
A dynamic neural net to compute convex hull

Am itava D a tta a, Swapan K. Parui b’ *
a Computer and Statistical Service Centre, Indian Statistical Institute, 203 B.T. Road,

Calcutta 700 035, India
b Electronics and Communication Sciences Unit,

Indian Statistical Institute, 203 B.T. Road, Calcutta 700 035, India

Abstract

Computing the convex hull of a planar point set is a well-known problem and several
conventional algorithms are available to solve it. We have formulated this problem into a
self-organizing neural net model. Self-organization is a learning phenomenon that works in
the human vision system. In this paper, an artificial self-organizing neural net model is
suggested. The net is dynamic in the sense that it can automatically grow itself without
supervision and hence no prior knowledge on the number of processors is required. It has
been established that such a net can compute the convex hull of a planar point set.
Experimental results have been provided. Such a formulation helps parallelism and the
biological modeling of the problem.

Keywords: Dynamic neural net; Self-organization; Planar convex hull; Biological modeling;
Parallel computing

1. Introduction

In the present paper we deal with a specific computational geometry problem.
In computational geometry, the problem to compute the convex hull of a finite
number of points in 2D is quite well-known. The computation of the convex hull of
a finite set of points, particularly in the plane, has been studied extensively and has
wide applications in pattern recognition, image processing, statistics and several
other fields [1,2]. Several conventional algorithms are available for this problem.
What we aim at here is to formulate the convex hull problem as an artificial neural

net problem. We discuss how an initial net can iteratively update itself on the basis
of the input signals (points) and grow accordingly to finally arrive at the convex
hull.

Artificial neural network models have been of great interest for some years in
various fields like optimization, pattern recognition, computer vision and image
processing. Artificial neural network models or simply ‘neural nets’ are massively
parallel interconnections of computational elements (processors) that work as a
collective system. They are computer-based simulations of living neural systems,
which work quite differently from conventional computing. Instead of performing
operations sequentially, neural network models are capable of doing the same
simultaneously using nets composed of many processors connected by links, and
thus provide high computational rates for real-time processing. Neural nets pro
vide a new form of parallel computing, inspired by biological models. With the
help of a number of processors, serving as the neurons in biological systems,
connected by links, the neural network model can artificially work in a similar way
as the brain.

In the recent past, neural net technology has been showing a great deal of
promise even in areas of conventional computing. Several neural network models
have been proposed so far [3-7]. Neural network models are specified by their net
topology, node (processor) characteristics and training rules. Starting from an
initial set of weights (usually random) these rules indicate how to adapt or adjust
the initial weights to improve performance. The adaptation is a major focus of
neural network models. Thus the potentiality to achieve parallelism and to mimic
biological neural systems works as the major motivation behind neural net re
search.

Our focus is on a particular model of neural nets, namely, the self-organizing
neural net. The term ‘self-organization’ refers to the ability to learn from the input
without having any prior supervising information and arrange the processors
accordingly. It is argued that self-organization works as a basic principle of sensory
paths of the human visual system. In this case, self-organization means a meaning
ful ordering of the neurons (processors) of the brain, where the ‘ordering’ does not
mean moving of neurons physically. The basic self-organizing system is a 1- or
2-dimensional array of processors forming a net and characterized by short-range
lateral feedback between neighboring units. A self-organizing neural network
model has been suggested by Kohonen [4], In Kohonen’s feature mapping algo
rithm, a net of processors, having some initial weights, is considered and the input
signals are fed to it so that the net can adjust itself. The process is repeated for all
the inputs and several iterations are performed. The process stops when it
converges. The learning (adjustments) is unsupervised. After convergence, the net
organizes itself in an orderly fashion.

A dynamic version of Kohonen’s model has very recently been proposed by
Sabourin et al. [8]. It is called selective multi-resolution approach. Such a dynamic
model can overcome the following shortcomings of Kohonen’s model, namely, (a)
it is necessary to determine a priori the number of processors; (b) it can produce
data collisions (overloaded nodes or nodes with no entry at all). Another dynamic

version of Kohonen’s model has been suggested by Fritzke [9] to model the
probability distribution in the plane.

The present neural net also is dynamic and behaves, as discussed in the next
section, like a self-organizing net. It is dynamic since we do not presume the
number of processors beforehand. We start with a small number of processors and
dynamically go on growing the number. The weights of the initial processors are
not random. They start with some ordering, and when they grow in number, the
ordering is maintained throughout the process. The inputs are not fed sequentially
as in Kohonen’s model. Instead, each processor works simultaneously on all the
inputs and the feedback is passed on to itself. The process is unsupervised. Some
new processors can be created and some old processors can be killed during the
iterative process depending on the feedback at each iteration.

2. The model

In the present model we consider a set of n 2-dimensional input vectors
(representing the signals)

s = K * i > :vi)> (* 2. *2), •••>(*„, yn)}

= {P1, P 2, . . . , P n}

Denote a circular list of m processors by

{ iT j , 7T2 , ----

where each processor stores a 2-dimensional weight vector. The weight vector here
represents a position in the plane where a processor can be thought to be located.
In our discussion, placing a processor at a location does not mean that it is moved
physically to a location. Instead, it means assigning a new weight vector to the
processor.

Let
ctj = nearest Pi from v y and

/3y = second nearest Pt from ir;

i = 1 , 2 , . . . , h and j = 1, 2,

We start initially with m > 2 (say, m = 4). The processors are ordered in a
sequence (ttj, tt2, vr3, tr4) and they are assumed to be placed on the circumfer
ence of a circle enclosing all the input points. Suppose they are situated on the
four extreme points of two orthogonal diameters. Assume processor irm+1 = v v

Definition 1. For a processor ir; , its previous neighbour is processor itj-_1 and next
neighbour is processor tt;+1.

Definition 2. Two processors ttj and wj+l are said to be equivalent (Fig. 1) if

Fig. 1. Circles represent processors and *’s represent input points. Each processor is connected with its
aJ and by dashed lines. Processors v l and v 2 are equivalent; and ir3 and ir4 are shaking hands.
e3 = angle (a 3, r 3, <r4).

Definition 3. Two processors v } and v j+1 are said to shake hands (Fig. 1) if they
are not equivalent and

{“ /> Pj) n {“ ; + i> Pj + i) (say- { T;})

Symbolically, Vj <-> v j+v Vj and v j+1 are also called partners, Vj is previous
partner of v j+l and v J+1 is next partner of tt; .
Denote

° j = @j) ~ { t j }

° } + i = K + l > P j + l } ~ (T; }

&j = angle(o), Tj, <rj+l) (Fig. 1).

Definition 4. Two partner processors tt, and TrJ+l are called convex partners if
&j > 180°. Otherwise they are concave partners (Fig. 2).

Definition 5. For processors v j _1, ttj and ir^+1; Vj is called an X-type processor if
both the pairs ttj) and (vr;, v j+1) are concave partners. Wj is a Y-type
processor if both the pairs (i7-y_j, 7r,) and (ttj, are convex partners. Other
wise, Vj is a Z-type processor (Fig. 2).

Definition 6. The convex hull of S is the smallest convex set containing S. The
convex hull here is in fact a convex polygon. Each edge of the polygon is a hull
edge and each of its vertices is a hull vertex.

For a Z-type processor Vj denote (Fig. 2)

(Ty_! if Oj- i> 180°
fij = It,- if 0j > 180°

At any iteration if two consecutive processors v f and v j+1 are equivalent, the
processor created earlier is killed (deleted from the list). On the other hand, if ir,

Fig. 2. Three types of processors X, Y and Z. Types are shown in parentheses. ir2 and tt3 are convex
partners while t t 3 and ir4 are concave partners.

and 7Tj+l are found not to shake hands then a new processor is created (inserted)
in the middle of the circular arc joining tt, and 7rJ + 1.

Theorem. After a finite number o f iterations the processors will be organized in such
a way that for all j = 1, 2, . . . , m (m = current number o f processors), «-»TrJ+l. In
such a situation the iterative process o f insertion /deletion o f processors stops. (Call it
final handshaking.)

Proof. Consider the Voronoi diagram of order two of S [1], which is a partition of
the plane defined by the convex polygons V(r, s), 1 < r, s < n where

V(r, s) = {P : max(d (P , Pr), d(P, P J) < d (P , Pt) for all t (t # r , t #.?)}

where d stands for the Euclidean distance.
In general, V(r, s) may be empty for some r, s.
It can be seen that
(a) If a processor 77) lies in the interior of V(r, s), then {ap /3;} = {Pr, Ps}. Two

processors falling in the same V(r, s) are equivalent.
(b) If two polygons V(r, s) and V(u, v) share a common edge, then the two sets

{Pr, Ps] and {Pu, PJ have exactly one point in common. For two processors tti
and 7Tk, if v lies in V(r, s) and v k lies in V(u, v) then they are shaking hands.

Now the probability of a processor falling in the interior of some V(r, s) is 1.
Hence the theorem. □

Observation 1. Final handshaking will give rise to a polygon where each processor
of the net corresponds to one edge and the t - ’s are the vertices of the polygon.

Observation 2. If all the processors of the net are Y-type then the generated
polygon is the resulting convex hull where every processor corresponds to a hull
edge and the t / s are the hull vertices. Otherwise, bridging is required to get the
final convex hull from the polygon.

Before bridging, all the X-type processors are deleted from the circular list of
processors.

Observation 3. After deleting the X-type processors, if two consecutive processors
Vj and trj+l are Z-type then there are three cases:
(a) 1Tj and 1r;+ , do not shake hands (due to deletion of X-type)
(b) tTj and TTj+l are concave partners
(c) -iTj and tt)+1 are convex partners.
Bridging is required for cases (a) and (b).

The formal algorithm can now be stated as follows:
Step 1 [Initialization],
Take m = 4. Place the ordered processors (i t v ir2, 7t3, tta) on the four extreme
points of two orthogonal diameters of a circle enclosing the points. Let irm+1 = t t v
Step 2 [Handshaking],
(i) For all new processors calculate ajt j8;.
(ii) For ; ' = l , . . . , m , if Vj and irJ+1 are equivalent then kill the older one

(processor created last is kept).
(iii) For j = 1,. . . ,m, if tt] and ttj+1 do not shake hands and are not equivalent

then create a new processor at the middle of the arc joining tt7 and 7tj + 1 .

Repeat this step until for every processor, ir; «-> 17y+1.
Step 3 [Bridging].
(i) Label all the processors as X, Y and Z according to

Definition 5.
(ii) Kill all the X-type processors.
(iii) For

if TTj and Vj+l are Z-type then
begin

if either of cases (a) or (b) in Observation 3
is true then

begin
kill 7Tj and 7r;+1 and
create a new processor 7rk (say) such that
a k = tij and pk = fij+l

end
end.

Repeat this step until every processor is Y-type.
Step 4 [Termination]. Stop.

It can be seen that the above model works as a dynamic self-organizing neural
net. Let us look at what basically happens in our algorithm. We start with an initial

Fig. 3. The input points.

net having a given number (m = 4) of processors. The input signals are fed to the
net and some feedbacks (aj and /3y) are generated. Depending on the feedback the
net grows in such a fashion that a certain ordering (of the processors) takes place
after a number of iterations. Like other neural net models the net finally con
verges. Moreover, such an ordering happens without any supervision. In brief,
from the inputs the net adapts itself in an unsupervised way and organizes itself
according to the input. Similar things essentially happen in a self-organizing neural
net.

3. Results and conclusions

Neural net based information processing or neurocomputing has been estab
lished to be a promising computational technique. One inherent advantage of
neural nets is parallelism. Another advantage of neural net based models is the
adaptation capability that enables biological modeling of a problem. This is why
more and more researchers are interested in this field and thus its domain of
application is increasing. As a result, there have been attempts to solve more and
more problems, already having conventional solutions, using neurocomputing.
This, in turn, is enriching this field. The proposed work is an attempt to demon
strate an application of neural net based models in a computational geometry
problem, namely, convex hull computation for a planar point set [1,2]. A specific
neural net model is suggested for this purpose. It is shown that a (dynamic)

1

Fig. 4. The final handshaking is shown. A box represents a processor that was killed (deleted). Solid
lines are the edges of the generated polygon.

self-organizing neural net is capable of learning from the input and can arrange
itself from which the convex hull can be obtained.

Several conventional algorithms are available for convex hull computation [1,2],
The worst-case complexity of this problem, using a single processor, is 0(n log n)
where n is the input size. The divide-and-conquer method also has the same
complexity. This complexity is known to be optimal. In our algorithm, in the
handshaking step, at each iteration, all the processors calculate a ; and in
parallel. Since there are n input points, this step takes O(n) time. It can be seen
that the handshaking step decides the complexity of the algorithm in the worst-case
sense. Thus the worst-case complexity of the algorithm, with O(n) processors, is
linear at each iteration.

The neural net model discussed above has been implemented and tested on
several point sets. One such set consisting of 22 points is shown in Fig. 3. An
intermediate result obtained after handshaking step is shown in Fig. 4. The
numeral label (in Fig. 4) for each processor indicates the iteration number at which

Fig. 5. The convex hull found after bridging.

the processor was created. It can be seen that totally four iterations were required
for final handshaking. Fig. 5 shows the final result (i.e. the convex hull) obtained
after the bridging step.

References

[1] F.P. Preparata and M.I. Shamos, Computational Geometry: A n Introduction (Springer-Verlag, New
York, 1985).

[2] G.T. Toussaint, ed., Computational Geometry (North-Holland, New York, 1985).
[3] D.E. Rum elhart and J.L. McClelland, eds., Parallel Distributed Processing, Vol. 1 (M IT Press,

Cambridge, 1986).
[4] T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, 1988).
[5] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks (Addison-Wesley, 1989).
[6] G.A. C arpenter and S. Grossberg, eds., Neural Networks fo r Vision and Image Processing (MIT

Press, 1992).
[7] R.P. Lippmann, An introduction to computing with neural nets, IE EE A SSP Mag. (Apr. 1987) 4-22.
[8] M. Sabourin and A. Mitiche, Modeling and classification of shape using a Kohonen associative

memory with selective multiresolution, Neural Networks 6 (1993) 275-283.
[9] B. Fritzke, Let it grow - self-organizing feature maps with problem dependent cell structure, in: T.

Kohonen et al., eds., Artificial Neural Networks, Vol. 1 (North-Holland, 1991) 403-408.

Amitava Datta received his M aster degree from the Indian Statistical Institute,
Calcutta, India and subsequently did post-graduate course in Com puter Sci
ence at the same institute. After working for a few years in reputed computer
industries Mr. D atta joined the Com puter Centre o f the Indian Statistical
Institute as a System Analyst in 1988. Since then he has been working in image
processing and pattern recognition. From 1991 to 1992 he visited GSF, Munich
as a Guest Scientist and worked on query-based decision support systems. He is
currently working on neural-net based image processing and computer vision.

S. K. Parui received the M aster of Statistics degree from the Indian Statistical
Institute, Calcutta in 1975. After a brief career in commercial software devel
opment, he was back to the academics and received his Ph.D. degree in image
processing from the Indian Statistical Institute in 1986. From 1985 to 1987 he
worked as a Research Assistant on an automatic industrial inspection project in
Leicester Polytechnic, England. Since 1987 he has been a Lecturer in the
Indian Statistical Institute. From 1988 to 1989 he was a Visiting Scientist in
GSF, Munich to work on a pattern recognition problem in biomedicine. His
current research interests include shape analysis, remote sensing, statistical
pattern recognition and neural networks.

	A dynamic neural net to compute convex hull Amitava Datta a, Swapan K. Parui b’ *

	1.	Introduction

	2.	The model

	{“/> Pj) n {“; + i> Pj + i) (say- {T;})

	3.	Results and conclusions

