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Abstract: In the context of evaluation of features in a two-class pattern recognition problem it is shown that, irrespective of
the values of the a priori probabilities of the two classes, the maximum difference between the existing lower and upper bounds
to Bayesian probability of error in terms of the Bhattacharyya coefficient is approximately equal to 0.2071.
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1. Introduction

The Bayesian probability of error (P,) is an opti-
mum measure of effectiveness of a set of features se-
lected for the purpose of pattern recognition.
Owing to the difficulty involved in computation (or
estimation) of P,, various indirect measures of fea-
ture effectiveness have been suggested in the past.
The Bhattacharyya coefficient (p), which was origi-
nally defined as a measure of overlap between two
probability distributions [1], has become a popular
feature evaluation criterion in pattern recognition
[2-12]. The two main reasons behind the popularity
of p as a feature evaluation criterion are that (a)
fower and upper bounds to P, exist in terms of p
[13-14] and that (b) closed-form expressions are
available for p in the case of the exponential family
of distributions, a few special cases of the family
being the Gaussian distribution, the Multinomial
distribution and the Poisson distribution [2]. It is
worth noting that both the upper and the lower
bounds to P, in terms of a measure are indicative
of how closely the measure approximates P.. If the
resulting upper bound is sufficiently low, then the
pattern recognition system under consideration is

‘acceptable’. On the other hand a sufficiently high
lower bound leads to a ‘rejection’ decision. Differ-
ence between the upper bound and the lower bound
is an indicator of the overall closeness of a measure
to P,. In this letter it is shown that the maximum
difference between the existing upper bound and
the Hudimoto lower bound to P, in terms of p re-
mains the same for all values of the a priori proba-
bilities and this maximum difference is (/2 — 1)/2.

2. Derivation of the span between error bounds

Suppose the a priori probabilities of the two
classes w, and w, are =n, and m,, respectively
O<m,m,<1, my+7,=1). Let p(x|w,) and
p(x | w,) be the class-conditional probability density
functions of the feature vector X, assumed to be
continuous, in the two classes w, and w,, respec-
tively. Then the Bayesian error probability [15] is
given by

pe = Jmin[ﬂlp(x |oy), mp(x[w )l dx (1)

Qx
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and the Bhattacharyya coefficient [1] is defined by

p= J@(XI%)P(XMz)]“de 2
2x

where Q2 denotes the sample space of X.

Clearly,0 <p < 1.

Hudimoto [13,14] showed that P, is bounded
above and below by the following relationships:

37— %\/ 1 —4m7,0° < P < /mymy p. (3)

These are the tightest bounds to P, in terms of p
available in the literature.

The span between the above upper and lower
bounds to P, (i.e., the difference between them) is
given by

6= /mmp —3+3/1—dmmp®. “)

In the following theorem the maximum value of §
is determined which is found to be independent of
the value of 7, (and so 7).

Theorem. Whatever be the value of the a priori prob-
ability n,, (i) the maximum value of J is %(\/E -1
and (ii) this maximum can be attained for n,-values
(and so m,-values) lying inside the interval

]

Proof. (i) Taking the first derivative of § with re-
spect to p one gets

do 21, 7,p

= My, —————
dp V1 —4nm,p

Equating the above expression to 0 leads to

1

N ®

The second derivative of § with respect to p is

d? 21,7,
dp? - 4r,m,p?)3i2 (6)
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It is easy to see that

d%
<0 (7)
p

Thus, the maximum value of ¢ is attained at the val-
ue of p given in equation (5). Substituting this value
of p in equation (4) gives,

1

1
5max =V nan'—-Sm_i

1
+ %\/1 —4nym, -
8mym,
1
iR
=3J/2-1D.
Hence the first part of the theorem is proved.

(it) The above mentioned maximum value occurs
at

1

b o

But p is restricted by the condition p < . Substitu-
tion of the above value of p in the inequality p < 1
leads to the desired result.

In Figures 1 to 4 the P, bounds for different val-
ues of =,, namely, m; = 0.500, 0.625, 0.750 and
0.875, are shown. It can be seen from these figures
that the value of p, for which the maximum value
of & (=3/2—1)~0.2071) is attained, gets
shifted towards the right with increases in the value
of n,. For values of n;, > (2 + \/E)/4 the maximum
would occur at a value of p outside its range (Figure
4). The same situation would arise for z; <

2 - /24

3. Conclusion

For all values of the a priori probabilities of the
two classes in the range (2 — ﬁ)/4 to (2 + \/5)/4
the maximum difference between the existing tight-
est lower and upper bounds to P, in terms of the
Bhattacharyya coefficient (p) is the same and it is
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Figure 1. Probability of error (P_) bounds in terms of the Bhattacharyya cocflicient (p) for n,  #, 0 St
equal to (ﬁ — 1)/2. In other words, irrespective of The span is smaller for a priori probabilitics outside
the values of the two a priori probabilities, the span the range mentioned above. This result would give
of the two P, bounds in terms of the Bhattacharyya further insight into the applicability of Bhattacha-
coefficient cannot exceed 0.2071 (approximately). ryya coefficient as a feature cvaluation criterion.
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Figure 2. Probability of error (P,) bounds in terms of the Bhattacharyya coefticient (p) for n, - 0.625. 7, (375
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Figure 3. Probability of error (P,) bounds in terms of the Bhattacharyya coefficient () for 7, = 0.750 and n, = 0.250.
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Figure 4. Probability of error (P,) bounds in terms of the Bhattacharyya coefficient (p) for =, = 0.875 and n, = 0.125.
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