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Abstract: This paper deals with the problem of optimal circular fit to simply connected objects in two and three dimensions. 
In two dimensions, the centroid of the object is chosen as the center of the fitting circle while the radius is chosen so that its 
area is equal to the area of the object. Similarly, in three dimensions, the centroid of the object surface is chosen as the center 
of the fitting sphere while its radius is chosen so that the surface area of the object is equal to that o f the sphere. It is proved 
that these choices optimize a modified sum of squares objective function.
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1. Introduction

The problem of finding an optimal circular fit to 
simply connected objects in two and three dimen
sions is slightly different from that of circular fit to 
a set of scattered points where the concepts of area 
and perimeter [or volume and surface area in three 
dimensions] are absent.

To make an optimal fit, an objective function 
should be optimized with respect to the parameters 
namely, the coordinates of the center and the 
radius o f the fitting circle. If r, denotes the magni
tude of the radius vector of a border point (*,,.>',) 
from the center (x0, y 0) and if r0 is the radius of 
the fitting circle, then an objective function of the 
form 'Z(ri ~ ro)2 can be used, where the summa
tion extends over all border points. The partial 
derivatives of this function with respect to x0, y (l 
and r0, when equated to zero, lead to three equa
tions for the parameters of the fitting circle. 
Separation of these equations for closed form solu
tion so that the left-hand side contains a parameter 
while the right-hand side contains an expression

only in terms of the border point coordinates 
(Xj,yj) is not known. As an alternative, Landau 
(1987) suggested an iterative algorithm for the 
parameter estimation of the fitting circle. A 
modified expression of the form £  (r? -  r\ )2 leads 
to closed form expressions for the parameters of 
the circle (Thomas and Chan, 1989; Takiyama and 
Ono, 1989). While this approach can be applied to 
closed objects as well as scattered points, the ex
pressions for the coordinates o f the center and the 
magnitude of the radius are complicated and in
volve a fairly large amount of computation. Also, 
for closed objects this approach relies on data 
from the border only, making it dependent on 
digital grid resolution, border noise as well as 
border shape variation due to rotation and scaling.

We propose a method for closed objects, that 
leads to strikingly simple expressions for the center 
and radius of the fitting circle. The objective func
tion in our case is similar to that due to (Thomas 
and Chan, 1989) and it is optimized with respect to 
the location coordinates of the center but instead 
of radius r0, it is optimized with respect to rfc. The



computation involves all points in the object rather 
than only the border in two dimensions, and hence 
it is less sensitive to border noise and scaling.

2. Two-dimensional circular fit

Instead of starting with an objective function 
and then finding the parameters of the fitting circle 
by the method of partial derivatives, we start with 
the solution and then show that the solution indeed 
optimizes an objective function. This approach 
leads to a better physical insight to the solution and 
makes the analysis simpler.

Thus, we propose that the coordinates of the 
center (x0, _y0) and the radius r0 of the fitting circle 
are given by

1 V  1 V*o= ~ L x k, y0 = - L y k,
A  k A  k

r0=[A/n] 1/2

(1)

(2)

where A  is the area of the object and the sum
mation extends over all object points.

To find which objective function eqs. (l)-(2) op
timize, consider a point Q inside the object from 
which all border points are visible. Draw a circle of 
radius r0 obtained by eq. (2) with Q as center. Seg
ment the space by equiangle strips at Q. The 
angular separation of the strip A 6 can be made 
arbitrarily small. Then, as shown in Figure 1, the 
area of mismatch between the circle and the object 
in the /-th strip is

Note that the quantity can be negative or positive 
depending on whether r:< r0 or not. If there are m  
strips so that m A 6  = 2n, then it can be proved tha t 
eq. (2) implies

(3)

i.e., the areas of mismatch outside and inside the 
fitting circle are equal.

Proof. If A6  is sufficiently small, then r f A 6 / 2  is 
the area of the object in the /-th strip. Hence

,A 6
£  r f —  = area of the object - A .

i =  i 2

Also,

m Af)
I  r l ~  = fo £  —  =nr$.

m A6
i = i T,= 1 2

Then, eq. (2) implies eq. (3), and vice versa. □

Dropping the constant Ad/2,  we see that eq. (3) 
can be obtained by differentiating

i= 1
(4)

with respect to r§ and equating the result to  zero. 
Thus, J\ is the objective function that is optim ized 
by the choice of r0 using eq. (2).

We show that J x is optimized by eq. (1) as well. 
To prove this, we note that

•A= £  ( '■ /-2 /o 'f+  /o)
j=  i

= £ r i - 2 m r 0 +  m r Q  
/=i

m

I
/'= 1

= L r f - m r $

E  r f - K ,  
i = i

(5)

where K\ is a positive contant. Now consider 
Figure 2 where a small segment of length rA 8 and 
width d r is at a distance r from the center. It is easy



to see that

r f  = 4 r2(rA8- dr) (6)

where the term in parentheses is the area of the 
segment. Since the number of points within the 
segment is proportional to the area, the term under 
the integral is the sum of squares of distances of all 
points in the segment from the center. Thus, the 
right-hand side of eq. (6) is proportional to the 
sum o f distances of all points in the /-th strip of the 
object from the center, and we can write

r f  = K 2 1  r2k,
ki

(7)

where the summation extends over all points in 
the /-th strip of the object and K2 is a positive 
constant. Adding contributions from all strips, we 
can write eq. (5) as

J x =K2 E r l - K x (8)

where the summation extends over all points in the 
object. Now, •

rk = (xk - x 0f  + {yk - y 0)2. (9)

Differentiating J x partially with respect to x0 and 
Jo and setting the results equal to zero, we arrive 
at eq. (1).

Note that the discrepancy due to the dotted 
region in Figure 2 can be made arbitrarily small if 
Ad  is made arbitrarily small.

3. Three-dimensional circular fit

In three dimensions also, we first propose a solu
tion and then prove that the solution indeed op
timizes an objective function. Let A s denote the 
surface area of the three-dimensional object. 
Then, the center {x0, y 0,z0) and radius r0 of the fit

ting sphere are proposed as

1 v
*o = ~ r  L  xk , 

A  k

1
->>0=' E yk>

r0 = {As/4n) 1/2

(10)

(11)

where the summations extend over all points 
(xk,yk,Zk) on the surface of the object.

Following the same arguments of Section 2, it 
can be shown that eq. (11) leads to

(12)
i,j

where the object and the fitting sphere are parti
tioned into strips of arbitrarily small solid angle 
A 9 A 0  at the centre and rtj corresponds to the sur
face point of the (/,y)-th strip. The physical 
significance of eq. (12) is that the choice of radius 
using eq. (11) makes the surface areas o f mismatch 
outside and inside the sphere equal. Again, drop
ping the constant term AdAtp,  we note that eq. 
(12) can be obtained by differentiating the objec
tive function

(13)
hj

with respect to r% and setting the result equal to 
zero. Now we have to show that J2 is optimized by 
eq. (10) as well.

Again using derivations similar to eq. (5) we can 
write eq. (13) as

(14)

where K 3 is a positive constant. Consider the sur
face o f the object on the (/,y)-th solid angle strip. 
If A 8 and A<p are very small, the area of surface in 
this strip is

(ru A 8)(r,jA <p) = rijA 8 A 0 .

The distance of points on this surface from the 
center is r,y. Then, in this surface segment, we can



write

(ri.A6A0)(rIJ)
' A 6 A 0

= K- (area of the surface segment)
• (the distance of the surface from 

the center)2

= *4 I  rl
ka

(15)

where rk is the distance of a surface point in the 
segment from the center and the summation is 
made over the points of the segment. Also K  and 
K4 are positive constants. Thus, we can write

J2 = K4 l r 2k - K 3 (16)

timum circular fit to objects in two and th ree 
dimensions are proposed. The expressions a re  
simple and easy to compute and their physical in 
terpretation can be clearly understood.

Future work in this area may be directed 
towards finding similar closed form expressions 
for the parameters of an optimum elliptic fit in tw o 
and three dimensions.
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where the summation extends over all points on the 
surface of the object. Differentiating J2 partially 
with respect to x0, Jo and <;0 and making the partial 
derivatives equal to zero, we arrive at eq. (11). To 
find the partial derivatives, the relation

d  = (xk- x 0)2 + (y k - y 0)2 + (zk -  z0)2 (17) 

is used.

4. Conclusion

Closed form expressions for the location of 
center and the magnitude of radius for the op-
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