COMPUTER AIDED-CONSTRUCTION OF D-OPTIMAL 2^{m} FRACTIONAL FACTORIAL DESIGNS OF RESOLUTION V

Nam-Ky Nguyen
Phillip Institute of Technology
Plenty Rd, Bundoora 3083, Australia*
and Aloke Dey
Indian Agricultural Statistics Research Institute
Library Av, New Delhi 110012, India

Summary

A new exchange algorithm for construction of $2^{m} D$-optimal fractional factorial design (FFD) is devised. This exchange algorithm is a modification of the one due to Fedorov $(1969,1972)$ and is an improvement over similar algorithm due to Mitchell (1974) and Galil \& Kiefer (1980). This exchange algorithm is then used to construct $54 D$-optimal 2^{m}-FFD's of resolution V for $m=4,5,6$.

Key words: Fractional factorial design; D-optimality; A-optimality; exchange algorithm.

1. Introduction

A fractional factorial design (FFD) is said to be of resolution V if it permits estimation of the mean, all main effects and all two factor interactions, under the assumption that all interactions between three or more factors are negligible in magnitude. Thus, a total number of parameters to be estimated in a resolution V design for 2^{m}-FFD is $p=1+m+m C_{2}$.

An orthogonal resolution V plan for a $2^{m}-\mathrm{FFD}$ is equivalent to an orthogonal array $\mathrm{OA}(n, m, 2,4)$, i.e. an OA with n assemblies, m constraints, 2 symbols and strength 4 (cf. Rao (1947)). When such an OA is available, it provides an optimal resolution V design with respect to

[^0]D-, A-, E-optimality criteria. In fact, this design is universally optimal (Kiefer, 1980). However, an OA providing an optimal resolution V design exists only if $n=0(\bmod 4)$, a condition which may not always be possible to satisfy in practice. Thus, the need for optimal resolution V design for other values of n arises.

Srivastava \& Chopra (1971) have considered A-optimal resolution V designs for 2^{m}-FFD for $m=4,5$ and 6 for practical values of n in the class of balanced designs. These designs are balanced in the sense that the variance-covariance matrix V of the parameter estimates is invariant under the permutation of the m factors. However, the balanced designs form only a subclass of designs and one may like to study the optimality of designs in the entire class. Such a study has been partially made by Kuwada (1982) who constructed optimal resolution V design 2^{m}-FFD for $m=4,5$ and 6 with respect to A-optimal criterion. Some of these designs are in fact superior to the corresponding designs of Srivastava \& Chopra who restricted their attention to balanced designs.

The purpose of this study is to devise a computer algorithm for the construction of D-optimal resolution $V 2^{m}$-FFD. This algorithm is then used actually to construct $54 D$-optimal 2^{m}-FFD of resolution V for $m=4$, 5 and 6.

2. Some Matrix Results

In this section, we give some results in matrix algebra, which will be used in the sequel.

Consider the usual full rank linear model $y=X \beta+e$ where y is an n-component column vector of observations, X is an $n \times p$ matrix of known elements, β is a $p \times 1$ vector of unknown parameters and e is a $p \times 1$ vector of random residual components with $E(e)=0$ and $D(e)=\sigma^{2} I$ where E stands for the expectation operator and D denotes the dispersion matrix. The n rows of X are n-dimensional vectors $x_{i}^{\prime}, i=1,2, \ldots, n$. These n vectors can be considered as n points in R^{p}. Let $M=X^{\prime} X$ and assume M to be non-singular.

If x^{\prime} is a row vector to be augmented to X, we have:

$$
\begin{align*}
\operatorname{det}\left(M+x x^{\prime}\right) & =\operatorname{det}(M)\left(1+x^{\prime} M^{-1} x\right) \tag{2.1}\\
\left(M+x x^{\prime}\right)^{-1} & =M^{-1}+w u u^{\prime} \tag{2.2}
\end{align*}
$$

where $w=-\left(1+x^{\prime} M^{-1} x\right)^{-1}$ and $u=M^{-1} x$.

Now let $M_{x}=M+x x^{\prime}$. If x_{i}^{\prime} is a row vector to be removed from the current X, we have:

$$
\begin{align*}
\operatorname{det}\left(M_{x}-x_{i} x_{i}^{\prime}\right) & =\operatorname{det}\left(M_{x}\right)\left(1-x_{i}^{\prime} M_{x}^{-1} x_{i}\right) \tag{2.3}\\
\left(M_{x}-x_{i} x_{i}^{\prime}\right)^{-1} & =M_{x}^{-1}+w_{i} u_{i} u_{i}^{\prime} \tag{2.4}
\end{align*}
$$

where $w_{i}=\left(1-x_{i}^{\prime} M_{x}^{-1} x_{i}\right)^{-1}$ and $u_{i}=M_{x}^{-1} x_{i}$.
Now, let x^{\prime} be a row vector augmented to X and x_{i}^{\prime} be a row vector removed from X simultaneously, i.e. x_{i}^{\prime} and x^{\prime} are exchanged. Then we have:

$$
\begin{equation*}
\operatorname{det}\left(M+x x^{\prime}-x_{i} x_{i}^{\prime}\right)=\operatorname{det}(M)\left\{1+D\left(x_{i}, x\right)\right\} \tag{2.5}
\end{equation*}
$$

where:

$$
\begin{equation*}
D\left(x_{i}, x\right)=x^{\prime} M^{-1} x-x_{i}^{\prime} M^{-1} x_{i}\left(1+x^{\prime} M^{-1} x\right)+\left(x^{\prime} M^{-1} x_{i}\right)^{2} . \tag{2.6}
\end{equation*}
$$

3. Method of Construction

The model for 2^{m}-FFD of resolution V is the usual full rank linear model $y=X \beta+e$ as in Section 2. The i th row of design matrix X is a p-dimensional row vector x_{i}^{\prime} :

$$
x_{i}^{\prime}=\left(1, x_{1 i}, x_{2 i}, \ldots, x_{m i}, x_{1 i} x_{2 i}, \ldots, x_{m-1 i} x_{m i}\right)
$$

where $x_{h i}= \pm 1, h=1,2, \ldots, m$ and $i=1,2, \ldots, n$.
The total number of candidate vectors x is 2^{m}. Our problem is that for a given n, we have to choose n vectors x 's out of 2^{m} candidate vectors such that $\operatorname{det}\left(X^{\prime} X\right)$ is maximized. Here, n is not necessarily $\leq 2^{m}$ and the x 's are not necessarily distinct.

Let $M=X^{\prime} X$. The proposed exchange algorithm (EA) for finding D-optimal 2^{m}-FFD of resolution V consists of the following steps:
(i) Start with a randomly chosen non-singular n-point design. Compute M, M^{-1} and $\operatorname{det}(M)$.
(ii) Find a vector x among 2^{m} candidate vectors such that $x^{\prime} M^{-1} x$ is maximum. This $x^{\prime} M^{-1} x$ is $V_{\max } / \sigma^{2}$, where $V_{\max }$ is the maximum variance of the predicted response of the current n-point design.
(iii) Find a vector x_{i} among n vectors of the current n-point design such that $D\left(x_{i}, x\right)$ is maximum. $D\left(x_{i}, x\right)$ is calculated by (2.6).
(iv) If $D\left(x_{i}, x\right)$ is less than a chosen positive small number say 10^{-5}, then terminate. Otherwise exchange vector x_{i} with x. Update $\operatorname{det}(M)$ by (2.5) and M^{-1} by (2.2) and (2.4). Then return to step (ii).

TABLE 1
D-optimal 2^{4}-FFD of resolution V

n	$\left\|X^{\prime} X\right\|$	$V_{\text {mas }}$	$\operatorname{tr} V$	$\operatorname{tr} V_{k}$	$\operatorname{tr} V_{t}$
11	$3.86547 \mathrm{E}+10$	2.55556	1.48611	-	1.4861
12	$1.37439 \mathrm{E}+11$	2.50000	1.31250	1.31250	1.3125
13	$4.81036 \mathrm{E}+11$	2.42857	1.14286	1.14286	1.2639
14	$1.64927 \mathrm{E}+12$	2.33333	0.97917	0.97917	1.1875
15	$5.49756 \mathrm{E}+12$	2.20000	0.82500	0.82500	0.8250
16	$1.75922 \mathrm{E}+13$	0.68750	0.68750	0.68750	0.6875
17	$2.96868 \mathrm{E}+13$	0.68519	0.66204	0.66204	0.6620
18	$5.00278 \mathrm{E}+13$	0.68269	0.63668	0.63668	0.6375
19	$8.41814 \mathrm{E}+13$	0.68000	0.61143	0.61143	0.6270
20	$1.41425 \mathrm{E}+14$	0.67708	0.58631	0.58631	0.5863
21	$2.37181 \mathrm{E}+14$	0.63975	0.56134	0.63908	0.5613
22^{*}	$3.89639 \mathrm{E}+14$	0.65714	0.53780	0.63720	0.5384
23	$6.45688 \mathrm{E}+14$	0.65517	0.51365	0.63575	0.5136
24	$1.06873 \mathrm{E}+15$	0.58333	0.48958	0.63462	0.4896
25	$1.69215 \mathrm{E}+15$	0.57895	0.46930	0.63370	0.4693
26^{*}	$2.68006 \mathrm{E}+15$	0.60256	0.44888	0.63294	0.4518
27	$4.29497 \mathrm{E}+15$	0.53600	0.42750	0.63230	0.4275
28	$6.59707 \mathrm{E}+15$	0.53333	0.41042	-	0.4104

* trace V is strictly less than either of trace V_{k} or trace V_{s}.

This EA, like Mitchell's DETMAX (1974) and Galil \& Kiefer's modified DETMAX or MD (1980) is another version of Fedorov's EA (1969, 1972) (cf. St. John \& Draper (1975)). One advantage of this EA over DETMAX and MD is that double precision is not required in the computation of $\operatorname{det}\left(M+x x^{\prime}-x_{i} x_{i}^{\prime}\right)$ since the straightforward formula (2.5) is used. In DETMAX, for example $\left(M+x x^{\prime}\right)^{-1}$ has to be evaluated before the evaluation of $\operatorname{det}\left(M+x x^{\prime}-x_{i} x_{i}^{\prime}\right)$. Another advantage of this EA over DETMAX and MD is that an array of length 2^{m} need not be maintained in the computer to store 2^{m} values of $x^{\prime} M^{-1} x$.

Like all previous EA's, this new EA does not always guarantee D optimality as it may get "trapped" in the local optimum. In order to get a good design for given m and n, several tries should be made, each try

TABLE 2
D-optimal 2^{5}-FFD of resolution V

n	$\left\|X^{\prime} X\right\|$	$V_{\text {max }}$	$\operatorname{tr} V$	$\operatorname{tr} V_{k}$	$\operatorname{tr} V_{\boldsymbol{z}}$
16	$1.84467 \mathrm{E}+19$	1.00000	1.00000	1.00000	1.0000
17	$3.68935 \mathrm{E}+19$	1.00000	1.96875	0.96875	0.9687
18	$7.37870 \mathrm{E}+19$	1.00000	1.93750	0.93750	0.9398
19	$1.47574 \mathrm{E}+20$	1.00000	0.90625	0.90625	0.9296
20	$2.95148 \mathrm{E}+20$	1.00000	0.87500	0.87500	0.9194
21	$5.90296 \mathrm{E}+20$	1.00000	0.84375	0.84375	0.8437
22	$1.18059 \mathrm{E}+21$	1.00000	0.81250	0.94643	0.8125
23^{*}	$2.36118 \mathrm{E}+21$	1.00000	0.78125	0.94531	0.7979
24^{*}	$4.72237 \mathrm{E}+21$	1.00000	0.75000	0.94444	0.7881
25^{*}	$9.44473 \mathrm{E}+21$	1.00000	0.71875	0.94375	0.7815
26	$1.88895 \mathrm{E}+22$	1.00000	0.68750	0.94318	0.6875
27	$3.77789 \mathrm{E}+22$	1.00000	0.65625	0.65625	0.6563
28	$7.55579 \mathrm{E}+22$	1.00000	0.62500	0.62500	0.6300
29	$1.51116 \mathrm{E}+23$	1.00000	0.59375	0.59375	0.6199
30	$3.02231 \mathrm{E}+23$	1.00000	0.56250	0.56250	0.5830
31	$6.04463 \mathrm{E}+23$	1.00000	0.53125	0.53125	0.5313
32	$1.20893 \mathrm{E}+24$	0.50000	0.50000	0.50000	0.5000

* trace V is strictly less than either of trace V_{k} or trace V_{s}.
with a different starting design. In this study, 10 tries are made for each design with given m and n.

4. Results and Discussion

The values of $\operatorname{det}\left(X^{\prime} X\right)$ of 54 constructed D-optimal 2^{m}-FFD of resolution V for $m=4,5$ and 6 together with trace V where $V=\left(X^{\prime} X\right)^{-1}$, $V_{m a x}$, trace V_{k} and trace V_{s} are given in Tables 1, 2 and 3. V_{k} and V_{s} stand for the variance-covariance matrix of the designs obtained by Kuwada and by Srivastava \& Chopra. For these designs, it was found that trace V is always less than or equal to the lesser of trace V_{k} and trace V_{s}. All in all, there are 14 new designs having trace V strictly smaller than either of trace V_{k} or trace V_{s}. As expected, none of the obtained designs is balanced in the sense of Srivastava \& Chopra.

TABLE 3
D-optimal $\mathbf{2}^{6}$-FFD of resolution V

\boldsymbol{n}	$\left\|X^{\prime} X\right\|$	$V_{\text {mas }}$	tr V	tr $V_{\boldsymbol{k}}$	tr $V_{\mathbf{t}}$
22^{*}	$6.27415 \mathrm{E}+28$	1.34667	1.15167	-	1.6249
23* *	$1.47233 \mathrm{E}+29$	1.34259	1.11569	-	1.1241
24 *	$3.44908 \mathrm{E}+29$	1.33816	1.07974	-	1.1145
25 *	$8.06451 \mathrm{E}+29$	1.33333	0.04382	-	1.1100
26^{*}	$2.17607 \mathrm{E}+30$	1.35111	0.00278	-	1.1012
27	$5.64036 \mathrm{E}+30$	1.70222	0.97542	1.36458	0.9754
28^{*}	$1.52415 \mathrm{E}+31$	1.70175	0.92544	1.00000	0.9487
29^{*}	$4.11788 \mathrm{E}+31$	1.70130	0.87541	0.91518	0.9371
30	$1.21694 \mathrm{E}+32$	2.33333	0.83333	0.83333	0.9279
31	$4.05648 \mathrm{E}+32$	2.20000	0.75625	0.75625	0.7562
32	$1.29807 \mathrm{E}+33$	0.68750	0.68750	0.68750	0.6875
33	$2.19050 \mathrm{E}+33$	0.68519	0.67477	0.67477	0.6747
34	$3.69140 \mathrm{E}+33$	0.68304	0.66209	0.66209	0.6633
35	$6.21276 \mathrm{E}+33$	0.68103	0.64945	0.64945	0.6582
36	$1.04439 \mathrm{E}+34$	0.67917	0.63686	0.63686	0.6532
37	$1.75370 \mathrm{E}+34$	0.67742	0.62430	0.62430	0.6245
38	$3.17438 \mathrm{E}+34$	0.67511	0.60877	0.61178	0.6087
39^{*}	$5.31744 \mathrm{E}+34$	0.67326	0.59627	0.66163	0.5992
40^{*}	$8.89748 \mathrm{E}+34$	0.67129	0.58381	0.66106	0.5939

* trace V is strictly less than either of trace $V_{\mathbf{k}}$ or trace $V_{\mathbf{s}}$.

For $m=5$ it takes about $\frac{1}{2}$ minutes per try on an IBM AT-compatible personal computer with an 80287 math coprocessor. For $m=6$ it takes about $2 \frac{1}{2}$ minutes per try and 10 tries may not be enough for a particular value of n. Out of 10 tries, the best design with respect to D-optimality criterion is chosen. However, for $m=6$ and for some values of n, it is not always true that the chosen designs have smaller trace and smaller $V_{\text {max }}$ than the rejected designs because the choice is based on \boldsymbol{D}-optimality criterion.

In concluding, we may remark that although we have presented results for $m=4,5$ and 6 only, the algorithm can be used for any values of m, for any resolution and for any factorial. Of course, for higher values of m and
greater number of levels, the computer time requirement will be greater.
A PASCAL program listing of about 200 statements for constructing the designs in this paper can be obtained from the first author.

Acknowledgements

The authors would like to thank a referee for valuable suggestions and comments.

References

FEDOROV, V.V. (1969). Theory of optimal experiments. Preprint No. 7 LSM, Izd-vo Moscow State University, Moscow, USSR.
FEDOROV, V.V. (1972). Theory of optimal experiments. Translated and edited by W.J. Studden and E.M. Klimko. New York: Academic Press.

Galil, Z. \& Kiefer, J. (1980). Time and space-saving computer methods, related to Mitchell's DETMAX, for finding D-optimal designs. Technometrics 22, 301-313.
KIEFER, J. (1980). Optimal design theory in relation to combination designs. Ann. Discrete Math. 6, 225-241.
KUWADA, M. (1982). On some optimal fractional 2^{m} factorial designs of resolution V. J. Statist. Plann. Inference 7, 39-48.

MITCHELL, T.J. (1974). An algorithm for the construction of "D-optimal" experimental designs. Technometrics 16, 203-211.
RAO, C.R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays. J. Roy. Statist. Soc. Suppl. 9, 118-139.
ST. JOHN, R.C. \& DRAPER, N.R. (1975). D-optimality for regression designs: a review. Technometrics 17, 15-22.
SRIVASTAVA, J.N. \& CHOPRA, D.V. (1971). Balanced optimal 2^{m} fractional factorial designs of resolution $V, m \leq 6$. Technometrics 13, 257-269.

Received August 1987; revised September 1988

[^0]: * New address: Gas and Fuel Corporation of Victoria, Box 1841 Q, Melbourne 3001, Australia

