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Summary
A new exchange algorithm for construction of 2m D-optimal fractional 

factorial design (FFD) is devised. This exchange algorithm is a modifica
tion of the one due to Fedorov (1969, 1972) and is an improvement over 
similar algorithm due to Mitchell (1974) and Galil & Kiefer (1980). This 
exchange algorithm is then used to construct 54 D-optimal 2m-FFD’s of 
resolution V for m = 4,5,6.
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1. Introduction
A fractional factorial design (FFD) is said to be of resolution V if it 

permits estimation of the mean, all main effects and all two factor inter
actions, under the assumption that all interactions between three or more 
factors are negligible in magnitude. Thus, a total number of parameters 
to be estimated in a resolution V design for 2m-FFD is p = 1 + m + mC2-

An orthogonal resolution V plan for a 2m-FFD is equivalent to an 
orthogonal array OA(n, m,2,4), i.e. an OA with n assemblies, m con
straints, 2 symbols and strength 4 (cf. Rao (1947)). When such an OA 
is available, it provides an optimal resolution V design with respect to
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D-, A-, .E-optimality criteria. In fact, this design is universally optim al 
(Kiefer, 1980). However, an OA providing an optimal resolution V  design, 
exists only if »  = 0 (mod 4), a condition which may not always be possible 
to satisfy in practice. Thus, the need for optimal resolution V  design fo r  
other values of n arises.

Srivastava & Chopra (1971) have considered A-optimal resolution V  
designs for 2m-FFD for m = 4, 5 and 6 for practical values of n in the 
class of balanced designs. These designs are balanced in the sense that 
the variance-covariance matrix V of the parameter estimates is invariant 
under the permutation of the m factors. However, the balanced designs 
form only a subclass of designs and one may like to study the optimality 
of designs in the entire class. Such a study has been partially made by  
Kuwada (1982) who constructed optimal resolution V design 2m-FFD for  
m = 4, 5 and 6 with respect to A-optimal criterion. Some of these designs 
are in fact superior to the corresponding designs of Srivastava & C hopra 
who restricted their attention to balanced designs.

The purpose of this study is to devise a computer algorithm for the 
construction of P-optimal resolution V 2m-FFD. This algorithm is then 
used actually to construct 54 D-optimal 2”*-FFD of resolution V for m  =  4 , 
5 and 6.

In this section, we give some results in matrix algebra, which will be  
used in the sequel.

Consider the usual full rank linear model y = X/3 + e where y is an 
n-component column vector of observations, X  is an »  xp matrix of known 
elements, /? is a p x 1 vector of unknown parameters and c is a p x 1 vector 
of random residual components with E(e) =  0 and D{e) =  021 where E  
stands for the expectation operator and D denotes the dispersion m atrix. 
The n rows of X  are n p-dimensional vectors i = 1,2,...»»•  These »  
vectors can be considered as n points in Rp. Let M = X 'X  and assume 
M  to be non-singular.

If s ' is a row vector to be augmented to X, we have:

2. Some Matrix Results

det(Af + **') =  det(M )(l + x'Af-1*) 
(M + x*')-1 = M~l -(- wuu'

(2.1)
(2.2)

where to = —(1 + af'Af-1*)-1 and tt = M~lx.



Now let Mx = M 4- xx'. If x\ is a row vector to be removed from the 
current X, we have:

det(Mx -  xtx'i) = det(Jf,)(l -  x -M '1*,) (2.3)
(Mx -  x,x-)-1 = Mx l + muiti'i (2.4)

where Wi = (1 -  a:{Af” 1Xj)~1 and it,- =
Now, let x' be a row vector augmented to X  and x\ be a row vector 

removed from X  simultaneously, i.e. xj and x' are exchanged. Then we 
have:

det(Af + xx' — xix'i) = det(Af){l + D (»i,x )} (2.5)
where:

D(xi,x) = x'M~lx — xjM -1x,( 1 + x'M~xx) +  (ar'Af-1*^)2 • (2-6)

3. Method o f  Construction
The model for 2m-FFD of resolution V is the usual full rank linear 

model y — Xj5 + e as in Section 2. The ith row of design matrix X  is a 
p-dimensional row vector x\:

Xf =  (1 ,  i, * 2i t  • • • » x m i i  > x m —l» *m i)

where x î = ±1, h = 1 ,2 ,...,m  and i = 1,2,...,n .
The total number of candidate vectors x is 2m. Our problem is that 

for a given n, we have to choose n vectors x ’s out of 2m candidate vectors 
such that det(XfJr) is maximized. Here, »  is not necessarily < 2m and the 
x’s are not necessarily distinct.

Let M = X 'X . The proposed exchange algorithm (EA) for finding 
.D-optimal 2TO-FFD of resolution V consists of the following steps:
(i) Start with a randomly chosen non-singular n-point design. Compute 

M, M~l and det(M).
(ii) Find a vector x among 2m candidate vectors such that x'M~lx is 

maximum. This x'M-1x is Vmax/cr2, where Vmax is the maximum 
variance of the predicted response of the current n-point design.

(iii) Find a vector x,- among n vectors of the current n-point design such 
that D(xi, x) is maximum. D(x{, x) is calculated by (2.6).

(iv) If D (ii,x) is less than a chosen positive small number say 10~5, then 
terminate. Otherwise exchange vector with x. Update det(Af) by 
(2.5) and M~l by (2.2) and (2.4). Then return to step (ii).



TABLE 1 
D-optimal 2*-FFD o f resolution V

n \x'x\ • * trV trV* iiV.

11 3.86547E+10 2.55556 1.48611 - 1.4861
12 1.37439E+11 2.50000 1.31250 1.31250 1.3125
13 4.81036E+11 2.42857 1.14286 1.14286 1.2639
14 1.64927E+12 2.33333 0.97917 0.97917 1.1875
15 5.49756E+12 2.20000 0.82500 0.82500 0.8250
16 1.75922E+13 0.68750 0.68750 0.68750 0.6875
17 2.96868E+13 0.68519 0.66204 0.66204 0.6620
18 5.00278E+13 0.68269 0.63668 0.63668 0.6375
19 8.41814E+13 0.68000 0.61143 0.61143 0.6270
20 1.41425E+14 0.67708 0.58631 0.58631 0.5863
21 2.37181E+14 0.63975 0.56134 0.63908 0.5613
22* 3.89639E+14 0.65714 0.53780 0.63720 0.5384
23 6.45688E+14 0.65517 0.51365 0.63575 0.5136
24 1.06873E+15 0.58333 0.48958 0.63462 0.4896
25 1.69215E+15 0.57895 0.46930 0.63370 0.4693
26* 2.68006E+15 0.60256 0.44888 0.63294 0.4518
27 4.29497E+15 0.53600 0.42750 0.63230 0.4275
28 6.59707E+15 0.53333 0.41042 - 0.4104

* trace V  is strictly less than either o f trace V* or trace V,.

This EA, like Mitchell's DETMAX (1974) and Galil & Kiefer’s mod
ified DETMAX or MD (1980) is another version of Fedorov’s EA (1969, 
1972) (cf. St. John & Draper (1975)). One advantage of this EA over 
DETMAX and MD is that doable precision is not required in the compu
tation of det(M + xx' — Xii'i) since the straightforward formula (2.5) is 
used. In DETMAX, for example (M  + arar')-1 has to be evaluated before 
the evaluation of det(M + xx' -  xix'{). Another advantage of this EA over 
DETMAX and MD is that an array of length 2m need not be maintained 
in the computer to store 2m values of x'M~xx.

Like all previous EA’s, this new EA does not always guarantee D- 
optimality as it may get “trapped” in the local optimum. In order to get 
a good design for given to and n, several tries should be made, each try



TABLE 2 
D-optimaJ 2*-FFD o f  resolution V

n 1***1 tr V trV* tr V,

16 1.84467E+19 1.00000 1.00000 1.00000 1.0000
17 3.68935E+19 1.00000 1.96875 0.96875 0.9687
18 7.37870E+19 1.00000 1.93750 0.93750 0.9398
19 1.47574E+20 1.00000 0.90625 0.90625 0.9296
20 2.95148E+20 1.00000 0.87500 0.87500 0.9194
21 5.90296E+20 1.00000 0.84375 0.84375 0.8437
22 1.18059E+21 1.00000 0.81250 0.94643 0.8125
23* 2.36118E+21 1.00000 0.78125 0.94531 0.7979
24* 4.72237E+21 1.00000 0.75000 0.94444 0.7881
25* 9.44473E+21 1.00000 0.71875 0.94375 0.7815
26 1.88895E+22 1.00000 0.68750 0.94318 0.6875
27 3.77789E+22 1.00000 0.65625 0.65625 0.6563
28 7.55579E+22 1.00000 0.62500 0.62500 0.6300
29 1.51116E+23 1.00000 0.59375 0.59375 0.6199
30 3.02231 E+23 1.00000 0.56250 0.56250 0.5830
31 6.04463E+23 1.00000 0.53125 0.53125 0.5313
32 1.20893E+24 0.50000 0.50000 0.50000 0.5000

* trace V is strictly less than either of trace V* or trace V,.

with a different starting design. In this study, 10 tries are made for each 
design with given m and n.

4. Results and Discussion
The values of det(X 'X) of 54 constructed D-optimal 2TO-FFD of res

olution V for m = 4, 5 and 6 together with trace V where V — (X 'X )-1, 
Vmax, trace V* and trace V, are given in Tables 1, 2 and 3. V* and V, stand 
for the variance-covaxiance matrix of the designs obtained by Kuwada and 
by Srivastava & Chopra. For these designs, it was found that trace V is 
always less than or equal to the lesser of trace Vjt and trace Vt. All in 
all, there are 14 new designs having trace V strictly smaller than either of 
trace V* or trace Vs. As expected, none of the obtained designs is balanced 
in the sense of Srivastava & Chopra.



TABLE 3 
D-optimaJ 2*-FFD o f  resolution V

n t iV tr V* tr V,

22* 6.27415E+28 1.34667 1.15167 - 1.6249
23* 1.47233E+29 1.34259 1.11569 - 1.1241
24* 3.44908E+29 1.33816 1.07974 - 1.1145
25* 8.06451E+29 1.33333 0.04382 - 1.1100
26* 2.17607E+30 1.35111 0.00278 - 1.1012
27 5.64036E+30 1.70222 0.97542 1.36458 0.9754
28* 1.52415E+31 1.70175 0.92544 1.00000 0.9487
29* 4.11788E+31 1.70130 0.87541 0.91518 0.9371
30 1.21694E+32 2.33333 0.83333 0.83333 0.9279
31 4.05648E+32 2.20000 0.75625 0.75625 0.7562
32 1.29807E+33 0.68750 0.68750 0.68750 0.6875
33 2.19050E+33 0.68519 0.67477 0.67477 0.6747
34 3.69140E+33 0.68304 0.66209 0.66209 0.6633
35 6.21276E+33 0.68103 0.64945 0.64945 0.6582
36 1.04439E+34 0.67917 0.63686 0.63686 0.6532
37 1.75370E+34 0.67742 0.62430 0.62430 0.6245
38 3.17438E+34 0.67511 0.60877 0.61178 0.6087
39* 5.31744E+34 0.67326 0.59627 0.66163 0.5992
40* 8.89748E+34 0.67129 0.58381 0.66106 0.5939

* trace V is strictly less than either of trace V* or trace V#.

For m = 5 it takes about \ minutes per try on an IBM AT-compatible 
personal computer with an 80287 math coprocessor. For m = 6 it takes 
about 2 j  minutes per try and 10 tries may not be enough for a particular 
value of n. Out of 10 tries, the best design with respect to D-optimality 
criterion is chosen. However, for m = 6 and for some values of n, it 
is not always true that the chosen designs have smaller trace and smaller 
Vmax than the rejected designs because the choice is based on -D-optimality 
criterion.

In concluding, we may remark that although we have presented results 
for m = 4, 5 and 6 only, the algorithm can be used for any values of m, for 
any resolution and for any factorial. Of course, for higher values of to and



greater number of levels, the computer time requirement will be greater.
A PASCAL program listing of about 200 statements for constructing 

the designs in this paper can be obtained from the first author.
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