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A B ST R A C  T. A number o f tests of the proportional hazards hypothesis have been proposed 
in  the past. In rcccnt sears, researchers have proposed tests geared specially for the 
alternative hspothesis o f “ increasing hazard ratio” , keeping in mind the case o f  crossing 
hazard s. This alternative may he too restrictive in many situations. In this paper we develop 
a  test o f the proportional hazards model for the weaker “ increasing cumulative hazard 
ratio"  alternative. The work is m otivated by a data analytic exam ple given by Gill & 
Schum acher (1987) svhere their test fails to reject the null hypothesis even though the faster 
agein g  o f  one croup is quite apparent from a plot. The normalized test statistic proposed 
here has an asym ptotically normal distribution under either hypothesis. We also present two 
graphical methods related to our analytical test.
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1. In tro d u c tio n

The proportional hazards (PH) model has played an instrumental part o f  data analysis in such 
areas as survival analysis, reliability, economics, demography and environmental studies. The 
validity o f  the PM assumption in a two-sample problem may be checked through one of the 
traditional graphical methods proposed by Cox (1972), Kay (1977), Andersen (1982), Arjas 
(1988) etc. (see Senguptu (1995) for a review). Several analytical tests are also available, see 
Schoenfcld (19X0), Andersen et al. (1982), Wei (1984), Nagelkerke et al. (1984), Breslow 
et al. (1984) and C'iampi & Etezadi-Amoli (1985). Gill & Schumacher (1987) and Deshpande 
& Sengupta (1995) proposed analytical tests o f  the PH hypothesis against the alternative of 
“ increasing hazard ratio", which may account for the “crossing hazards” phenomenon.

I f  F\ and /•% are two life distributions on the positive real line with hazard rates A i and A  2 

and cumulative hazard functions A \  and / I 2, respectively, then the condition A \ //1 2 increasing 
is equivalent to the composition A \  o A 2 1 being convex on [0, 00). Using this equivalence, Lee 
& Pirie (1981) suggested the plotting o f an estimator o f A]  (e.g. the N elson-A alen  estimator) 
against that o f  A  1 . It is expected that the graph would be approximately convex when the hazard 
ratio is increasing, and a straight line when the ratio is constant.

The “ increasing hazard ratio” alternative may be too strong in some cases. Consider the 
situation where the hazard rate A  2  has jum p discontinuities. The ratio A  \ / A i  cannot be 
increasing unless A , also has a jum p o f adequate size at every point o f  discontinuity o f /12. On 
the other hand, the consistency o f an “ om nibus” test is not guaranteed. It would be nice to have 
a test which is consistent for a weaker alternative hypothesis.

A weaker form o f  relative ageing is represented by the condition “A \  o A 2 ] is star-shaped” ,



that is, A \  o A 2 ] intersects any straight line passing through the origin at most once and from 
below. Convexity is a special case o f star-shapedness. Sengupta & Deshpande (1994) showed 
that the above condition holds if  and only if  the cumulative hazard ratio (CHR) A \ / A 2 is an 
increasing function. Thus, the plot o f A \  against /12 is star-shaped if and only if  / I 1 / / I 2 is 
increasing. The empirical plot o f Lee & Pirie (1981) should also be approximately star-shaped 
when the CHR for the two groups is increasing. Such a phenomenon is indeed observed in the 
case o f the Veterans’ Administration data (Detre et al., 1977). The plot given by Gill & 
Schumacher (1987) (with the coordinates interchanged) is star-shaped, but not convex. Hence, it 
is not surprising that the analytical tests proposed by Gill & Schumacher (1987) failed to reject 
the PH hypothesis in favour o f the increasing hazard ratio alternative. Perhaps a test designed 
for the increasing CHR alternative would have been able to reject the PH hypothesis.

In this paper we propose a family o f tests for the null and alternative hypotheses

A \ { t ) / A 2 (t) = a  for all t >  0, for some a >  0,

\ A i ( t ) / A 2(t) is a non-constant increasing function o f  t over [0, oc).

(The word “ increasing” would mean “non-decreasing” throughout this paper). The family 
o f statistics presented here are consistent for testing vs . 7 / \. The asymptotic dis
tribution of a suitably norm alized form o f the test statistic is standard normal both under 

and W hile the results are obtained in the general context o f  comparing two
counting processes, the case o f  censored survival data is given special consideration.

2. Developm ent o f the  te s t statistic

Let Ni(t)  for i =  1 ,2  and t €  [0, 00) represent two components o f  a bivariate counting 
process. Let the D oob-M eier decomposition o f  the processes be o f the form

dMi(t)  =  dNi(t) -  Yj(t) dAj ( t ) ,  ( =  1 ,2

where / ! ,( • ) , ;  =  1 ,2  are deterministic functions on [0, 00) and ¥/(■), / =  1 ,2  are non
negative processes which are predictable with respect to the filtration on which the 
martingales on the left hand side are defined. The above coincides with the “ multiplicative 
intensity” model o f the compensator process (see Aalen, 1978). W hen N,(t)  corresponds to 
the number o f  failures or deaths up to time t in the f'th group consisting o f  individuals 
with i.i.d. life distributions, A ( 0  is the cumulative hazard rate corresponding to this 
distribution. In general, Nj(t)  may be the number o f  type i transitions in a Markov chain, 
Yi(t) the number at risk for type / transition and Aj( t )  the integrated transition rate.

Under ,W!\, it is expected that A i ( y ) A 2(x) — A 1 ( x )A2(y)  would be non-negative for all x < y  
and positive for some x  <  y.  If  the ratio A \ j A 2 is a fast increasing function, the above difference 
would be generally large. This fact may be used to define a measure o f  non-proportionality o f  
the cumulative hazard functions,

q(w) = w(x, y ) [ A }( y ) A2(x) -  A l ( x )A2(y)] dxdy,
0 < V <  V <  r

where w(x , y)  is a positive weight function and r  is a large positive num ber such that 
A j ( t )  <  oc for j  = 1 ,2 . The idea is similar to that o f Deshpande & Sengupta (1995), who 
considered a measure o f  non-proportionality o f  the hazard rates. The double integral may 
be reduced to products o f single integrals by choosing the weight function w(x, y)  =  
k \ ( y ) k2(x) -  k [(x)k2(y), M )  and k2(-) being positive weight functions with an increasing 
ratio. With this choice, the above measure simplifies to

k 2) =  r 1 1 122 — t\2ti \ ,  (2.1)



w h ere
•f

t ,, k ,(\). 1 ,(.v) </\. i =  1 , 2 , 7 =  1 '2 .
.  ii

C learly . </(A|. k : ) is positive under and zero under Therefore a consistent
e stim ato r o f this difference can serve as a test statistic for the problem at hand. Suppose 
fo r /' 1. 2. . ! , ( / )  be the Nelson Aalen estim ator o f  Aj ( t )  given by J£ dNj(s ) /  Yj(s), where 
th e  reciprocal o f ) ',(\) is defined to be 0 whenever Yj(s) is 0. Let Kj(-), i =  1, 2 be right- 
con tinuous functions with left limits (rcll) converging in probability to £,(•), i =  1, 2, 
respectively We define the test statistic as

L h t a ,  l  u T:: r l2 r 2].

w here  |,| A',(\)/l ,(\> ds, i ~ 1, 2. j  =  1, 2. It is shown in the appendix that a consistent
estim ator of the variance of the test statistic under the null hypothesis is

v a r((_•>/, j * ,)  T2I 7V; I n -  T2\T \2 Vl2 — T\y T22 V\2 + T u T\2 V22, (2.2)

w here

r„  K ,(t )K ((.v)l'(.v A t) ds dt, / '=  1 , 2 , 7 =  1 ,2 ,
. (I . (I

and

■' </.V|(.v) 4 dNAx)
1 ( 0  ---------------- ■

,(i )|(.v));(.v)

N ote that the form o f  is similar to the statistic proposed by Gill & Schumacher
(19X7). In fact, if the cumulative hazard functions are replaced by the corresponding hazard 
rates. </( k , . k ■) becomes a measure o f non-proportionality o f  the hazard rates. The family 
o f  statistics given by Gill & Schumacher (1987) may be motivated by this measure, 
although they did not mention it. An im portant difference between these two families is 
that the tests proposed here arc not functions o f  the ranks alone; the actual lengths o f  time 
between successive jumps are made use of.

The weight functions A'i(/) and K 2U) may be chosen so that K \ ( t ) / K 2(t) is an increasing 
function, in order to make sure that k \ ( t ) / k 2(t) is increasing. Gill & Schumacher (1987) have 
indicated sev eral choices o f  weight functions for their family o f  statistics. Some o f  the choices 
are suitably normalized versions o f

K„(t) = r ^ t ) Y 2(t)

K h (t )=  J i (/)>:(/)[ Y\( t) + Y2( /)] 1

K<(t) = ) i ( t) Y2( /)[ Y\ (/) + Y2(t)\  ’S(/)

K d( 0  =  V,(0K2( / ) [ r , ( 0 +  K2( / ) ] - '[ 5 ( 0 ] l/2

where S(t)  is the K aplan-M eier estim ator computed from the combined sample. One may 
choose any pair o f weight functions from the above that have an increasing ratio. All these 
weight functions are predictable, and hence satisfy the conditions o f  Gill & Schumacher 
(1987). Being rcll. these may also be used in the test statistic proposed here. In fact, the 
usable class o f weight functions is larger here, because predictability is not required. For 
instance, one may replace the K aplan-M eier estimator in the expression o f K c{t) or K d(t) 
by a smoothed estimator.



3. Consistency and  asym pto tic  n o rm ality

The form o f  the test statistic Qk\K2 ' s sim ilar to that o f  Gill & Schumacher (1987). 
However, here T,j is not a stochastic integral but rather an ordinary Stieljes integral o f a 
stochastic process. Therefore we take the following route to obtain the convergence results:
(a) we show the convergence o f  the integral T^ from that o f the corresponding integrand 
(obtained from standard m artingale convergence results); (b) subsequently we obtain the 
convergence o f the test statistic by arguing that it is a constant function o f  the T,jS.

The first step comes from the following theorem.

T heorem  3.1
Let  K„ and  X„ be vector stochastic processes with sample paths in D[0, oo)p and 
D[(), oc)q such that K „ —► k  and  X„ —> X, where k  is a deterministic function  in C[0, oo)p 
and X  is a stochastic process with sam ple paths in D[0, oc)'1. Then fo r  every positive  
constant r,

K „ (0 ® X „ (0 < * -
JO

k(?) ® X (t) dt.
o

(In the above, “ ® ” indicates the Kronecker product.)

Proof. See the appendix.

In order to study the convergence o f  Ty, i =  1 ,2 , j  =  1, 2, we replace K „(/) and X„(t)  
in the above theorem by (K\( t):  Ki( t ) ) '  and a suitably norm alized version o f { A \ ( t ) ~  
A\{t ) :  A i ( t )  — /12(/)) ', respectively. (Here the prime ( ')  denotes the transpose o f  the vector in 
question.) The latter process can be written as

f / i K O - z i K f A  =  ( Jo
\ A 2( t ) - A 2( t ) J  Y-2 \ s ) d M 2( s ) j '

We denote this vector martingale by M(?). Further, let

where AT,( ), ki{-)Ai(-) and /1,(-) for i =  1, 2 are as defined in section 2. Finally, let T  =  
(T t , 7*12 7’21 T2 2  )' and t  =  ( tu  ?12#21 h i) '-  Notice that the dependence o f  each o f  these 
quantities on n is suppressed here for notational simplicity. The convergence o f  the integral 
takes place as indicated below.

C oro llary  3.2
Suppose there is a positive sequence { a n}, approaching infinity as n goes to 00, such that 
the follow ing three conditions hold fo r  /  =  1, 2:

’ dA j (u)

y X u)

ss d A j ( u ) . s  r ,

" " J o  Yj(u) ~ " J 0

I ( Yj (u)  = 0 ) d A , ( u ) ^ 0 .
Jo

V s €  [0, T],

> €  \ d A j ( u ) —>0 V e > 0 ,

(3.1)

(3.2)

(3.3)



w here  v, 1 and  r ,  are bounded on [0. r]. Then

'I' K( n  A in  dr ■ i. (3.4)
(I

T K m  Ai n d t  • I.n  Ai n  dt ■ t. (3.5)

(3.6)
. (i J()

w here  \V( | is a vet rur nt two independent Gaussian processes W\(-) and W2(-) with zero 
m ean, independent increments and variance function  [flr y j 1 dAj(s ) ,  i =  1, 2, respectively.

Proof. The definition of M( ) implies that its components are orthogonal martingales with 
variation processes } ' ( s ) d A  ,(.v). / =  !. 2. Therefore the conditions (3 .1 )-(3 .3) ensure, by a 
version o f Rebollcdo's martingale central limit theorem (see th. IV 1.2 o f  Andersen et al., 1992), 
tha t

T he results (3.4). (3 5) and (3.6) follow from theorem 3.1 by replacing X „(f) w ith A (t), 
A ( t ) and V « „ M (0 . respectively.

Remark. I lie stronger condition

(i

implies the conditions (3.1) (3.3).

The second step in the asymptotic argument is similar to that o f  Gill & Schumacher (1987). 
The results (3.5) (3.6). couplcd with the version o f the delta-m ethod given by Gill & 
Schumacher (1985) imply that

c(t)  =  t n  k[( t)  — t t i k 2(t), 

d(t )  -= t2]k](t) -  t\ \ k2{t).

The limiting distribution is therefore Gaussian with zero mean, while the variance is given

(3.7)

ki) ,  

s / ^ A L h ^ i  - q { K u K 2) ) ^  f [ c ( t ) W , ( t ) -  d ( t )W2{t)]dt,
Jo

where

by
r rv

[c(f)c(.v)f/ ,(.s A t) + d( t )d(s )V2(s A t ) ]dsdt ,

where



Under the null hypothesis, the ratio A 2 (- ) /A  i(-) is a constant 0. which can also be called 
the hazard ratio. Further, c (- ) /d(•) is also equal to 0 under Thus an alternative
expression for the asym ptotic null variance is

v a r{sfanQK,K2) ■ c( t )d(s)[6V i(x A /) +  0 1 Kif.v A /)] ds dt 

' A' TdA i ( u )  d A \ (u )
c(t)d(s)  

o Jo y\ (u) y 2 ( u )
ds dt

=  t 2 \ t i 2 V \ \  — t 2 \ t ] 2 V ) 2  — t  ) t t i 2 V ] 2  +  t \ \ t \ 2 V22<

where

V ,j  =
d A 2 (u) d A i (u )

ds dt. / =  l , 2 , y =  1 ,2 .
y i (u ) y2(u)

This variance is estim ated consistently by a„ times the expression given in (2.2), as shown 
in the appendix, provided Yj ( t ) / an '-+ y-,(i) pointwise on [0, t] . Since q (K\ ,  K 2 ) =  0 is zero 
under and positive under ,W\ ,  the norm alized statistic can be used for a one-sided 
test.

4. G raph ica l m ethods

The following three graphical procedures are o f  special interest here:

(a) the plot o f / l i (? )  vs / t 2( / ), proposed by Lee & Pirie (1981),
(b) the plot o f ( / i i ( / ) -  A 2 { t ) ) jA i{ t )  vs t, due to Dabrowska et al. (1989) and
(c) the plot o f  the log cumulative hazard difference lo g ( / l i (0 )  — lo g ( / l2( 0 ) against f, 

suggested by Dabrowska et a l. (1992).

A monotone trend in any o f  the last two plots suggests a monotone CHR o f the two 
samples, while no trend corresponds to the PH model. Plot (a) is expected to be close to a 
straight line in the PH case and star-shaped when the CHR is (monotone) increasing. Thus, 
all the three plots are expected to bring out monotone CHR-type departures from the PH 
model, although they have so far been used to look for monotone hazard ratio.

The above plots can be quite unstable. Plots (b) and (c) can have wild fluctuations for small 
values o f t (see Dabrowska et a l., 1989), while plot (a) may lack precision for large values o f  t. 
GS suggested a modification o f  plot (a), replacing Aj( t )  w ith A f ( t )  =  J0 K(s) dA,(s) ,  i = 1 ,2 , 
where K{-) is a predictable weight function (see section 2). This modification can also be used 
in plots (b) and (c). The modified plots have the same characteristic features when the hazard 
ratio is constant or monotone, but such a feature no longer exists for monotone CHR.

To overcome this problem, we propose two graphical tests based on the estimated functions 
T f ( t )  =  JJ K(s)A ,(s) ds, i =  1, 2, where AT( ) is a rcll weight function. The plot o f  T ^ ( t ) j  
T2 (t) against t is expected to be like a horizontal straight line when the PH model holds. On the 
other hand, a monotone ratio o f the cumulative hazards o f  the two populations is expected to 
produce a monotone trend in the plot, irrespective o f the choice o f the weight function. Since 
^a =  T f ( r ) /  T2 {t) is a consistent estimator o f  the hazard ratio in the PH case, the horizontal 
straight line passing through the right end-point o f the graph serves as a reference corresponding 
to the PH hypothesis.

The other suggested plot is that o f r f  (■) against T2 (-). This graph is expected to be close to a 
straight line when the PH model holds and approximately convex or concave when the CHR is



monotone The straight line joining the origin with the end-point o f  the graph ( T ^ i j ) ,  T'f'Cr)), 
may serve as a reference lor the I’H hypothesis. The two suggested plots are expected to be 
smoother and tnoie stable than their unweighted counterparts.

5. Data a n al)  sis

The analytic ami graphical procedures proposed in sections 2 and 4 were used to analyse 
the ovarian cancer data set reported by Fleming et al. (1980), which describes the num ber 
o f days from treatment to progression o f disease. Here, groups 1 and 2 consist o f  20 
patients with high-grade tumor (stage IIA ) and 15 patients with low-grade tumor (stage II), 
respectively. I lie statistic (after normalization) is 2.258. The corresponding two-
sided /'-value is 0.024. suggesting an increasing trend o f the ratio A \ ( t ) / A 2(t). This 
supports the findings o f (iill & Schumacher (1987) and Deshpande & Sengupta (1995) that 
the hazard ratio is increasing.

The plot o f .1 ( n  . 1 ( 0  vs. /. shown in Fig. 1 has by and large an increasing trend, but the 
fluctuations arc substantial Figure 2 shows the plot o f  T [ h( t ) / T 1 h(t) against t which was 
suggested in section 4. This graph is smoother and more clearly suggestive o f  an increasing 
trend of the ( 1 IK

The plot o f . 1. '( f )  vs , 1 , ' ( f )  shown in Fig. 3 is approximately convex, indicating an 
increasing hazard iatn>. However, the plot o f T t h(t) against T2h(t) shown in Fig. 4 is smoother 
and clearly com ex. suggesting an increasing CHR.

6. C oncluding r e m a rk s

The role of the weight functions in the family o f  tests proposed here is crucial. An 
interesting question that can be posed in this connection is: “ Can the weight functions be 
chosen ‘optimally according to some chosen criterion?” We have no clear answer to this 
question as yet If a sequence of alternative hypotheses converging to .j^o at a suitable rate 
is considered, n can he shown that the asymptotic relative efficiency is o f the form 
[Jo  H i l x U l d t l  |M (,, /(\)ff (t. s ) d \d t .  where /(/) is the probability limit o f the ratio o f the 
weight functions. i;f M is a function determined by A\ ( t )  and A 2(t), and W(t, S)  is a 
positive definite function o f two variables, also determined by A \ ( t )  and Ai( t ) .  A function

A i l / )

A 2 ( < )



Under the null hypothesis, the ratio A 2(- ) /A\ ( - )  is a constant 0. which can also be called 
the hazard ratio. Further, c ( - ) / d ( )  is also equal to (I under . ^  (l. Thus an alternative 
expression for the asym ptotic null variance is

v a r(yfiTnQK{K2) ■ <?(/)£/(.y)[»Ki(.va t) + n  ' r : (.vA t ) ]d u i t

c ( t )d(s )
d A i ( u )  dA \ ( u )  

-f-
.V \ ( u) yzUi) .

ds dt

where

V i j =  f  
Jo

d A 2(u) d A \ (u )
ds dt. 1 ,2  , j  = 1 ,2 .

y\(u)  y2(u) .

This variance is estim ated consistently by a„ times the expression given in (2.2), as shown 
in the appendix, provided Yi(t)/a„ —*y, ( t )  pointwise on [0, r]. Since q(K\ ,  K2) =  0 is zero 
under .TC'q and positive under .7 / the norm alized statistic can be used for a one-sided 

test.

4. G rap h ica l m ethods

The following three graphical procedures are o f  special interest here:

(a) the plot o f  y l i (0  vs A 2(t), proposed by Lee & Pirie ( 1981),
(b) the plot o f  (A i(f) -  A 2( t ) ) / A 2( 0 v s  t, due to Dabrowska et a l. (1989) and
(c) the plot o f  the log cumulative hazard difference log(^1 |(r)) — lo g ( ^ 2(/)) against t, 

suggested by Dabrowska et a l. (1992).

A monotone trend in any o f the last two plots suggests a monotone CHR o f  the two 
samples, while no trend corresponds to the PH model. Plot (a) is expected to be close to a 
straight line in the PH  case and star-shaped when the CHR is (monotone) increasing. Thus, 
all the three plots are expected to bring out monotone CHR-type departures from the PH 
model, although they have so far been used to look for monotone hazard ratio.

The above plots can be quite unstable. Plots (b) and (c) can have w ild fluctuations for small 
values o f t (see Dabrowska et a l., 1989), while plot (a) may lack precision for large values o f t. 
GS suggested a modification o f plot (a), replacing A t{t) with A f  (/) =  K{s) dA,{s) ,  i =  1 ,2 , 
where K{ ) is a predictable weight function (see section 2). This modification can also be used 
in plots (b) and (c). The modified plots have the same characteristic features when the hazard 
ratio is constant or monotone, but such a feature no longer exists for monotone CHR.

To overcome this problem, we propose two graphical tests based on the estim ated functions 
r f ( f )  =  j0' K(s)A,{s)  ds, i =  1, 2, where K(-) is a rcll weight function. The plot o f  T f ( t ) /  
T j i t )  against t is expected to be like a horizontal straight line when the PH m odel holds. On the 
other hand, a monotone ratio o f the cumulative hazards o f  the two populations is expected to 
produce a monotone trend in the plot, irrespective o f the choice o f the weight function. Since 
Qk =  7’f ( r ) / 7 ’f ( r )  is a consistent estimator o f  the hazard ratio in the PH case, the horizontal 
straight line passing through the right end-point o f  the graph serves as a reference corresponding 
to the PH hypothesis.

The other suggested plot is that o f r f  (•) against r f  (•). This graph is expected to be close to a 
straight line when the PH model holds and approximately convex or concave when the CHR is



monotone The straight line joining the origin with the end-point o f  the graph (T 2 (r), Tf{ z ) ) ,  
may serve as a reference for the PH hypothesis. The two suggested plots are expected to be 
smoother and more stable than their unweighted counterparts.

5. Data analysis

The analytic and graphical procedures proposed in sections 2 and 4 were used to analyse 
the ovarian cancer data set reported by Fleming et al. (1980), which describes the num ber 
o f days from treatment to progression o f  disease. Here, groups 1 and 2 consist o f  20 
patients with high-grade tumor (stage 11 A) and 15 patients with low-grade tumor (stage II), 
respectively. The statistic (after normalization) is 2.258. The corresponding two-
sided /i-value is 0.024. suggesting an increasing trend o f the ratio A \ ( t ) j A 2{t). This 
supports the findings o f (iill & Schumacher (1987) and Deshpande & Sengupta (1995) that 
the hazard ratio is increasing.

The plot o f . !](/) . ! ; ( / )  vs. t. shown in Fig. 1 has by and large an increasing trend, but the 
fluctuations are substantial. Figure 2 shows the plot o f T ] h( t ) / T 2 h(t) against t which was 
suggested in section 4. This graph is sm oother and more clearly suggestive of an increasing 
trend o f the Cl IK

The plot o f ,1, hit)  vs. / I , ' ’(O shown in Fig. 3 is approximately convex, indicating an 
increasing hazard ratio. However, the plot o f 7", h(t) against T2 h(t) shown in Fig. 4 is smoother 
and clearly conv ex, suggesting an increasing CHR.

6. C oncluding r e m a rk s

The role o f the weight functions in the family o f tests proposed here is crucial. An 
interesting question that can be posed in this connection is: “ Can the weight functions be 
chosen ‘optim ally' according to some chosen criterion?” We have no clear answer to this 
question as yet. If a sequence o f alternative hypotheses converging to at a suitable rate 
is considered, it can be shown that the asymptotic relative efficiency is o f the form 

/(s)H’(t. \)(ls<lt. where /(/) is the probability limit o f  the ratio o f  the 
weight functions. g(t )  is a function determined by A \ ( t )  and A 2(t), and W(t, S)  is a 
positive definite function o f two variables, also determined by A \ ( f )  and A 2(t). A function
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Fig. 2. P lot o f  T f h( t ) /T j  *(r) vs t for the ovarian cancer data.
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Fig. 3. Plot ofy4**(/) vs A * b(t)  for the ovarian cancer data.



/(/) that maximizes this expression would lead to a suitable weight function. Unfortunately 
a closed form solution to this problem is not available. This is in contrast to the sim ilar 
problem handled In (n il & Schumacher (19X7), where the “ optim al” solution could be 
obtained in closed form through the Cauchy Schwartz inequality.

A small-scale simulation was performed to explore the role o f  the weight functions in the 
two-sample testing problem. I he two samples were generated from an exponential distribution 
and a piecewise exponential distribution, respectively. Several combinations o f  weight functions 
were tried out Out of these, the combination )'i ( f ) ^ :( 0  exp [—t/T,,] and Y\( t)Y2{t), where Tn is 
the total time on test statistic for the combined sample, yielded the highest power. The form er 
weight function could not ha \e  been used for the family of tests proposed by Gill & Schumacher 
(1987). since it is not predictable. This underscores the wide scope o f  the class o f  rcll weight 
functions considered here

The analytical test proposed in section 2 can easily be adapted to the competing risks 
situation, where the hazard rates under consideration are the cause-specific hazard rates for two 
risks. The presence o f other risks can also be accommodated.

The test can be generalized in two ways. First, the effect o f  covariates can be taken into 
consideration in a manner similar to Brcslow (1974) and Dabrowska et al. (1992). The null 
hypothesis would then be equivalent to checking the proportionality o f the effect o f a binary 
covariate (such as a group indicator or a discretized covariate), assuming the other covariate 
effects to be proportional (An extension to the Cox regression model w ith continuous covariates 
along the lines o f I in (199]) may not be possible). The other generalization may involve the 
cumulative '/-rate functions considered by Dabrowska et al. (1989), which includes as a special 
case the cumulativ e hazard function and the odds ratio function.

A nice feature ot the graphical methods suggested here is that they produce smooth plots, 
even for small sample sizes. Thus the user need not be wary o f  reading too much from the shape 
o f the plot.
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A ppendix

P roo f o f  theorem 3.1

Consider the function h\ D[0, t c ) ;' X D[0, oc)'' —> D[0, coy"' defined by h{k , x )(t )  =  
k (/) <g> x(t). It is easy to show that h  is continuous at all points (k, x) such that k  is rcll and x 
is continuous. The probability that (k , X) does not belong to the continuity set o f h is 
the same as the probability that X does not belong to 0 [0 , oo)q -  C[0, co )7'. The assumptions 
o f the theorem ensures that this probability is zero. Therefore K „( ) ® X H( ) k (  ) ®X( ) by 
virtue o f the continuous mapping theorem.

Now consider the function / :  £>[0, oo)pq —> Ripq defined by / ( x )  =  £  x(f) dt. To show that /  
is continuous, let x„ —► x in D[0, oo)N  and notice that every component o f  / ( x „ )  converges to  
the corresponding component o f / (x) by the dominated convergence theorem. Since the domain 
and range o f  / are spaces equipped with product topologies, this implies that / ( x „ )  converges to 
/ ( x ) .  Therefore /  is continuous and the result o f the theorem follows from the continuous 
mapping theorem.

Consistency o f  the variance estimator (2.2)

Assuming that Yj(t)/a„ -> y,-(t) for i =  1 ,2  pointwise on [0, r] , we have a„ V(t) - 
£>[0, oo) under the usual Rebolledo conditions, where

• v(t)  in

d A 2(u) dA \ (u )
y 2(u)

Let us also assume that Ki  —> k, for / =  1, 2, and that each o f the functions v, k\ and k 2 
is continuous. In view of (3.5), we only have to show that a„Vjj^>Vy, i =  1, 2, j  =  1, 2.



We write v„ as i/'(A„. </ >{kv )). where t/’ and <p are functions from Z>[0, oo) X  D[0, oo) to 
R and /)[(), x  |, respectively, delined as

V'( k . /)

<p(k. /) (n

A( s )/( v)</v.

In such a case a„ I <j>( A',. a„l/ )). The convergence o f  a„Vy  to Vy in distribution
is proved by showing that < p ( K a „ V ) —> <p(kj, v). Since the limit o f  convergence in 
either step is deterministic, we can invoke the continuous mapping theorem and show 
that the functions <]> and y  are continuous at the limit points. To show the continuity o f 
<p, let (A,„. v„) be a sequence in D[0, oc) X  D[0, oo) converging to (kj ,  v). Thus kj„ —> kj  
and v„ - - v in /.>[(). x ). Since k ; and v  are assumed to be continuous, prop. 1.17(b) o f 
Jacod & Shiryayev (19X0. p. 292) ensures that for each t supjS;,|A:y„(i) — A:y(s)| —> 0 and 
sup,- ,|u„(.v) i’( v)j • 0. Note that v ) €  C[0, oo). It follows that for 5 €  [0, r],

10U >. V„ ) (-V ) U)(.V)|

|*„,(/)(r„(.v  A t) -  u(s A /)) +  y(.v A t ){kjn(t) -  kj( t ))]dt

sup |r„(.v) 
- In ’l

\k,„(t)\dt +  r- sup |«(.v)|- sup \ kjn(s) -  £ /( j) |.
vrfo.r] .ve[0,r]

Thus </>(kln. v„) converges to </;(£,. v) locally uniformly. Therefore <p(kj„, v„) converges to 
tp(k,, v ) in /)[(). x  ). and <p is continuous at ( k h v). The continuity o f xp at (kj, (p(kj, v )) 
is proved in a similar manner.
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