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Abstract

In this paper we characterise linear unbiased strategies for estimating the population total, admitting 
uniformly nonnegative unbiased variance estimators. We then characterise strategies for which the ‘natural’ 
unbiased variance estimators are uniformly nonnegative. We proceed to derive various necessary and 
sufficient conditions for the nonnegativity of unbiased variance estimators vis-a-vis nonnegative definite 
matrices. We finally propose a set of sufficient conditions for uniform nonnegativity of unbiased variance 
estimators and an algorithm to verify those conditions. In this paper the variance estimators considered are 
necessarily quadratic estimators.

A M S Subject Classification: Primary 62D05; secondary 15A48.

Key words: Sampling strategies; variance estimators; unbiasedness; uniform nonnegativity; quadratic 
forms; definite matrices.

1. Introduction

Consider a finite population of size N.  Let y  be the study variate taking value j^elR 
on unit i, 1 ^  i ̂  N.  O ne of the basic problem s in sampling theory is to  estimate the 
total Y=£?L l }’i o f the variate y. A ‘reasonable’ strategy is arrived at, based on various 
considerations, to  estim ate the total Y. However, for certain ‘reasonable’ strategies, 
uniformly nonnegative unbiased variance estim ators (NNUVE) are no t always avail
able. Rao and  Vijayan (1977) studied the problem  in some generality though more 
specifically for the strategy that consists of a M idzuno-Sen sam pling scheme and the 
ratio estimator.

We typically have a linear unbiased strategy (p, t) for estimating the total Y, where 
p is a sampling design and t is a linear unbiased estimator. The variance of such
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a strategy may be written as

N N
( 1.1)

;= ij= i

where ay, 1 ^  i, j  <  N, are know n coefficients. We assume th a t V(p,t) vanishes at 
a know n vector x = ( x u x 2, ... , x N) such that and Xj^O V i=  1 ,2 ,... ,N . For
many well known strategies (p, t) this condition is satisfied. In  fact, often bo th  p and 
t depend on x.

Rao and Vijayan (1977) derived an alternative expression for V(p, £) and deduced 
the necessary form of an N N U Y E. They also proposed a set of sufficient conditions 
for the uniform nonnegativity of such an estim ator. W e list their findings for our 
future reference.

(i) The alternative expression for the variance,

(iii) A set of sufficient conditions for the uniform nonnegativity of the estimator 
in (1.3),

In view of (1.4), however, it may be observed that the conditions (1.5) would cease to 
hold as soon as any of the a,/s, i # j,  in ( 1 .2 ) are positive.

In  this paper we first characterise strategies adm itting uniformly N NUVEs. We 
then characterise strategies for which the ‘natural’ estim ators are uniformly non
negative. We proceed to derive various necessary and sufficient conditions for the 
nonnegativity of variance estim ators vis-a-vis nonnegative definite (NND) matrices. 
We finally propose a set of sufficient conditions for uniform nonnegativity of variance 
estim ators and an algorithm to verify those conditions. In this paper we consider only 
the quadratic  variance estimators.

(1.2)

where a y, 1  ^  j  ̂  N,  are as in ( 1 .1 ).
(ii) The necessary form of an N N U V E,

(1.3)

where seS , the collection of all samples of size n, further 

a fj(s) =  0  if i$s  o r j£s ,

Z  aiM P ( s) =  ( '# /=  1 , 2 , . . .  ,/V,

(1.4)

and finally,

ay (s)< 0  for all i# j e s ,  seS. (1.5)



2. Strategies adm itting uniform N N U V Es

Let us rewrite the expression for the variance (1.1) at y '  = ( y i , y 2, ••• .^w) as 

V ( p , t ) = y ' A y ,

where A  is the N x  N  m atrix of elements aij7 l ^ i ,  j ^ N ,  in (1.1). N ow  the variance is 
a nonnegative function and hence,

y ’A y ^ O  V jelR ^.

This implies that A  is N N D .
Further by our assum ption that V(p, t) is zero a t x '  = ( x 1, x 2, . . . , x N), we have

x ' A x  = 0 => A x  = 0.

By defining bij = a ijx ixj,  and y ij x i = z i, the variance a t^ e R ^
may be written as

z ’Bz ,  (2.1)

where B  is N N D  and Be = 0, e' being given by e ' =  ( l ,  1 ,. . . ,  1).
We would often identify the variance (2.1) with the m atrix B  and call it the 

‘associated m atrix’.
Analogously letting bij(s) = aij( s)x ix j , 1 ^  i, j <  N, seS,  the estim ator in (1.3) may 

be rewritten as

z' (B(s)  — AB(s) )z ,  se S  (2.2)

where B(s) is the N  x N  m atrix of bi}{s), 1 sci, j< iV , seS,  and given any m x m  matrix 
C=((cl7)), AC  is defined as

■dC =  d ia g (r 1 (C ) ,r 2 (C), . . . , r m(C)),  (2.3)

where r , ( C ) = l J L (cy ,
We did no t specify a;,(s), i =  l,2 , seS,  in (1.4) as neither (1.3) nor its

unbiasedness depends on them. ( 2 .2 ) does no t depend on the diagonal elements of 
B(s), seS, either; as C — AC  does not depend on  the diagonal elements of C. We choose 
h{s)= —'Zj^i b ij(s), seS,  so that the estim ator (2.2) can be w ritten as

z ’B(s )z ,  seS,

where now

B(s)e = 0 V seS
and

£  bij(s)p(s) = biJ,
(2.4)



Let us label the samples in S as s 1 ; s2, ... ,sM; M  = (%), and  associate an M -tuple of 
m atrices w ith (2.4) as

B = ( B ( s1) , B ( s2) , . . . , B ( sm)). (2.5)

We would often identify an estim ator in (2.4) with the ‘associated tuple’ (2.5). Clearly, 
an estim ator in (2.4) is uniformly nonnegative if and only if B(s,) is N N D  for all 
£ =  1 ,2 , . . . ,  M  in the associated tuple.

W e introduce a few more terms before characterising variance expressions 
i I ^ i M z — Zj) 2  or equivalently the quadratic forms z 'Bz  in (2.1) admitting 

a uniformly N N U E  under a given design p.
Let W N={C\ C is N  x N, C' =  C and C e= 0 ) and Z  =  { C = (C (s1), C(s2) , . . . ,  C (s„)): 

C (s,)e WN V ( =  1 ,2 ,... , M  and (i, y)th element of C (st) is zero if i$st or j$s„ l ^ t ^ M } .  
Define H : Z-> WN as H (C) =  C, where C is an N  x N  m atrix with

M

CH= I c y ( s , ) p ( s t),
t= 1

and
N

j * i

Let

<tg = {H{C): C e Z  and C(st) is N N D  V t = 1 ,2 ,... ,M } . (2.6)

We now have the following theorem.

Theorem 2.1. For a given design p, V — — i£ f= iZ ^ = i b^  (z; — Zj)2 admits a uniformly 
N N U E  i f  and only if  the associated matrix B is in <€ o f  (2.6).

Proof. Let V  adm it a uniformly N N U E , say v. Let B = ( B ( s t ) ,B(s2) , ... ,B ( s M)) 
be the associated tuple for v. Clearly, B(s ,)e=0  and B(st) is N N D  V f=  1 ,2 , . . .  , M  
as v is uniformly nonnegative. Further, since v is unbiased for V, H(B) = B. Hence 
Be&.

Conversely, if Be&  then H(C) = B  for some C = (C (s 1 ),C (s2) , ... ,C (sM))e Z  such 
that C(s,) is N N D  V ( =  1 ,2 ,... ,M . Define

w(s,) =  z ’C(s,)z, 1

j N N

= Z c i A s t ) ( Z i  -  Z j ) 2 , 
l i = 1 j'= 1

This w would work as a uniformly N N U E. □



For a given design p, define

7Ci =  E p (5 ), K K N ,
s s i

rc;j= X > ( 4
s s i , j

Let p be such th a t 7t i 7 > 0  V i^ j  =  1 ,2 ,... ,Af.
For estimating F =  — j]Tf=i Y!j=i^ij(z i ~ zi)2 two m ost ‘n a tu ra l’ unbiased es

timators correspond to

bij{s)= b'J
M 2p{sY

i ^ j e s ,

bu(s) = — X  M s )> ie s •
j^ies

bij(s) = 0 , if i^ s  or

seS, (2.7)

bij(s) = — ,
Tin

bij{s) =  0 ,

i ̂ y'es,

W « ) =  -  E  M s)> *es>
j^ies

if or j$s ,

seS. (2.8 )

We now characterise variance expressions adm itting (2.7) and (2.8) as uniformly 
NNUEs.

Define 7 \  ; WN—>Z as

r 1 (5) =  (B (s 1 ) - J B ( s 1 ) ,5 (s 2 ) - z lB ( s 2 )) . . . , e ( s M) - z l 5 ( s M)),

where B(st) is an  N  x N  m atrix that agrees with B  for all elements ( i j )  for which both 
i and j  are in s„ and  the rest of the elements of B(st) are all zero,

Clearly, 7 \ is one to  one. Let S^1( T l ) be the range of Tj and

S t U T i ) = { C = (C (s ,),C (s2) , . . . ,  C (sM)): C e ^ ( 7 \ ) and

C(s,) is N N D  V t =  1 ,2 ,... ,M }

also let « *  =  {rr1(C): C e M +x(Ti)).

Theorem 2.2. For a given design p the estimator (2.7) is a N N U E  for  estimating the 
variance V =  — j£ 'v= j Y!j=ibijiz i ~ zj)2 i f  and only i f  the associated matrix is in

Proof. We om it the proof as it is implicit in the preamble to the theorem. □



We now obtain an analogous characterisation for the estim ator (2.8). Given 
a design p with jty >  0,1 <  i <  N,  let 77 be an N  x  N  m atrix  with ( i j  )th entry as 1 /%  
\ ^ i ¥ = j ^ N ,  and (i,i)th entry as 1  /n b 

Define T 2 . W N-+Z as

t 2(b )=((b ° n ) ( Sl) - A ( B ° n ) ( Sl), ( B ° n ) ( s 2) ~ A ( B o n ) ( s 2) , . . . ,

( B ° n ) ( s M) - A ( B o I I ) ( s M)),

where B°77 denotes the H adam ard  product of m atrices B  and 77, (B°77)(s,) agrees 
w ith B°  II  for all entries (i,j)  for which both  i and j  are in s, rest of the elements of 
(B ° II)(s,)  are all zero, U t < M .  Since 77 is a fixed N  x N  m atrix  T 2 is also one to  one. 
Further, let fM2{T2) be the range of T z and

^ 2+( r 2 )= { C = (C (s 1 ),C (s 2 ) , . . . ,C ( s Af)): C e ® 2{T2) and

C (st) is N N D  Vc =  1 ,2 ,... ,M }.

Finally, let ^ ^  = {T2 l(C): C e ^ J ( 7 ’2)}. We now state the following theorem.

Theorem 2.3. For a given design p the estimator (2.8) is uniformly N N U E  for estimating 
V =  — iXjL i bij (z i — zj)~ i f  and only if  the associated matrix B  is in t?**.

Proof. The proof is similar to  that of Theorem 2.2. □

R em ark 2.1. For a given design, Theorem s 2.1-2.3 characterise variance expressions 
tha t adm it (i) uniformly N N U E , (ii) (2.7) as uniformly N N U E  and (iii) (2.8) as 
uniformly N N U E , respectively. Similar results can be obtained for any unbiased 
variance estim ator that can be defined w ithout reference to  any specific associated 
matrix.

H aving observed that the nonnegativity of an unbiased variance estim ator depends 
on whether certain matrices of the type Be = 0 are nonnegative definite or not, we try 
to  characterise such matrices.

Let
$  = {B\ B =  B', B  is N N D  and B e= 0} . (2.9)

Although there are various characterisations of N N D  m atrices in the literature, we 
would like to  give a few equivalent descriptions of 0D using the additional condition 
Be = 0.

Theorem 2.4. The following classes o f  matrices are equal to 38.
(i) =  {B: B = B' and B x  =  /.x => A^O  and >i<x,^> =  0}, 

where <. , .)  denotes the inner product.



(ii) @2 = {B: B  = P'DP, {D,P)e&},  where

9  = {(A,P):  / l  =  diag(A1, A2, ... ,A„), A.SsO, K K r a ,

Aj is zero for at least one index say j, 1 ^  j  <  n. P is an 
orthogonal matrix with ( 1  A /n) e' as its j th row.}

Proof, (i) Let Be.^ .  e is an eigenvector of B  corresponding to  the eigenvalue 0. Since 
B  is N N D  B x  = Xx => A ̂  0.

Further, if x  is an  eigenvector corresponding to A /0  then < x ,e ) =  0. Thus, 
Bx  =  /.x => A^O and A<jc,^) =  0. Hence, Conversely, if B e then for A >0 if
Bx = Ax then (x ,  e )  =  0.

Thus, e is orthogonal to all eigenvectors corresponding to  nonzero eigenvalues. 
Hence, e m ust be an eigenvector corresponding to  the eigenvalue 0, i.e. Be =  0. Thus, 
B e  3$. Therefore, =0$.

(ii) Let BeSS. F o r any real symmetric m atrix B, there exits an orthogonal matrix 
Q with its rows as eigenvectors of B such tha t

B = Q'DQ,

where D is the diagonal matrix of the eigenvalues of B. Since B e  J 1, e is an  eigenvector 
of B corresponding to  the eigenvalue 0. Thus, (D, Q ) e (§  and B e ,# 2- O n the other hand, 
if B e ^ 2 then as B =  P ’A P  for some [A, P)£-S all the eigenvalues of B are nonnegative. 
Hence, B is N N D .

Further, for ( A , P ) e &, APe  = 0 => Be = P 'APe = 0. Hence , B e ^ .  Thus, $ 2 = $ .  
We now give a set of necessary and  sufficient conditions for the uniform non- 

positivity of

Q ( B , z ) = i  i b i j i z i - z j ) 2, z eR ", (2.10)
; = i j= i

where B = ( (b tj)) is an n x n  symmetric matrix. Let s =  { 1 ,2 ,. . . ,n} and 
J = {Ju  J 2, . . . ,  J m}, l ^ m < n ,  be a partition  of s. Further, let cpq = Y,iejPI j e j qbij and 
C= (( cPt)), 1 Let Qm(C(J),  a ) = I p = 1 I " = 1 cp,( a i, - a 4)2, a ’= (oc1,ot2, ... ,am),
aeR "1. In this set-up we have the following theorem.

Theorem 2.5. g (B ,z )< 0  VzeIR" i f  and only i f  Qm(C (J ) , a t )^ 0  Vae!Rm and V 
partition J  o f  s.

Proof. As sufficiency is obvious, we only prove the necessity. Let Q(B,  z ) ^ 0  VzeIR". 
For a partition J  of s define zJeIR" as

z; =  Up Vi e J p, a.’ = (au a2, . . . ,a m), aelRm.



Now
n n

Q ( B , z J ) = £  Z h i j i z i - z j ) 2

m m

= E E E E b i j i Z i - Z j )2
p = 1 q = 1 is jp  jeJp

m m

= E E cp«K-a«)2
p=  1 4=1

=  e m(C (J ) , a ) .

Therefore, Qm(C(J),  « ) ^ 0  V a e R ” and V partition J  of s. Hence the theorem . □

3. Sufficient conditions for a uniformly NNUVE

So far we have given different characterisations of uniformly NNU V Es. The 
problem  of deciding whether a given estim ator is an  N N U V E  or not still remains. In 
this section we propose a set of sufficient conditions for the uniform nonnegativity of 
a given estim ator and also give an algorithm to verify the conditions. However, we 
first observe that given an  n x n symmetric matrix B  with Be = 0 the problem  of 
checking w hether it is nonnegative-definite can easily be reduced to th a t of an 
(n — 1 ) x  (n— 1 ) matrix as follows.

b B x

be such tha t Be = Q, where b' = (bl2, b l?„ . . . , b ln) and B 1={{bij)), i,j = 2 , 3 ,... ,n  and 

e F

be an n x n m atrix such tha t F  is an (n — 1) x (n — 1) lower triangular matrix (( f tJ)) with

>

Let

Clearly, the rows of E  are m utually orthogonal. 
Let C be an (n — 1) x (n— 1) m atrix defined as

C = b11eel + Fbe' + eb'F'  +  F B 1F'.

W e now have the following theorem.

(3.1)

Theorem 3.1. In the above set-up the matrix B is N N D  i f  and only i f  the matrix C
is NND .



Proof. The proof is simple as the rows of E  are mutually orthogonal and 

TO 01 
E B E ' = [ o  C 

where C is given by (3.1).

Remark 3.1. In  view of Theorem 3.1, to  check whether B  is nonnegative-definite, one 
may now use any of the various standard  conditions to check this property for the 
matrix C, which is of smaller size.

We now give a set of sufficient conditions for the nonpositivity of Q(B, z) defined in (2.10). 
Let B  be any n x n  symmetric matrix. Define 0  =  ((w;j)) as

0 ) ^ = 1  if b;j>0,  £ # /=  1 , 2 , . . . , n,

C0ij = 0  if bij^O,  i / / = l , 2 , . . . ,n ,

« ; ;= ! ,  i=  1 , 2 , . . .  ,n.

Let P  be a perm utation m atrix such that

P £2P =  Ci i ©  • * * © , 1 -

where Qp is an np x n p irreducible matrix, Y!^=inp= n - Let { J 1, J 2, ... , J m} be
the partition of s =  { l ,2 , ... ,n} induced by Q2, ... Define C = P'BP, Gp={(i,j):

only if Q(C, z )< 0  VzeIR".
We are now equipped to state the following theorem.

Theorem 3.2. I f  there exist subsets K i ,K 2, of  s such that
(i) Jpn K p= 0 V p = l , 2 , . . . , m ,

(ii) I f  J p n K q^ 0  then

Cij>0 , i¥=jeJp}, G =  U p= iGp and cp = I Cij. Clearly, Q ( B , z ) ^ 0  VzeR" if and

J qn K p = 0 V p / q =  1 ,2 ,... ,m, (3.2)
and

(iii) Cp+X*6 Kpm ax(cik)C ;J < 0  y i¥=jeJp, lsS p ^ m , 
then Q(C,z )< 0  VzeIR".

Proof.
n n

Cij(Zi-Zj ) 2

i= l j= 1 

m  (

m m

+  Z  Z  Z  Z  C y ( z , - z /
p= 1 q^p-  1 i e J p  jeJq

m

P= 1
m m mm

+  Z  Z  Z  z  Cl7 (z,— z /  +nonpositive terms,



where
(zip- z jp)2 = max  { z t - z j )2.

( i . j ) e G p

From  (iii)

^p(2ip Zjp) ^  ^  Cjpfc)(Zfp Zjp)
f c e K p

^  ^  m3x(cI-p/c, Cjpk) {( îp f̂c) (^jp }
keKp

as cipkS are negative and for any a,b,ceM,

(a — b) 2  <  2 {(a — c)2 +(b — c)2}.

Therefore,

^p(2ip ^jp) ^  ^  ^ipk{2ip z k) ^  ^jpk(z jp Zk)
( . k e K p  keKp

Thus,

Q(C, z)<  - 2  £  i  I  cf* ( z „ - z * ) 2  +  E  cjpk(zjp- z k)2
p  =  1 (. keKp keKp

m m

+  E  I  £  I  Cij(Zi--Zj)2
p = l  q / p =  1 i e J p  j e J g

< 0  (3.3)

as each c^z,-—z, ) 2  in the second summation appears a t m ost once in the first 
sum m ation and those are the only terms in the first sum m ation of the right-hand side 
of (3.3). Thus,

6(C,z)«S0 VzeIR". □

Rem ark 3.2. Condition (ii) of (3.2) is to ensure that the coefficients in the second term 
of the right-hand side of (3.3) are used at most once each. C ondition (iii) of (3.2) m ay be 
replaced by a condition tha t is m uch simpler to verify though marginally restrictive.

(iii)* cp+ £  m ax c it^ 0 , l ^ p ^ m .
keKp iE jp

R em ark 3.3. Conditions (1.5) due to  Rao and Vijayan (1977), in this set-up, w ould be

Cij^O V 1 ^ / =  1 , 2 , . . .  ,n.

As this would clearly imply (3.2), conditions (3.2) are m uch less stringent th an  those 
proposed by Rao and Vijayan (1977).

R em ark 3.4. One can now use Theorem  3.2 to give a set of sufficient conditions for the 
uniform  nonnegativity of an unbiased estimator (2.4) by simply dem anding the



analogue of conditions (3.2) to be true for each of the entries in the ‘associated 
tuple’ (2.5).

Theorem 3.2 may also be used to  check whether a given symmetric m atrix is 
nonnegative definite.

Corollary 3.1. In the above set-up any symmetric matrix C is N N D  if
(i) conditions (3.2) o f  Theorem 3.2 hold and 

(») Vi =  1 , 2 , . . .  ,n.

Proof, (i) implies tha t Q{C, z ) ^ 0  VzeIR" which is equivalent to  C — AC  being NND.
(ii) implies tha t AC  is N N D .
Therefore, C being the sum of two N N D  matrices, i.e. C =  (C — AC) + AC, C is 

N N D . □

We conclude this paper by proposing an algorithm  to construct sets K u K 2, 
of Theorem 3.2.

Algorithm 3.1. In the framework of Theorem  3.2, we assume, w.l.o.g., that

C i>C 2 >  ^ cm.

If Ci = 0  then K p= 0  V p=  1 ,2 ,... ,m; otherwise let 

P n  = m in  max £  m ax(cik, cjk).

If cx +  jSn  ^ 0  then K 1= J qu, where q i t  a ttains jSu ; otherwise let 

P12= min max £  m ax(c;k, cJk).
9*1,411 eJl keJquJqti

If c1+ p 12^ 0 then K 1= J qil\ j J qi2 where q 12 attains /?12, and so on.
Note that if c l + m a x iij )j ^ jej t ^ =2YlkeJmsLx{cik,Cjk) > 0  then K x does not exist. 

Having obtained K u  one similarly obtains K 2.
Define T r= { r+  l , r +  2 ,...  ,m} u  {p: p < r  and  J r n  K p=0j ,  1 < r < m .  If c2 =  0 then 

K p= 0 Vp =  2 ,3 , . . . ,  m; otherwise let

[i21 = m in  max £  m ax(cife, cjk) .

If c2 + p21 ^ 0  then K 2 = J qil where q21 a ttains [l2l; otherwise let 

P22= m in max £  niax(cit) cjk)-?#«2 i,«Er 2 ksJ ]



If c2-t-J?22^ 0  then K 2 = J qiI u  J qi2 where q22 attains fi22, and so on. N ote th a t if 

c2+ max £  £  max(clt, C;*)>0,
q ^ 2  k e J q

then K 2 cannot be obtained, i.e. if

c2 + max Y, £  max(cik, cj7l)> 0  and J 2r K l = 0 ,
2 q e r 2  k e J q

then K 2 does not exist.
If

c2 + max Y, £  max(cit,c ; t ) > 0  and J 2n K 1^=0,
2 qEl-2 keJq

then the sufficient conditions m ay perhaps be satisfied provided 

c2+  max £  Y. m ax(cito CjkK0-
2 , / 2  k e J g

The step to  be taken at this stage is to start with a different choice of K u obtained as 
before bu t with an additional constraint, namely K ^ n J 2 = 0 and then to repeat the 
steps above to  get K 2.

H aving obtained K UK 2, ... , K r- u r ^ m ,  one similarly obtains K r. If cr = 0 then 
K p = 0, Vp = r , r + 1 ,... ,m; otherwise let

Prl =  min max £  max(cit, cJit). 
q e r r ( i , j ) , i * j € j r keJq

If cr+f}rl < 0  then K r = J qrl where qrl attains firi; otherwise let 

fir 2= min .m a x  Y  max(clfe, cjk) .
«#4n ,«eJY  ( i , j ) , i * j e J r k e j qUj q

If cr +  jSr 2  < 0  then K r = J qrl u J , r 2  where qr2 attains jir2, and  so on. However, if this 
sequence of steps does not produce K r then one has to  go beyond the set r r. Note 
that if

m

cr +  max X  £  max(cik, cjk)>0,
U , j U * j e J r  k e J q

then K r does not exist. Otherwise, obtain K r as follows. Let 

Tri= max £  max(cit, cjk),
( 1  , j ) , i * j e J r  k e u r u J g :

where H r = {JqerrJ q and q 1= m a x q{q: q < r  and J r n K q=£0}.
N ow  if cr + yrS < 0  then K r = H r (j Jq[; otherwise let

yr2= max £  max(cik, cjk)
U , j ) , t * j e J r  k£BrUj l  U ; (i

where q 2  =  maxq{q: q < q l and  J r n X ,# 0 } ,  If cr + y r2^ 0  then K T = H r \ j J q2 ai 
so on.



Having obtained K r this way it becomes necessary to  ob tain  new K qi, K qi, etc., 
using the earlier steps with an additional restriction that they do no t intersect with J r. 
In turn, it might be necessary to change some of the subsequent K ’s.

We continue to  follow these steps until either we get all the required K U K 2, 
or get into a loop only to conclude that the required K ’s do no t exist.

Let us now illustrate the use of Algorithm 3.1.

Example 3.1. We start for simplicity with a m atrix C that, in the framework of the 
algorithm, satisfies c, ^ c 2  ^  ••• > c m. We do not specify the diagonal entries of the 
matrix C, as they are irrelevant.

J; 1 2 3 4 5 6 7 8 9 1 0

I
1 * 2 2 - 5 - 4 - 5  - 2 - 5 - 4 - 2

2 2 * 1 - 4 - 3 - 1  - 6 - 3 - 9  -- 1 1

3 2 1 * - 2 - 3 - 5  - 7 0  - - 1 1 - 7
4 - 5 - 4 - 2 * 1 0 1 - 2 - 3 - 3
5 - 4 - 3 - 3 1 * 1 0 - 6 - 4 - 2

6 - 5 - 1 - 5 0 1 * 0 - 3 - 4 - 5
7 - 2 - 6 - 7 1 0 0 * - 2 - 6 - 4
8 - 5 - 3 0 - 2 - 6 - 3  - ■ 2 * 1 - 3
9 - 4 - 9  - - 1 1 - 3 - 4 - 4  - 6 1 * - 2

1 0 - 2 - 1 1 - 7 - 3 - 2 - 5  - 4 - 3 - 2 *

For the above matrix,, n = 1 0 , s = {1 , 2 ,, . . . , io } , m =  4, J , =  {1 , 2,3}.

II JO J 4.— {1 0 }, C i -= 1 0 , c 2 =  6 , c 3  = 2 , c 4 = 0

We construct an array from the subm atrix of C specified by J 1 x ( s —J 1) as 
follows

<? 2 3 4 C l 2 C l 3 C 1 4

k 4 5 6 7 8  9 1 0

(U )
( 1 , 2 ) - 4 - 3 - 1 - 2 - 3  - 4 - 2 - 1 0 - 7 - 2

(1,3) - 2 - 3 - 5 - 2 0 - 4 - 2 - 1 2 - 4 - 2

(2,3) - 2 - 3 - 1 - 6 0 - 9 - 7 - 1 2 - 9 - 7
J l x - 1 0 - 4 - 2

where entries in the array correspond to m ax(cik,cJk), that in to  the maximum 
entries in the colum ns C iq and that in Ciq to

E maxfCi,,,̂ ), <? = 2,3,4.
k e j q

Looking at the entries in J t u  we have, =  —1 0 ; p xl + c t =  —1 0 +  1 0  =  0 ; therefore, 
a ,,  = 2  and K ,  =  J ,  =  (4.5.6.7V



We construct an array from the submatrix of C specified by J 2 x { s - J i (J J 2) as 
follows.

q
k

( i j )

8

3
9

4
10

C 23 C 2 4 c 2

(4,5) - 2 - 3 - 2 - 5 - 2 - 7

(4,6) - 2 - 3 - 3 - 5 - 2 - 7

(4,7) - 2 - 3 - 3 - 5 - 3 - 8

(5,6) - 3 - 4 - 2 - 7 - 2 - 9

(5,7) - 2 - 4 - 2 - 6 - 2 - 8

(6,7)
j f f l  2

- 2 - 4 - 4 - 6
- 5

- 4  - 
- 2

-10
- 7

where the entries correspond to  m ax(cit, cjk), that in J t 2 to  the maximum entries in the 
colum ns and that in C 2q to  Y.kej,mSLx(cik,cjk), q = 3 ,4  and finally the entries in C2 

correspond to  I ^ = 3 I/cej,m ax(cik,c Jt).
Looking at the entries in J t 2, we have fi21= - 5 ,  qz i =  3 and c2 + fi21 = 6  — 5 = 1, 

we have to  look at jS2 2 = —7, q22 = 4. As c 2  +  j? 2 2  =  6  —7 =  — 1, we have 
K 2  =  . / 3 u / 4  =  {8,9,10}.

As K 3 is a subset of s —J 2 u J 3  we construct an  array  from the subm atrix of 
C  specified by J 3  x ( s —J 2  u J 3) as follows.

q 1 4  C 3i C 3 4

k 1 2 3 10

(U)

(8,9) - 4  - 3  0 - 2  - 7  - 2  
M i  - 7  - 2

where entries in the array correspond to max(cit, cJk), th a t in J / 3 to the maximum 
entries in the columns C 3„ and tha t in C 3, to £ te 7 (!m ax(cijo cjk), q = 1,4. Looking at the 
entries in ,M 3, we have

1 =  — 7; /?3i +  c3  =  — 7 +  2 =  — 5 < 0 ,

therefore,
<j3 1  =  l and K 3 = J 1 = { 1,2,3}.

Finally, since c4  =  0, X 4  may be taken to be the em pty set 0. Thus, for the given 
m atrix C, we have

X 1  =  {4,5,6,7}, K 2 = { 8,9,10}, K 3  =  {1,2,3} and K 4  =  0 .

The problem s of (a) com paring variances of different N N U V Es, (b) enhancing the 
chances of getting N N U V Es using sampling techniques like stratification, and  finally 
(c) dem onstrating  reduction in m ean squared error for biased variance estimators



obtained from N N U V Es vis-a-vis a ‘superpopulation m odel’ are presently being 
studied.
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