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Abstract: The optimality and non-optimality of some row-column designs is studied with respect to the 

universal optimality criterion. It is shown that, (i) in the non-regular setting, a generalized Youden design 

is never universally optimal, (ii) in the regular setting, if the number of treatments is three or more, a 

generalized Youden design (if it exists) is uniquely universally optimal, and (iii) a pseudo Youden design 

is never universally optimal in the non-regular setting.
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1. Introduction and preliminaries

Generalized Youden Designs (GYD) were introduced by Kiefer (1958) as a 
generalization o f the usual Latin square and Youden square designs for eliminating 
heterogeneity in two directions. Under the usual additive and homoscedastic fixed 
effects model for comparing v treatments via b j b2 experimental units arranged in 
a row-column design with b\ rows and b 2 columns, the coefficient matrix of the 
reduced normal equations for estimating linear functions of treatment effects, using 
a design d e  3>{v,b^,b2) is

Cd = Rd - b 2 iNdlN 'j - b ; iNd2Nd2 +  (b ]b2y ' r drd (1

where Rd =  diag(rdurd2, . . . ,r dll), rd =  (rdurd2, . . . ,r dJ ,  rdi is the replication of the 
f'-th treatment, i =  1,2, Nd l=((n d^)), Nd2 = ((nid^)) are respectively the
treatment-row and treatment-column incidence matrices and 2>(v, b l,b 2) is the class 
of all connected  row-column designs with v treatments, b { rows and b2 columns.



A row-column setting is called regular if at least one of the following holds: (i) 
u j b\, (ii) o | b2, where m | n means « = 0 m o d m . Otherwise, the setting is called 
non-regular.

A design deO >{v,bx,b 2) is called a GYD if the following conditions hold for

If in a GYD, the row (column) classification is ignored, the {columns} ({row s}) 
considered as blocks, form a Balanced Block Design (BBD) of Kiefer (1958). A 
GYD is regular if at least one of the following holds: (i) v \ b\, (ii) v | b2, otherwise, 
the GYD is called non-regular.

Kiefer (1975) proved that a GYD (regular or non-regular) is A- and E-optimal, 
and is D-optimal if i>=£4, in S)(v ,bi,b2). Further, it was shown by Kiefer (1975) 
that in the regular setting, a GYD is universally optimal. A design d * e 3 ) ,  the class 

•of competing designs, is called universally optimal in S) if d *  minimizes <p{Cd) over 
for all <p:33Vto^C -00*00] satisfying

where 33v 0 is the class of all u x v  symmetric, non-negative definite matrices with 
zero row sums.

It is well known that if a design is universally optimal, then it is A-, D- and E- 
optimal as well. The universal optimality of regular GYD’s can be established with 
the help o f the following sufficient condition of Kiefer (1975).

Theorem 1.1 (Kiefer (1975)). Suppose a class C =  {Cd, d e  @)} o f  matrices in 
contains a  Cd* such that

5 = 1 ,2 :
bs

(>) E  n% = r for / =  1 ,2 , . . . ,u;

(1.2)

(iii) \n% s)-  bs/v\<\.

0  is convex,

</>(bC) is nonincreasing in the scalar b >  0,

0 is invariant under each permutation of rows and

(1.3a)

(1.3b)

(the same on) columns, (1.3c)

Cd> is completely symmetric, i.e. Cd» is o f  the form  aIv +  b J u, 
where /, is the v-th order identity matrix and 
J„ ,a  v x v  matrix o f  all ones,

tr (Crf.) =  max tr (Cd),

(1.4a)

(1.4b)

then d *  is universally optimal in 33. Here tr ( -)  stands f o r  the trace o f  a square 
matrix.



Notice that since —tr C  satisfies (1.3), condition (1.4b) is necessary for universal 
optimality. In subsequent sections, we utilize this fact to prove the non-universal op­
timality o f certain designs.

The purpose o f this presentation is to establish certain results regarding the 
universal optimality (or non-optimality) o f designs within the class & (u,b{,b 2). 
Specifically, we show that

(i) in non-regular settings, a GYD is never universally optimal.
Note that while in the regular setting, a GYD is universally optimal, the universal 

optimality o f G Y D ’s in all non-regular settings cannot be claimed. In fact, this 
prompted Kiefer (1975, p. 337) to make the following remark: “ We do not know 
in which non-regular settings the GYD is still universally optimal.” Result (i) above 
settles this question.

We also show that
(ii) in regular settings with d> 2, a GYD (if it exists) is the only universally op­

timal design, and
(iii) a B B D  with v > 2  is the only universally optimal design in &0(u, b ,k ), where 

@>0(v,b,k), is the class of all connected block  designs with v treatments, b blocks 
and block size k.

The notion o f G YD ’s has been extended to Pseudo Youden Designs (PYD) by 
Cheng (1981a). A design d e @ (v ,b ,b )  is said to be PYD if

^ = [^ , 1̂ 2]
is the incidence matrix of a BBD. Note that for a PYD, b l = b 2 =  b. Clearly a GYD 
with bi =  b 2 is a PYD , but the converse is not true unless the PYD is regular. It has 
been shown by Cheng (1981a) that a PYD is A- and E-optimal and is D-optimal if 
vi= 4. We show that

(iv) in non-regular settings, a PYD  is never universally optimal.
For the sake of completeness, we reproduce some results from Das and Dey 

(1989a,b).

Lemma 1.1 (Das and Dey, 1989a). Let d  be a block design with u treatments, b 
blocks and b lock  size k  such that its incidence matrix Nd has only two entries, xd 
and yd =  xd +\ , xd> 0 . Then xd =  [k/v\, where [•] is the greatest integer function.

Theorem 1.2 (Das and Dey, 1989b). L et d  be a block design with v treatments, b 
blocks and b lock  size k  such that the i-th treatment is replicated r, times f o r  
> = 1 ,2 ,..., v, E ri =  bk. Let us write the blocks o f  d  as columns. Then the treatment 
symbols within columns can be so rearranged, that the i-th treatment symbol ap­
pears m, times in each row, i f  and only i f  /', =  km l fo r  i =  1 ,2 ,..., v.

Suppose d e @ ( o , b u b2) is a row-column design. Associated with d  is a block 
design d N, obtained by treating the {columns} of d  as blocks. Then from (1.1), it 
follows that



where
Cd = C " -b i 'N dl(Ib - b t 1J blW l 

C " = R d- b ^ N d2Nd2

(1.5)

(1.6)
is the usual C-matrix of d N.

We also need the following definition from Das and Dey (1989b).

Definition 1.1. A b x x b 2 array containing entries from a finite set £2 =  {l,2 , ...,d } 
of v treatment symbols will be called a Youden Type (YT) row-column design if the 
z-th treatment symbol occurs in each row mt times for / =  1 ,2 ,... ,  v, where m ^ r-Jk  
and rt is the replication of the i-th treatment symbol, / =  1 ,2 ,... ,  v.

The class of YT designs contains all Youden square and regular GYD’s.
The following result is due to Das and Dey (1989b).

Theorem 1.3 (Das and Dey, 1989b). F or d e S )(v ,b u b2), Cd =C™ i f  and only i f  d 
is a YT design.

2. The results

We first prove the following:

Lemma 2.1. Given positive integers u ,bx,b 2 and rh i — 1 ,2 ,.. . ,  v, such that

there exists a b lock design d0 with v treatments, b2 blocks and b lock size b {, such 
that the i-th treatment is replicated r, times fo r  / =  1,2, . . .  ,v  and the incidence 
matrix o f  d{) contains only two entries, x =  [ftj/u] and y =  x +  1.

Proof. Consider an array B  of size v x  b2, such that
(i) B  contains only two integral entries, x and y =  x + 1, x > 0 ,  and
(ii) the z-th row sum of B  is rt for / =  1,2, ...,i>.
Clearly, such an array can always be formed for given positive integers 

u ,bi,b2,r u . . . , r u such that £  ri - b xb2 and b2x < r i< b 2y  for /'= 1 ,2 ,... ,  v. In fact, if 
f  denotes the frequency of x  in the z-th row of B, then

(i) £  n =  b :b2

and

(ii) b2[bl /v ]< r i < b 2([bi /v] +  1), i = l ,2 , . . . , o , (2 .1)

f i  =  b2y ~ r h  z =  1,2.......ii.

Thus, if rx denotes the number of times x appears in B, then

(2 .2)

V

rx =  I  f  =  b2v y - b lb2 =  b2( v y - b 1). (2.3)



Ii follows then that ry, the frequency of y  in B  is

ry =  b2{bx-v x ) .  (2.4)

Since rx and ry are both divisible by b 2, using Theorem 1.2, we can rearrange the 
symbols x and y  in the rows of B, to obtain an array A such that each column of 
A contains mx x ’s and my y  s, where mx =  vy -  b x and my =  b x -  vx. Clearly, the col­
umn sums o f A are all equal to b\. Finally, using Lemma 1.1, we get x = [ b l/v]. 
The array A is the incidence matrix of the required block design d0.

Corollary 2 .1 . I f  Cdn is the usual C-matrix o f  d0 o f  Lem m a  2.1, then tr(Cdo) is 
maximum over 3)0(v,b2, b j) , where ® 0Oa b2, b ]) is the class o f  all connected block  
designs having u treatments, b2 blocks and b lock size b\.

The following result can be proved on the lines of Theorem 3.2 of Agrawal (1966), 
using the results of Das and Dey (1989b).

Lemma 2.2. Consider a block design having v treatments, b blocks and block size 
k, wherein the i-th treatment is replicated  r, times, i=  1,2, . . . ,u , V r, =  b k . Let the 
blocks o f  the design be written as columns. The treatment sym bols within columns 
can be so rearranged that the i-th treatment appears mt times in k —tj rows and 
m, +1 times in ro ws, i f  and only i f  rt =  m jk +  /,, where mi>  0 and  0 <  /, <  k - 1, f o r  
i= 1,2,

We are now in a position to prove the main results of the paper.

Theorem 2.1 . In non-regular settings, a GYD is never universally optimal in 
®(v,bu b2).

Proof. Let d *  denote a b l x b 2 GYD. Since the setting is non-regular, b ,> v  for 
i'= 1,2. Without loss of generality, let b2> b i . Now, there exists a design d { * d *  in 
@){u,bu b2) such that

Crd, +  \= mb\ + 1 +1  for / =  1 ,2 ,..., [jv], (2 5)
rd'' \_rd, - \ = m b { + t - \  for /= [ jo ]  +  l, ...,2 [|o ],

and, if o is odd,

rdlv =  rd* =  m bx+ t,

where rd* =  b  xb2/u  is the replication o f d *, m =  [b2/v], t is an integer, \ < t< b \ — 2 
and rd[j is the replication of the i-th treatment in d u i =  1,2,... ,v.

It is not difficult to see that

b2\b\ — fd\i — b2(\b\/o] + 1 )  for /' 1 ,2 ,..., v,



and
v
E  rdli =  b 1b2. 

i= 1

Hence the replications in (2.5) satisfy the conditions o f Lemma 2.1 and there exists 
a block design d0 with o treatments, b2 blocks and block size b l5 having replica­
tions given by (2.5). If  we write the blocks of this design as columns, the resultant 
row-column design d x e& (v, b x, b2), and the treatment-column incidence matrix of 
d x has only two entires, x = [ b x/v ] and x + 1 .  In view of Lemma 2.2 and (2.5), we 
can rearrange the treatments in the columns of d x to get a row-column design d 
such that the treatments appear in each row of 3, m or (m + 1 )  times.

Now from (1.1), it is observed that the first three terms on the right-hand side of 
(1.1) contribute the same amount to tr(Crf) when d = d *  or d. Also,

t r ( / > A > ) < t r ( r ^ )

and hence, t r (C j)> tr (C d*). Thus, d *  cannot be universally optimal in @>(v,bu b2), 
completing the proof.

Remark 1. Note that in (2.5), t cannot be equal to b { — 1. Since the setting is 
nonregular, b x>  v and with t =  b l ~ l ,

rdt =  bi b2/v  =  b x [b2/v] +  b x - 1,
giving

b2 =  v([b2/ u] +1) -  u /b i.

Thus, if t =  b\ — 1, b2 cannot be integral. On similar lines, one can show that t>  1 
and thus 1 < t < b x — 2.

We illustrate Theorem 2.1 by an example.

Example 2.1. Let d *  be the GYD with parameters u =  6, b x =  10, b2=  15, reported 
by Ash (1981, p. 17). Corresponding to this GYD, we get another design d, given 
below:

1 2 3 4 5 6 1 2 3 4 5 6 3 4
5 3 4 5 6 1 2 3 4 5 6 1 2 3
3 4 5 6 1 2 3 4 5 6 1 2 4 1
4 5 6 1 2 3 4 5 6 2 1 3 1 6
5 6 1 2 3 4 5 6 2 1 3 4 6 5
6 1 2 3 4 5 2 1 3 3 4 5 5 2
3 5 1 6 5 4 3 2 1 6 4 2 4 5
6 3 2 1 2 5 1 4 5 4 6 3 5 4
2 1 5 4 6 1 4 3 6 3 2 5 6 2
1 2 4 2 1 3 6 5 4 5 3 6 3 6



Routine computations yield 150 tr(Cd*) =  18300< 18306= 1 5 0 tr (Q ), showing that 
d* is not universally optimal in 2>(6,10,15).

Remark 2. In (2.5), the replications can also be taken in the following manner:

rd, 1 =  rd* +  1 =  mb\ + t  + \, 
rdi2 =  rd* - \ = m b ] + t - \ ,

rdxi =  rd* =  m b\ +  t for / =  3 ,4 , . . . ,  v. (2.6)

With replications as in (2.6) we can construct a design 3  such that
tr (Q )> tr (Q )> tr (C rf*)-

We next prove:

Theorem 2.2. Under regular settings with v > 2 , a GYD ( i f  it exists) is the only 
universally optim al design in ® (u, b l, b 2).

Proof. Let d *eS > (v ,b ],b 2) be a regular GYD. Then, Cd* =  Cdt , tr(Cd,) =  
maxrfe2ltr(Cd) and Cd* is completely symmetric. It then follows that for any 
universally optimal design d, Cd must have maximum trace and constant nonzero 
eigenvalues. Then, Cd =  Cd and Cd has maximum trace among all connected block 
designs and also has constant nonzero eigenvalues. It then follows from Das and 
Dey (1989a) that d N is a BBD. Hence the result.

Remark 3. The condition v > 2  in Theorem 2.2 is necessary, since for v =  2, it is 
possible to have a design in the regular setting that is universally optimal but is not 
a GYD. For example, the following design d e & ( 2,3,6) is universally optimal, but 
is clearly not a GYD:

B B A A B B
d =  B A B B A B

A B B B B A

A,B being the treatment symbols.

On lines similar to Theorem 2.2, one can prove the following:

Theorem 2.3 . F or u > 2 , a BBD, whenever existent is uniquely universally optimal 
in the class o f  all connected block designs.

Finally, we prove the following result.

Theorem 2.4 . Under nonregular settings, a PYD is never universally optimal in 
®(v,b,b).



Proof. For b > v ,  the result can be proved on the lines of that of Theorem 2.1 and 
is therefore, not repeated. We consider the case b < v  (the case b =  u does not arise 
because the setting is non-regular). It is not difficult to see that a PYD, d*, with 
b < v  has necessarily the following parameters:

v = p z/n, b = p ( p - n ) /n ,  p > n ,  (2.7)

wherep,n  are integers such that n |p 2. In fact, p > n  + 1 as the design withp  =  n +1 
can be seen to be non existent.

Setting rd* =  b 2/v, we have

rd* =  (P ~  n)2/n <  p ( p - n ) / n ~ l  =  b - l .  (2.8)

Now, let d { e  3>(v,b,b) be a design such that

rd * + 1 for /'=  1 , 2 , . . . ,  [Id]

rd" 1 v - 1 for i= [*o ]  +  l,. . . ,2 [*o ]  

and, if u is odd,

rdlu = rd*-

Then, proceeding on the lines of the proof of Theorem 2.1, we can show that cor­
responding to d u there exists a row-column in &(v,b,b)  such that 
tr(C£/])> tr (C d.). This completes the proof.

We illustrate this result by taking an example.

Example 2.2. Consider the following PYD, d*,  with v =  9, b =  6, reported by Cheng 
(1981a) and also by Kshirsagar (1957):

4 7 8 6 9 5 
3 1 2 8 7 9

rf. = 2 5 1 3  6 4
9 3 6 2 5 8
7 6 9 4 1 3
5 8 4 7 2 1

Corresponding to this PYD, we can get a design <?) as follows:

3 6 8 2 1 4
6 4 1 7 3 9
7 9 2 6 4 1

d, =
8 5 3 1 9 2
1 3 4 8 2 5
2 7 9 4 5 3



It is seen that 36 tr(C ^) =  1016> 1008 =  36 tr (Q *) and thus, d *  is not universally 
optimal in ® (9 ,6,6).

PYD’s with b < v  are obviously of great practical utility. From the definition of 
a PYD, one can readily show that a necessary condition for the existence of a PYD, 
with b < v  is that p > 2 n  and

2(p -  ri)2 { (p -  n)p -  n} / { n(p2 -  ri) }

is an integer, where p  and n are as defined earlier. In view of these conditions, only 
two PYD’s with u <  100 can possibly exist. These have parameters v =  9, b =  6 and 
u = 49, 6 =  28. Both these designs do exist, as they belong to the general series of 
PYD’s reported by Cheng (1981b).
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