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Abstract

Computing the convex hull of a planar point set is a well-known problem and several 
conventional algorithms are available to solve it. We have formulated this problem into a 
self-organizing neural net model. Self-organization is a learning phenomenon that works in 
the human vision system. In this paper, an artificial self-organizing neural net model is 
suggested. The net is dynamic in the sense that it can automatically grow itself without 
supervision and hence no prior knowledge on the number of processors is required. It has 
been established that such a net can compute the convex hull of a planar point set. 
Experimental results have been provided. Such a formulation helps parallelism and the 
biological modeling of the problem.
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1. Introduction

In the present paper we deal with a specific computational geometry problem. 
In computational geometry, the problem to compute the convex hull of a finite 
number of points in 2D is quite well-known. The computation of the convex hull of 
a finite set of points, particularly in the plane, has been studied extensively and has 
wide applications in pattern recognition, image processing, statistics and several 
other fields [1,2]. Several conventional algorithms are available for this problem. 
What we aim at here is to formulate the convex hull problem as an artificial neural



net problem. We discuss how an initial net can iteratively update itself on the basis 
of the input signals (points) and grow accordingly to finally arrive at the convex 
hull.

Artificial neural network models have been of great interest for some years in 
various fields like optimization, pattern recognition, computer vision and image 
processing. Artificial neural network models or simply ‘neural nets’ are massively 
parallel interconnections of computational elements (processors) that work as a 
collective system. They are computer-based simulations of living neural systems, 
which work quite differently from conventional computing. Instead of performing 
operations sequentially, neural network models are capable of doing the same 
simultaneously using nets composed of many processors connected by links, and 
thus provide high computational rates for real-time processing. Neural nets pro
vide a new form of parallel computing, inspired by biological models. With the 
help of a number of processors, serving as the neurons in biological systems, 
connected by links, the neural network model can artificially work in a similar way 
as the brain.

In the recent past, neural net technology has been showing a great deal of 
promise even in areas of conventional computing. Several neural network models 
have been proposed so far [3-7]. Neural network models are specified by their net 
topology, node (processor) characteristics and training rules. Starting from an 
initial set of weights (usually random) these rules indicate how to adapt or adjust 
the initial weights to improve performance. The adaptation is a major focus of 
neural network models. Thus the potentiality to achieve parallelism and to mimic 
biological neural systems works as the major motivation behind neural net re
search.

Our focus is on a particular model of neural nets, namely, the self-organizing 
neural net. The term ‘self-organization’ refers to the ability to learn from the input 
without having any prior supervising information and arrange the processors 
accordingly. It is argued that self-organization works as a basic principle of sensory 
paths of the human visual system. In this case, self-organization means a meaning
ful ordering of the neurons (processors) of the brain, where the ‘ordering’ does not 
mean moving of neurons physically. The basic self-organizing system is a 1- or 
2-dimensional array of processors forming a net and characterized by short-range 
lateral feedback between neighboring units. A self-organizing neural network 
model has been suggested by Kohonen [4], In Kohonen’s feature mapping algo
rithm, a net of processors, having some initial weights, is considered and the input 
signals are fed to it so that the net can adjust itself. The process is repeated for all 
the inputs and several iterations are performed. The process stops when it 
converges. The learning (adjustments) is unsupervised. After convergence, the net 
organizes itself in an orderly fashion.

A dynamic version of Kohonen’s model has very recently been proposed by 
Sabourin et al. [8]. It is called selective multi-resolution approach. Such a dynamic 
model can overcome the following shortcomings of Kohonen’s model, namely, (a) 
it is necessary to determine a priori the number of processors; (b) it can produce 
data collisions (overloaded nodes or nodes with no entry at all). Another dynamic



version of Kohonen’s model has been suggested by Fritzke [9] to model the 
probability distribution in the plane.

The present neural net also is dynamic and behaves, as discussed in the next 
section, like a self-organizing net. It is dynamic since we do not presume the 
number of processors beforehand. We start with a small number of processors and 
dynamically go on growing the number. The weights of the initial processors are 
not random. They start with some ordering, and when they grow in number, the 
ordering is maintained throughout the process. The inputs are not fed sequentially 
as in Kohonen’s model. Instead, each processor works simultaneously on all the 
inputs and the feedback is passed on to itself. The process is unsupervised. Some 
new processors can be created and some old processors can be killed during the 
iterative process depending on the feedback at each iteration.

2. The model

In the present model we consider a set of n 2-dimensional input vectors 
(representing the signals)

s =  K * i >  :vi)> ( * 2.  *2),  •••>(*„, yn)}

= {P1, P 2, . . . , P n}

Denote a circular list of m  processors by

{ iT j ,  7T2 , ----

where each processor stores a 2-dimensional weight vector. The weight vector here 
represents a position in the plane where a processor can be thought to be located. 
In our discussion, placing a processor at a location does not mean that it is moved 
physically to a location. Instead, it means assigning a new weight vector to the 
processor.

Let
ctj = nearest Pi from v y and

/3y =  second nearest Pt from ir;

i = 1 , 2 , . . . , h  and j  = 1, 2,

We start initially with m >  2 (say, m = 4). The processors are ordered in a 
sequence (ttj, tt2, vr3, tr4) and they are assumed to be placed on the circumfer
ence of a circle enclosing all the input points. Suppose they are situated on the 
four extreme points of two orthogonal diameters. Assume processor irm+1 = v v

Definition 1. For a processor ir; , its previous neighbour is processor itj-_1 and next 
neighbour is processor tt;+1.

Definition 2. Two processors ttj and wj+l are said to be equivalent (Fig. 1) if



Fig. 1. Circles represent processors and *’s represent input points. Each processor is connected with its 
aJ and by dashed lines. Processors v l and v 2 are equivalent; and ir3 and ir4 are shaking hands. 
e3 =  angle (a 3, r 3, <r4).

Definition 3. Two processors v } and v j+1 are said to shake hands (Fig. 1) if they 
are not equivalent and

{“ /> Pj) n  {“ ; + i> Pj + i) ( say- { T;} )

Symbolically, Vj <-> v j+v Vj and v j+1 are also called partners, Vj is previous 
partner of v j+l and v J+1 is next partner of tt; .
Denote

° j  =  @j) ~  { t j }

° } + i  =  K + l >  P j + l } ~  ( T; }

&j = angle(o), Tj, <rj+l) (Fig. 1).

Definition 4. Two partner processors tt, and TrJ+l are called convex partners if 
&j > 180°. Otherwise they are concave partners (Fig. 2).

Definition 5. For processors v j _1, ttj and ir^+1; Vj is called an X-type processor if 
both the pairs ttj) and (vr;, v j+1) are concave partners. Wj is a Y-type
processor if both the pairs (i7-y_j, 7r,) and (ttj, are convex partners. Other
wise, Vj is a Z-type processor (Fig. 2).

Definition 6. The convex hull of S is the smallest convex set containing S. The 
convex hull here is in fact a convex polygon. Each edge of the polygon is a hull 
edge and each of its vertices is a hull vertex.

For a Z-type processor Vj denote (Fig. 2)

(Ty_! if Oj- i>  180°
fij = It,- if 0j > 180°

At any iteration if two consecutive processors v f and v j+1 are equivalent, the 
processor created earlier is killed (deleted from the list). On the other hand, if ir,



Fig. 2. Three types of processors X, Y and Z. Types are shown in parentheses. ir2 and tt3 are convex 
partners while t t 3 and ir4 are concave partners.

and 7Tj+l are found not to shake hands then a new processor is created (inserted) 
in the middle of the circular arc joining tt, and 7rJ + 1.

Theorem. After a finite number o f iterations the processors will be organized in such 
a way that for all j  = 1, 2, . . . ,  m (m = current number o f processors), «-»TrJ+l. In 
such a situation the iterative process o f insertion /deletion o f processors stops. (Call it 
final handshaking.)

Proof. Consider the Voronoi diagram of order two of S [1], which is a partition of 
the plane defined by the convex polygons V(r, s), 1 < r, s < n where

V(r, s) = {P : max(d (P ,  Pr), d(P,  P J )  < d ( P ,  Pt) for all t ( t  # r ,  t #.?)}

where d  stands for the Euclidean distance.
In general, V(r, s) may be empty for some r, s.
It can be seen that
(a) If a processor 77) lies in the interior of V(r, s), then {ap  /3;} = {Pr, Ps}. Two 

processors falling in the same V(r, s) are equivalent.
(b) If two polygons V(r, s) and V(u, v) share a common edge, then the two sets 

{Pr, Ps] and {Pu, PJ  have exactly one point in common. For two processors tti 
and 7Tk, if v lies in V(r, s) and v k lies in V(u, v) then they are shaking hands.

Now the probability of a processor falling in the interior of some V(r, s) is 1. 
Hence the theorem. □

Observation 1. Final handshaking will give rise to a polygon where each processor 
of the net corresponds to one edge and the t - ’s  are the vertices of the polygon.



Observation 2. If all the processors of the net are Y-type then the generated 
polygon is the resulting convex hull where every processor corresponds to a hull 
edge and the t / s  are the hull vertices. Otherwise, bridging is required to get the 
final convex hull from the polygon.

Before bridging, all the X-type processors are deleted from the circular list of 
processors.

Observation 3. After deleting the X-type processors, if two consecutive processors 
Vj and trj+l are Z-type then there are three cases:
(a) 1Tj and 1r;+ , do not shake hands (due to deletion of X-type)
(b) tTj and TTj+l are concave partners
(c) -iTj and tt)+1 are convex partners.
Bridging is required for cases (a) and (b).

The formal algorithm can now be stated as follows:
Step 1 [Initialization],
Take m  =  4. Place the ordered processors ( i t v  ir2, 7t3, tta )  on the four extreme 
points of two orthogonal diameters of a circle enclosing the points. Let irm+1 = t t v 
Step 2 [Handshaking],
(i) For all new processors calculate ajt j8;.
(ii) For ; ' = l , . . . , m ,  if Vj and irJ+1 are equivalent then kill the older one 

(processor created last is kept).
(iii) For j  = 1,. . . ,m,  if tt] and ttj+1 do not shake hands and are not equivalent 

then create a new processor at the middle of the arc joining tt7 and 7tj + 1 .

Repeat this step until for every processor, ir; «-> 17y+1.
Step 3 [Bridging].
(i) Label all the processors as X, Y and Z according to 

Definition 5.
(ii) Kill all the X-type processors.
(iii) For

if TTj and Vj+l are Z-type then 
begin

if either of cases (a) or (b) in Observation 3 
is true then 

begin 
kill 7Tj and 7r;+1 and
create a new processor 7rk (say) such that 
a k = tij and pk = fij+l 

end 
end.

Repeat this step until every processor is Y-type.
Step 4 [Termination]. Stop.

It can be seen that the above model works as a dynamic self-organizing neural 
net. Let us look at what basically happens in our algorithm. We start with an initial



Fig. 3. The input points.

net having a given number (m  = 4) of processors. The input signals are fed to the 
net and some feedbacks (aj and /3y) are generated. Depending on the feedback the 
net grows in such a fashion that a certain ordering (of the processors) takes place 
after a number of iterations. Like other neural net models the net finally con
verges. Moreover, such an ordering happens without any supervision. In brief, 
from the inputs the net adapts itself in an unsupervised way and organizes itself 
according to the input. Similar things essentially happen in a self-organizing neural 
net.

3. Results and conclusions

Neural net based information processing or neurocomputing has been estab
lished to be a promising computational technique. One inherent advantage of 
neural nets is parallelism. Another advantage of neural net based models is the 
adaptation capability that enables biological modeling of a problem. This is why 
more and more researchers are interested in this field and thus its domain of 
application is increasing. As a result, there have been attempts to solve more and 
more problems, already having conventional solutions, using neurocomputing. 
This, in turn, is enriching this field. The proposed work is an attempt to demon
strate an application of neural net based models in a computational geometry 
problem, namely, convex hull computation for a planar point set [1,2]. A specific 
neural net model is suggested for this purpose. It is shown that a (dynamic)
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Fig. 4. The final handshaking is shown. A  box represents a processor that was killed (deleted). Solid 
lines are the edges of the generated polygon.

self-organizing neural net is capable of learning from the input and can arrange 
itself from which the convex hull can be obtained.

Several conventional algorithms are available for convex hull computation [1,2], 
The worst-case complexity of this problem, using a single processor, is 0(n  log n) 
where n is the input size. The divide-and-conquer method also has the same 
complexity. This complexity is known to be optimal. In our algorithm, in the 
handshaking step, at each iteration, all the processors calculate a ; and in 
parallel. Since there are n input points, this step takes O(n) time. It can be seen 
that the handshaking step decides the complexity of the algorithm in the worst-case 
sense. Thus the worst-case complexity of the algorithm, with O(n) processors, is 
linear at each iteration.

The neural net model discussed above has been implemented and tested on 
several point sets. One such set consisting of 22 points is shown in Fig. 3. An 
intermediate result obtained after handshaking step is shown in Fig. 4. The 
numeral label (in Fig. 4) for each processor indicates the iteration number at which



Fig. 5. The convex hull found after bridging.

the processor was created. It can be seen that totally four iterations were required 
for final handshaking. Fig. 5 shows the final result (i.e. the convex hull) obtained 
after the bridging step.
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