pi is V* (i = 1,2,3).

Case 3(a). In the former case, for some large t0, W(t) will lie outside V2 for all
t > to. From Case-2 , it is then clear that W(t) converges to (Pi + P3)/2 which is
the center of the MSC.

Case 3(b). In the latter case, consider the three perpendicular bisectors L,j
the line segments PiPj (1 < i ^ j < 3). From the arguments given in the proof of
Proposition 2 in Case-2, W(t) will be arbitrarily close to each of the three Ly’s-

Thus W(t) converges to the intersection point of the three bisectors which is the
FPV vertex where the FPV polygons Vi, V2, V3 meet. Here, the FPV vertex is the
center of the MSC. Note that for any large to and for any i, there will be a ti > to
such that W(ti) lies in Vi. In other words, each V* will be visited by W(t) infinitely
many times.

Denote the limiting value of W(t) by W*.

Lemma 5. For Case-3, W(to + t) goes either to the midpoint of a side of AP 1 P2P3

or to the vertex of the FPVD of Pi, P2, P3 as t goes to oc.

Case 4. Suppose n > 3.
We claim that W* will lie either (a) on an open edge (an edge excluding the

vertex points) or (b) on a vertex of the FPV diagram of the point set 5. Suppose
not. Suppose, W* lies in the interior of some Vp. Then, after some time, W(t)'s will
always lie in the interior of Vp in which case, the limiting value of W(t) will be Pp
(from Case 1). It is a contradiction since Vp cannot contain Pp. Hence we have two
subcases:

Case 4(a). The limiting value W* lies on an open FPV edge. Suppose this edge is
the common edge of the two FPV polygons V* and Vj. That means, for sufficiently
large to, W(t) will lie either in Vi or in Vj for all t > t0. Moreover, for any t1 there
will exist t i , t j > t' such that W(ti) and W (t j) are in Vi and Vj, respectively. In
other words, both Vi and Vj (and only they) will be visited by W(t) infinitely many
times. This case is similar to Case 2 and hence W* = \(Pi + Pj) [see Fig. 3(b)].
Now construct a circle C, centred at W* passing through Pi,Pj. Obviously, PtPj
forms the diameter of the circle C and since Pi, Pj are the farthest points from
W * , C contains all the points of S. Hence, by Results 1-4, C is the MSC.

Case 4(b). The limiting value of W* lies on an FPV vertex. Suppose W* lies on
the common FPV vertex vijk of three FPV polygons say, Vit Vj and Vk. That means,
for sufficiently large t0, W(t) will lie either in Vj or Vj or Vk for all t > t0 and each
o f Vu Vj, Vfc will be visited by W(t) infinitely many times. Then it will be similar
to Case 3(b). Note that W* will be equidistant from Pi, Pj and Pk. Construct a
circle C, centred at W* and passing through Pi: Pj and Pk. We claim that Pl, P3
and Pk do not lie on an open semicircumference of C. Suppose not. Then vljk falls
outside the triangle APiPjPk- Hence, from Case 3(a), W* cannot lie on vijk [see
Fig. 4(b)], This is a contradiction since W* lies on vijk. Moreover, since Pi, Pj and
Pk are the farthest points from vijk, C contains all the points of S. Hence C is the
MSC from Results 1-4.

Lemma 6. For Case-4, as t goes to 0 0 , either (a) W(t0 + t) goes to \(P% + Pj) for
some Pi, Pj (when the MSC is determined by the two points Pi, Pj) or (b) W(t0 +t)
goes to the vertex of the FPVD of Pi, Pj,Pk for some Pit Pj,Pk (when the MSC is
determined by the three points Pi,Pj,Pk).

Summarizing the above we have:

Case-1. If 5 = {P i} then W* = Pi.
Case-2 . If S = {P i,P2} then W* = |(PX + P2).
Case-3. If S = {Pi, P2, P3} then W* is either (a) the midpoint of one of the sides

of the triangle P1P2P3 or (b) the common FPV vertex of the three FPV
polygons VUV2, V3.

Case-4. If S = {Pi, P2, . . . , P „} then

(a) If the MSC is determined by two points Pj, Pj then W* = \{Pi + Pj)-
(b) If the MSC is determined by three points Pj,Pj,Pt then W* = the common

FPV vertex of the three FPV polygons Vi,Vj,Vk-

Definition 2. The points by which the MSC is determined are called the contact
points of the MSC.

4. The Architecture Design
It can be seen that the above model works as a self-organizing process. We present
a set of input vectors to a network of processors against which a competition takes
place and the network generates some feedback (the maximum dj and the point
Pk in Step 3 of the algorithm). Depending on the feedback the processor 7T adapts
and moves accordingly. It should be kept in mind that the processor never moves
physically. The movement is in terms of the changes in the weight vector. If the
process is repeated iteratively, the process converges and the processor 7r positions
itself to the desired center of the MSC. Moreover, the above learning is unsupervised.
In brief, from the inputs the network learns without any supervision and finally
outputs the MSC. Similar things essentially happen in self-organization.7

We now describe a neural network architecture to implement the MSC model.
The network consists of three layers (Fig. 5) where the bottom and middle layers
contain n (n = input size) neurons each and the top layer contains only one neuron.
The input vectors are stored into the n neurons of the bottom layer and the neuron
in the top layer stores the weight vector W. The jth neuron in the bottom layer
is connected to the jth neuron in the middle layer. All the neurons in the bottom
and middle layers are connected to the single neuron in the top layer. Additionally,
the middle layer is a fully connected network, that is, every neuron is connected to
every other neuron. Similar types of multiple layers of neurons communicating via
feedforward and feedback connections have been used by several researchers2,13,15
in self-organizing models.

Every neuron in the middle layer is composed of a building block (Fig. 6) as
used by Pal et al,13 in their RANKNET model. The RANKNET model ranks all
input values presented to the neurons in a single iteration where the neuron with
the maximum input value outputs rank n. Thus the maximum input value can be
obtained in a single clock time.

Fig. 5. The architecture of the MSC model. Empty circles denote fixed processors and the solid
circle denotes floating processor.

Fig. 6. The architecture for a neuron in the middle layer (Fig. 5). The internal threshold (H) of
the ith neuron is its input value di.

The RANKNET is a fully connected network composed of n neurons, where n
is the number of input values. Every neuron is connected to every other neuron
and every input value is associated with a neuron. Let di denote the input value
to the ith neuron. Denote the output of the ith neuron by Oj. The ith neuron,
i = 1 , 2 , . . . , n, computes

n
0i(o) = ' £ H (dj ,di)

3=l

where
f 1 if dj > di

H{dj ,di) = \
I 0 otherwise.

Thus, H is a hard-limiter that uses the respective neuron’s input as the internal
threshold. The ith neuron computes H(dj,di),j = 1,2,... ,n and then adds them
to get the output Oj. Hence 0{ gives the rank rt e { 1, 2 , . . . ,n } of the input value
di. All the neurons compute their outputs ot's simultaneously. Thus, the ranks of
all input values are obtained in a single iteration.

The hardware implementation of the proposed network is much simpler than the
existing MAXNET (or MINNET) models. Every neuron in Fig. 5 (middle layer) is
composed of a building block as given in Fig. 6. The difference between our neuron
architecture and the same in the MAXNET model proposed by Lippman et al.8 is
that each neuron in the MAXNET model first computes the weighted sum of the
input values and then uses a threshold logic function to compute the output while
every neuron in the RANKNET model first uses hard-limiters and then computes
the sum.

Computational Cost

The present algorithm works in parallel with the help of multiple processors (see
Fig. 5). The input points are assigned to each processor in the bottom layer. Initially,
the weight vector W in the processor 7T in the top layer is assigned to a random
value. The value of W is passed to every neuron at the bottom layer and the neurons
in the bottom layer simultaneously compute d{,i = 1,2, . . . ,n. This computation is
done in constant time. Now the ith neuron of the bottom layer passes the computed
di value, along with the corresponding Pi, to the ith neuron of the middle layer.
The middle layer, by the RANKNET algorithm,13 computes the ranks (and hence
selects the winner neuron, that is, the neuron with rank n) in constant time. The Pi
value of the winner neuron is passed to the neuron n in the top layer which updates
the value of W by Eq. 4. Thus one complete cycle (top layer —> bottom layer —>•
middle layer —> top layer) takes constant time. The cycle (iteration) is repeated
until W(t) converges, that is, W(t + 1) and W(t) are sufficiently close. Thus, in the
whole process, complexity does not depend on the size of the input.

5. Applications

5.1. Outlier detection

We have proved, for the two-dimensional case, that the MSC model3 converges and
yields at the center of the minimum spanning circle. Although the general case is
not proved, it is not difficult to conjecture that the model can be extended to any
higher dimensional case. This can be done by replacing the 2D weight vector by
d-dim (d > 2) weight vector and computing the cf-dim Euclidean distance. Other

Fig. 7. A planar point set with outliers. Empty dots (tiny circles) represent valid points and solid
dots represent outliers.

computations remain the same. Thus a similar architecture, as proposed in the 2D
case, can be used in higher dimensions also.

W ith the above notion, an experiment is carried out that detects the outliers
from an input set in a high dimensional space. We first explain the problem on a 2D
input set. In Fig. 7, a set of planar points with a few outliers are shown. The MSC
of the point set is computed and the contact points are removed from the input
set. This is repeated for several iterations. In this process, after all the outliers get
removed from the input set, it is expected that the radius of the (newly) computed
MSC will become relatively steady.

Outlier detection in a high dimensional space is a challenging problem. We
have taken data points from a very high dimensional space (d — 153) and have
successfully detected the outliers using the higher dimensional version of the MSC
model. The outlier detection algorithm goes as follows.

Fig. 8. The graph of successive radii.

Table 1. Average errors in estimating
the radius and the center.

n O
!

OI KG' — (100,100,100)11

5 25.1572 28.3163
10 12.1049 21.5907
20 4.6939 7.3968
50 1.3422 2.8645

100 0.9841 2.0011
500 0.1011 0.3753

Outlier Detection Algorithm
Step 1. Compute the MSC of the input set and its radius.
Step 2 . Remove the contact points (see Definition 2) from the input set.
Step 3. Repeat from Step 1 until two successive radii are relatively close.

Figure 8 is the graph showing the successive radii. It is found that there is a
significant fall of the value of the radius upto iteration 4 after which it becomes
relatively steady. Hence after iteration 4, one can reasonably conclude that the
remaining data set has no outliers.

5.2. Statistical estimation

The algorithm proposed in this paper can be used for statistical estimation of
parameters of a certain type of statistical distributions. Suppose, / is the prob
ability density function of the uniform distribution over a hyper-sphere in d
dimensions. The unknown parameters in / here are the radius and the center of
the hypersphere.

Let P\,P2 , . . . ,P n (each a d-dimensional point) be a random sample of size
n drawn from this distribution. The maximum likelihood estimators of the pa
rameters here are the radius and the center of the smallest hyper-sphere contain
ing Pi, P2 , ■.., Pn. We made an empirical study of how these estimators perform
when d = 3. The radius and the center are taken as 100 and (100, 100, 100).
Six different values of n are considered, namely, 5, 10, 20, 50, 100, 500. For
each of these six values, the algorithm has been tested for 20 random seeds for
the starting vector. In each such case, the difference |r — 100| and the distance
y/(ci - 100)2 + (02 — 100)2 + (03 — 100)2 are computed where r and C = (ci, C2, C3)
are the estimates for the actual radius and center. For each value of n, the averages
of the two error quantities are computed (Table 1). It can be seen that both these
errors decrease as n increases and the maximum likelihood estimators based on the
smallest enclosing hyper-sphere perform satisfactorily.

6. Conclusions

During the last few years, there has been a great interest in applying neural networks
technology in various fields of conventional computing. This is due to the facts that
neurocomputing provides parallelism, it is adaptive and it sometimes simplifies a
problem. A number of processors, each performing simple computations, when work
collectively, can solve a complex problem. Datta3 proposed a self-organizing model
to compute the minimum spanning circle for a given set of points. The present work
is a theoretical study of the model that proves the convergence of the algorithm. It
discusses an efficient architectural design and some applications of the model.

It is shown that the MSC algorithm, proposed by Datta,3 converges to the center
of the desired smallest circle. There exist several algorithms4-6,11’12,16-19’21 for the
MSC problem. The proposed algorithm is iterative in nature and we have suggested
an architecture for parallel implementation of the problem. The worst-case time
complexities of these algorithms range from 0 (n3) to 0(n log n), excepting the work
due to Megiddo9 which has 0(n) worst-case time complexity. Using randomized
algorithm expected 0(n) complexity is achieved by Welzl.22 The worst-case time
complexity of the proposed implementation does not depend on the input size
when 0 (n) processors are used. As can be seen, the individual processors perform
very simple computations like finding the Euclidean distance (dj) here, which is an
important phenomenon of neural network models.

It can be conjectured that the present work can be straightaway implemented
for any higher dimension. For a similar problem in d dimensions (d > 2) one has
to simply calculate the Euclidean distances in d dimensions. The complexity of the
algorithm remains the same. The extendability of the model in high dimensions is
empirically demonstrated here with the help of two applications. Among the above
cited algorithms only a few (for example, Welzl’s model22) are extendable to high
dimensions.

The present model is self-organizing in that it learns the center and the radius of
the MSC in an unsupervised manner. In Kohonen’s self-organizing model,7 all the
processors in the network take part in the weight update process. The present model
uses a network of processors where all the processors have fixed weights excepting
one i.e. all other processors are fixed (in the bottom and middle layers) while a
single floating processor (in the top layer) takes part in the process of positioning
itself in the proper location. The fixed processors are used for parallel computations.
In Kohonen’s model, the “winner” processor moves itself toward the input vector
presented while in the present model, the winner processor draws the processor 7r
toward itself (toward its associated input point).

Acknowledgment
The authors thank the reviewers for their valuable comments.

References
1. T. M. Apostol, Mathematical Analysis, 2nd edition, Addison-Wesley, 1979.
2. G. A. Carpenter and S. Grossberg, “ART2: Self-organization of stable category recog

nition codes for analog input pattern,” Proc. IEEE Int. Conf. Neural Networks, San
Diego, CA, II, 1987, pp. 727-736.

3. A. Datta, “Computing minimum spanning circle by self-organization,” Neuro
computing 13 (1996) 75-83.

4. J. Elzinga and D. E. Hearn, “Geometrical solutions for some minimax location
problems,” Transport. Sci. 6 (1972) 379-394.

5. R. L. Francis and J. A. White, Facility Layout and Location, Prentice-Hall, 1974.
6. D. W. Heaxn and J. Vijay, “Efficient algorithms for the (weighted) minimum circle

problem,” Operat. Res. 30 (1982) 777-795.
7. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, 1989.
8. R. P. Lippmann, B. Bold and M. L. Malpass, “A comparison of Hamming and Hopfield

neural nets for pattern classification,” Technical Report 769, Lincoln Laboratory, MIT,
May 1987.

9. N. Megiddo, “Linear time algorithms for linear programming in R3 and related
problems,” SIAM J. Comput. 12 (1983) 759-776.

10. K. Mehrotra, C. K. Mohan and S. Ranka, Elements of Artificial Neural Networks,
MIT Press, 1997.

11. R. C. Melville, “An implementation study of two algorithms for the minimum span
ning circle problem,” Computational Geomerty, ed. G. T. Toussaint, North-Holland,
1985, pp. 267-294.

12. K. P. K. Nair and R. Chandrasekaran, “Optimal location of a single service center of
certain types,” Nav. Res. Logist. Quart. 18 (1971) 503-510.

13. S. Pal, A. Datta and N. R. Pal, “A multi-layer self-organizing model for convex-hull
computation,” IEEE Trans. Neural Networks 12 , 6 (2001) 1341-1347.

14. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction,
Springer-Verlag, NY, 1985.

15. T. Scrrano-Gotarredona, B. Linares-Barranco and A. G. Andreou, Adaptive Reso
nance Theory Microchips-Circuit Design Technigues, Kluwer Academic Publishers,
USA, 1998.

16. M. Shamos and D. Hoey, “Closest-point problems,” Proc. 16th Ann. IEEE Symp.
Foundations of Computer Science, Los Angeles, 1975, pp. 151-162.

17. M. Shamos, Problems in Computational Geometry, Carnegie-Mellon University, 1977.
18. R. Skyum, “A simple algorithm for smallest enclosing circle,” Inform. Proc. Lett. 37

(1991) 121-125.
19. R. D. Smallwood, “Minimax detection station placement,” Operat. Res. 13 (1965)

636-646.
20. J. J. Sylvester, “A question in the geometry of situation,” Quart. J. Math. 1 (1857)

79.
21. G. Toussaint and B. Bhattacharya, “On geometric algorithms that use the farthest-

point Voronoi diagram,” Technical Report SOCS-81.3, School of Computer Science,
McGill University, 1981.

22. E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” New Results and New
Trends in Computer Science, ed. H. Maurer, Lecture Notes in Computer Science,
Vol. 555, 1991, pp. 359-370.

Am itava D atta re
ceived his Master’s de
gree in statistics from
the Indian Statistical
Institute in 1977. After
working for a few years
in industries, he joined
the Indian Statistical
Institute as a system
analyst in 1988. Since

then he has been working in the fields of im
age processing and pattern recognition. From
1991 to 1992, he visited GSF, Munich, as
a Guest Scientist and worked on a query-
based decision support system. He received
his Ph.D. degree from the Indian Statistical
Institute in 2000.

His current research interests are in neural
network based image processing and pattern
recognition.

S. K . Parui received
his Master’s degree in
statistics and his I’ li.I).
from the Indian Statis
tical Institute in 197.r)
and 1986, respectively.
From 1985 to 1987,
he held a post-doctoral
position in Leicester
Polytechnic, Kni’ land,

working on an automatic industrial inspec
tion project, and from 1988 to 1989, he was a
visiting scientist in GSF, Munich, working on
biological image processing. He has been with
the Indian Statistical Institute from 1987
and is now a Professor. He has published
over 60 papers in journals and conference
proceedings.

His current research interests include
shape analysis, statistical pattern recogni
tion, neural networks and computational
geometry.

	2.	The MSC Algorithm

	Case l.n = l.

	+ a(t0 +1 - 2)[1 - a(t0 + t - 1)][1 - a{to + OHIIA - X(t0 + t - 2)|| + II-P2 — X(to + t - 2)||]

	+ a(*o)[l - a(t0 + 1)][1 - a(t0 + 2)] • ■ • [1 - a(t0 + f)]||Pi - P2||]

	+ a(t0 + 2)[1 - a(t0 +3)] ■ • ■ [1 - a(t0 + 0][||Pi - P2|| + • • •

	4.	The Architecture Design

	6. Conclusions

	Acknowledgment

