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The instability of the large-scale motion of a thin layer o f electron vortices produced by the 
interaction of intense laser pulse and a uniform plasma is studied here. The standard point vortex 
models and vortex sheet models o f the flow field involve unphysical singularities in flow field, 
leading to ill-posed problems. To make the problem well posed a description in terms o f vortex 
blobs is considered. If the vortex sheet has a smooth localized core then the linear growth rates 
rapidly decrease to zero at high wave numbers, thus providing a natural ultraviolet cutoff. Such a 
model can then be further used to study the development o f small-scale inhomogeneity in the 
magnetic field produced by the ultraintense laser beam.

I. INTRODUCTION

When a short powerful pulse o f  laser radiation is made 
to propagate through plasma, a large magnetic field is gen
erated directly as a consequence o f laser plasma 
interaction.1-3 Very recently, Gorbunov et al.4 found that a 
quasistatic magnetic field was generated at the fourth order 
with respect to the parameter q E/ c  (where q E is the electron 
quiver velocity and c is the light velocity), if  one applies 
perturbation theory to the relativistic cold electron fluid 
equations and Maxwell equations. Their result is valid for 
high-frequency electromagnetic waves ( w><ape). It seems 
from this study that even in a uniform plasma, an azimuthal 
magnetic field can be generated by density perturbation pro
duced by the plasma wave. In the wake region the magnetic 
field has a homogeneous component and a component oscil
lating along the longitudinal direction.4 The magnetic diffu
sion skin-layer thickness As  =  (c/cope)S,  where 
S = ( v ei/(i))y 2 and so at these high wave numbers, the mag
netic diffusion is active and so the electron flow remains 
laminar4 and the small-scale inhomegeneity does not de
velop. However, at larger laser amplitudes and narrow 
widths, this magnetic field will become unstable and soon 
turbulence will set in, introducing small-scale inhomogeneity 
in the magnetic field. In this paper we will study the devel
opment o f inhomogeneity in the magnetic field, produced by 
an intense narrow laser pulse.

In the study o f Inertial Confinement Fusion (ICF) by a 
laser, the interaction of an ultrashort, relativistically strong 
pulse o f a laser plasma may give rise to self-focusing.5-7 An 
ultraintense laser beam may be self-focused to a narrow bul
let leaving behind a trail o f the magnetic field.8'9 As V x H  is 
proportional to current density and hence the electron fluid 
velocity, and the isomagnetic curves correspond to the 
streamlines o f  the electron motion. The vortex structure and 
magnetic field correspond to a narrow central sheet carried
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by relativistic electrons produced by the wave break of the 
plasma wakefield.8 Charge neutrality is ensured by two elec
tron current sheets that run at the periphery due to the oppo
site current repulsion. In this paper we show how inhomoge
neity can develop even in a initially homogeneous magnetic 
field due to Kelvin-Helmholtz-type instability. W e consider 
electron motions, which are slow compared to the Langmuir 
time and at speeds much smaller than the speed o f  light. So 
the relativistic effects are neglected. Here the electron fluid is 
regarded as a homogeneous, incompressible fluid. The de
scription of transport in an inhomogeneous magnetic field is 
complicated by the fact that the drift of the charged particles 
due to the inhomogeneity leads to charge separation in the 
plasma. The resulting electric field adversely affects the 
transport of particles and energy across the magnetic field. 
However, in this preliminary study we neglect the drift cur
rents and assume that ions just form a stationary neutralizing 
background. The electron fluid equations, then in two dimen
sions, reduces to the Hasegawa-M im a equation. This same 
equation also describes the large-scale motion in the atmo
sphere and it differs from the standard two-dimensional Eu
ler’s equation due to the presence o f an additional term that 
in the atmospheric flows arises due to the coriolis force. Bu
lanov et al ,8 replaced the thin layer o f vorticity field by a 
number o f point vortices. It has been shown for two- 
dimensional Euler flows10 that for the point vortex scheme, 
neither a finer time step nor a large number o f point vortices 
lead to a smooth rollup. So it is better to formulate the prob
lem in terms o f a continuous vortex sheet. Basu et al . 11 have 
studied numerically the motion o f a continuous vortex sheet 
using a panel method to model a mixing layer problem. They 
find that the vortex sheet develops curvature singularities, 
although the problem still remains numerically tractable. On 
the other hand, it is well known that the motion o f  a vortex 
sheet can be mathematically described in terms of the 
Birkoff-Rota equations.12 It is found that if we expand this 
sheet in terms o f analytical functions, then it leads to a finite
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time curvature singularity,13 and one does not know how to 
continue the solution beyond certain critical time tc . How
ever, in real physical flows, the vortex sheet diffuses instan
taneously to become a smooth layer of vorticity, with an 
exponentially decaying core structure. In the flow of electron 
fluid considered here, the magnetic diffusivity gives rise to 
such a core. In fact, at low  intensities, for a wide laser pulse 
the electron flow is laminar.4 So here we will study the in
stability of the vortex sheet, which has a smooth localized 
core structure.

II. BASIC EQUATIONS

The motion o f  electron fluid is described by the equation

1' d \  \ I
ot,! —  + (v-V)vj  = —e l E + 7 (vxB) V p. (1)

Here we assume that the ions form a stationary neutralizing 
background. Neglecting the drift current in the M axwell’s 
equation, we obtain the velocity of the electron fluid as

4 7Ten
V xB. (2)

Taking the curl  o f Eq. (1) and using the M axwell’s equation,

(3)
<?B

V x E = - - .

for two-dimensional flow, we obtain,

dii <9iX dSl
+  u —— 1- v - T -  =  0, (4)

dt dx dy

where f l =  V X v — ( e / mec) B  and v=( u , v , 0 ) .
Here, since the electron fluid is assumed to be homoge

neous, we neglect the baroclinic terms that produce the mag
netic field.

Using Eq. (2) and the fact that B is divergence-free, we 
can write

c ,  e
--------V2B ---------- B.
47ren m Pc (5)

Since we restrict ourselves to two-dimensional flow in the 
( x , y )  plane, i l  =  O f, B =  Bz.  Now we obtain the governing 
equations o f motion, i.e., the Hasegawa-M ima equation,

<?n

~dt
■ +

d{B,  Cl)

d(x, y)
=  0 , (6)

whereft =  V B — B.
Here the space coordinates are normalized to c/o>pe and 

the time coordinate is normalized to Ho)pe, where c is the 
velocity o f light and w pe is the plasma frequency. The mag
netic field unit is m ewpec/e.

The H asegawa-M im a equation coincides exactly with 
two-dimensional equations on the tangent plane decribing 
the large-scale motion in the atmosphere.14 For small-scale 
spatial modes this reduces to the two-dimensional Euler’s 
equations,

d i l

dt  +  d( x, y )  I,
=  0 , (7)

and the corresponding fluid vorticity is f l  =  V2^, where 
ip(x,y, t ) is the streamfunction.

In fact, as can be seen from Eqs. (6) and (7), the steady- 
state solutions o f the Euler’s equations and the Hasegawa- 
Mima equation is identical. The dynamics, however, could 
be different.

Let K{ x , y )  be the Green’s function that satisfies the 
identity

V 2K - K = S { x ) S ( y ) ,

where S(- )  is the Dirac’s delta distribution. 
Then we have

1
K ( x , y ) = ~  —  K 0(r),
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(8)

(9)

where r = ( x 2 +  y 2) y2 and K 0(r)  is the modified Bessel func
tion of zeroth order.

For small values of r this corresponds to the logarithmic 
Green’s function o f the Euler’s case. For a smooth initial 
generalized vorticity, the corresponding magnetic field is 
given by

, y , t ) =  f  K ( x - x ' , y - y ' ) £ l ( x ' , y ' , t ) d x '  dy ' .
J R2

B( x

Substituting this in (2), one obtains,

( 10)

y - t
J R

V Xz K( x  — x ' , y  — y ' ) f l ( x ' , y ' , t ) d x ’ d y ' .

We can replace the integral by the discrete sum 

v = - 2  V X z K ( x - x k , y - y k) y k .
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( 1 2 )

This is equivalent to considering the motion o f point vorti
ces. Bulanov et al .8 considered the motion o f many such 
point vortices as solutions to Eq. (6). However, the point 
vortex solutions are not regular solutions o f the governing 
equations. To obtain regular solutions of (6), one has to use 
vortex blobs, instead of points. Instead o f considering the 
Green’s function we can consider the smooth solutions o f  the 
equation,

V 2K s- K s=<f>(r/8), (13;

where cf>(r/S) is a smooth (C 00) localized function with a 
rapid decay, such that as <5-^0, K s { x , y ) —>K( x, y)  point- 
wise. For two-dimensional Euler flows it has been show n15,16 
that smooth solutions can be obtained using vortex blobs, 
instead of point vortices. In fact, if  these governing equations 
are considered in the limit when the effect o f magnetic dif
fusion is small, then we will have to consider only such 
smooth solutions. Here, following Refs. 15 and 16, we re
place the above equation by

(14)

where



FIG. 1. The vorticity field f l  of a current sheet in a channel of size 1X5 at 
different times / =  0,5,10,15,20 bottom to top.

K s i x , y ) =  \  K ( x ~ x ' , y -
J R 2

■y')<f>s{x' ,y')dx' d y ' ,  (15)

4>(x,y) being a well-localized smooth function that is usu
ally normalized and has some vanishing moments.16 For the 
Euler’s equation using a multilevel vortex method,17 the evo
lution of a thin layer o f vorticity was simulated in a flat 
two-dimensional channel using smooth vortex bloblets. The 
results of the simulation are displayed in Fig. 1. The initial 
vorticity field was taken to be of the form f l  =  exp[—(j  
-rL/2)2/ S 2] — exp [—( y + r L/2)2/ 82], where rL =  0.2 and 
5=0.1. Here r L is the width of the laser pulse and 8  is the 
skin-layer thickness. The channel has fixed boundaries at y  
= ± 0.5 and in the longitudinal direction it extends from x 
= 0 to x =  5. This corresponds to a thin current sheet in the 
plasma. We first note the qualitative similarities between the 
structure of the vorticity field in Fig. 1 and the structure of 
the vorticity field obtained in Ref. 8 using particle-in-cell 
simulations. In Fig. 1, at a later stage, the vorticity field is 
seen to develop the so-called cat’s eye structure.

III. STABILITY ANALYSIS

In this paper we consider the H asegawa-M im a equation 
(6). In the small wave number limit, Eq. (6) reduces to

SB

I t
=  0. (16)

So it seems that in this case that the long-wave instabilities 
are damped. In this paper we investigate this aspect with 
regard to a thin layer of vorticity. To study the motion o f a 
vortex sheet o f  zero thickness lying along the line v =  0, we
let

ft(x ,y ,0) =  <5(y)rU ,0,0), (17)

where y(x,0,0)  is the strength o f  the vortex sheet at a point 
on the sheet.

W e track the subsequent motion o f  this vortex sheet by 
using the parametric relations, x =  x ( s , t ) , y  =  y ( s , t ) ,  where 
-  o o < j< o o . So from now onward we can refer to a point on 
the vortex sheet by using the parameter s,  instead o f two 
coordinates x, y .  Then, using the differentia] relation 
y ( s  j ) d s  =  Cl (x,y , t )dx  d y  in Eq. (11), we obtain the follow 
ing equation (after switching to a complex variable form):

d z * ( s , t )

dt - i
K ' [ z ( s ) ~  z ( r ) \ y ( T , t ) d T , (18)

where cZK( z )  =  K ( x , y ) , z ( s , t ) = x ( s , t )  +  i y(s , t ) ,  * denotes a 
complex conjugate, ' denotes a complex derivative, and T  
denotes an imaginary part.

Here the above integral is to be considered as the 
Cauchy’s principle part. Since by Eq. (6), f l ( s , t )  is a flow  
invariant, we have y( s  ,t) — y ( s  ,0) for all / > 0 .  Now making 
a change in the variables by letting y(s , 0)ds  =  d r ( s ) ,  
Z( T, t )  =  z ( s , t ) , we arrive at the generalization of the 
Birkoff-Rota equation,12

8Z*

~ d T i .
( T, t )  =  - f  K ' [ Z ( r , t ) - Z { T ' , t ) ] d T ' . (19)

Similarly, the motion of a vortex sheet with a smooth uni
form core structure is described by

d Z *

~dT ( I \ r )  =  T  K ' l Z ( T , t ) - Z { Y ' , t ) W ' -
J —00

(20)

Here we make the important assumption that the vortex core 
moves with the meridian o f the vortex layer. This assump
tion is valid if we are concerned only with large-scale motion 
of the vortex sheet, and not with the secondary motions of 
the size o f  the core.

In this paper we consider the core structure function of 
the form

(21)

Let us now perturb the vortex sheet and write

z(r,f)=r+ef(r,o, (22)
where 1.

Using Eq. (20), we substitute 6 = T ' —V and collect terms 
o f order e to obtain

d £ *

d t - f j :

i f ” 

+ ^ L

G ( d 2m r + e , t ) - a r , t ) ]

e2
d e

G ' ( e 2) K [ a T  +  8 , t ) - a T , t ) ] d d ,

where fH stands for the real part. 
If we now let

GO

£ =  2  a n t x p ( i n T) ,

(23)

(24)



FIG. 2. The linear growth rate as a function of the wave number, 

then (23) becomes

^  d a t
2  —t— exp( — m r )  

n =  — oo (XX

i v
= — 2 ,  I ( \ n \)a n exp(inr),

^  '77" fi =  — oo

where I (m)  is given by

G (0 2)[1 — cos(m #)]

(25)

I ( m ) - rJ  - O

d 0 ~ 2 r . G ' ( 6 2)

X [ l —cos ( md) ] d6 .  (26)

Let us now consider the logarithmic vortex with a smooth 
exponential core, viz.

G( 02) =  1 — exp( — d2/ S 2). (27)

Substituting this into (26), we obtain

I (m)  =  v m —irm erf(mS/2),  (28)

where erf(x) is the error function,

2
erf(;t) = fJo

exp{ - t  )dt . (29)

Equating the Fourier coefficients in Eq. (25) it can be shown 
that a n grows like exp(Xf) where X is given by

K =
I ( m )

27r
(30)

where m =  | n \.
We note here that the growth rate X is normalized by 

cope and the wave number m is normalized by wpe/ c . In Fig. 
2, the growth rate \  is plotted against m.  W e see that the 
growth rate (the solid line) falls o ff  to zero at higher wave 
numbers and the critical wave number (beyond which the 
growth rate falls to zero) is inversely proportional to the core 
size o f the vortex sheet. Here we see that letting <5—>0, the 
growth rate for a vortex sheet o f zero thickness is obtained as 
in Ref. 12.

For the (Bessel) vortex sheet o f zero thickness, we have

G ( 6 2) = 0 K l (6) .

For this case, using (31) and the relation

(31)

K i { d ) s m { m d ) d 6 =
(1 + m z)TVl72>

we obtain

I (m)  =
7rm

(32)

(33)(1 +  m2) 1/2’

W e see here that, as expected, the growth rate o f instabilities 
in the magnetic field is reduced as we decrease m,  and in the 
limit as m —>0 the growth rate drops to zero, as is expected 
from Eq. (16). For the Bessel-vortex sheet, although the 
presence o f a negative core around the vortex sheet does 
reduce the growth rate at small wave numbers, at large wave 
numbers the growth rate is essentially the same (cf., Fig. 2) 
as that o f the standard logarithmic vortex sheet o f  zero thick
ness.

IV. DISCUSSION AND CONCLUSION

In this paper we have shown by the linear analysis that 
for the problem of the large-scale motion o f a layer of elec
tron vortices, if  the vortex layer has a smooth localized vor
tex core then the disturbances grow exponentially at a rate 
that falls off rapidly to zero beyond a critical wave number. 
This critical wave number is inversely proportional to the 
size of the core. For the Bessel vortex sheet o f  zero thick
ness, the growth rate is less than that for the standard loga
rithmic vortex sheet, but the growth rate at high wave num
bers is essentially the same as that o f the standard vortex 
sheet o f zero thickness. This indicates that just like in the 
Euler’s case (i.e. the large wave number limit of the 
Hasegawa-M im a equation) it is necessary to consider the 
Bessel vortex sheet with a smooth localized structure to ob
tain physically meaningful solutions out o f the Hasegawa- 
Mima equation.

Gorbunov et al.,4 found that their analytical result 
matches quite well with simulation result for small ampli
tudes and wide laser pulses in which the electron flow re
mains laminar. For large amplitudes and narrow widths, the 
agreement failed possibly due the neglect o f  nonlinear ef
fects. They found that in the wake region an anharmonic 
magnetic field component arises. This may be due to the 
onset o f convective instabilities studied here. A  further ana
lytical study on the growth o f secondary local instabilties of 
the vortex layer will reveal the development o f  spatial inho
mogeneity in the magnetic field at the wake region. The 
study o f the time evolution of the magnetic field may also 
provide some clue as to how the field affects the transport of 
laser energy from the critical density surface to the ablation 
surface in the case of laser-produced plasma.

ACKNOWLEDGMENTS

One of us (C.D.) acknowledges CSIR, India for a re
search assistantship. S.K.V. and R.R. acknowledge D.S.T- 
Government of India for partial financial support. We are 
grateful to the referee for his valuable suggestions without 
which the paper could not have been written in the p r e s e n t  
form.



ij A. Stamper, Laser Part. Beams 9, 841 (1991).
-j. Briand, V. Adrin, M. El. Tamer, Y. Quemener, J. P. Dinguirad, and J. C. 
Kieffer, Phys. Rev. Lett. 54, 38 (1985).

’Chandra Das, J. Plasma Phys. 57, 343 (1997).
*1, Gorbunov, P. Mora, and T. M. Antonsen, Phys. Rev. Lett. 76, 2495 
(1996).

iA. G. Litvak, Sov. Phys. JETP 30, 344 (1969).
6C. E. Max, J. Arons, and A. B. Langdon, Phys. Rev. Lett. 33, 209 (1974). 
7T. M. Antonsen, Jr. and P. Mora, Phys. Fluids B 5, 1440 (1993).
*S. V. Bulanov, M. Lantano, T. Zh. Esirkepov, F. Pegoroaro, and A. M. 
Pukhov, Phys. Rev. Lett. 76 , 3562 (1996).

’S. V. Bulanov, F. Pegoraro, and A. M. Pukhov, Phys. Rev. Lett. 74, 710
(1995).

I0D. W. Moore, SIAM J. Sci. Stat. Comput. 2, 65 (1981).
n A. J. Basu, R. Narasimha, and A. Prabhu, Appl. Math. Modelling 19, 66 

(1995).
I2P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cam

bridge, 1992).
13D. W. Moore, Proc. R. Soc. London Ser. A. 365, 105 (1979).
14L. Ting and R. Klein, Viscous Vortical Flows (Springer-Verlag, Berlin, 

1991), p. 189.
150 . H. Hald, SIAM J. Num. Anal. 16, 726 (1979).
16J. T. Beale and A. J. Majda, Math. Comput. 39, 29 (1982).
17S. K. Venkatesan, in The 6th Asian Congress o f Fluid Mechanics, edited 

by Y. T. Chew and C. P. Tso (Nanyang Technical University Press, Sin
gapore, 1995), Vol. 1, p. 449.


	The evolution of a layer of electron vortices produced by the interaction of an intense laser pulse and plasma

	(8)

	(9)

	(ID

	(12)



