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Abstract: The optimality and non-optimality of some row-column designs is studied with respect to the
universal optimality criterion. It is shown that, (i) in the non-regular setting, a generalized Youden design
is never universally optimal, (ii) in the regular setting, if the number of treatments is three or more, a
generalized Youden design (if it exists) is uniquely universally optimal, and (iii) a pseudo Youden design
is never universally optimal in the non-regular setting.
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1. Introduction and preliminaries

Generalized Youden Designs (GYD) were introduced by Kiefer (1958) as a
generalization of the usual Latin square and Youden square designs for eliminating
heterogeneity in two directions. Under the usual additive and homoscedastic fixed
effects model for comparing v treatments via b, b, experimental units arranged in
a row-column design with b, rows and b, columns, the coefficient matrix of the
reduced normal equations for estimating linear functions of treatment effects, using
a design de @ (v, by, b,) is

Ca=R,—by ' NyNy— b7 Ny Njp+(byby) ' ryry a

where Ry=diag(rg, ras ---sTa)s Ta=avs Fazs -5 Tap)s rg; is the replication of the
i-th treatment, i=1,2,...,0, Ng =((nf,1,-j)-)), Nd2=((nf,2,-j)~)) are respectively the
treatment-row and treatment-column incidence matrices and 2 (v, by, b,) is the class
of all connected row-column designs with v treatments, b, rows and b, columns.
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A row-column setting is called regular if at least one of the following holds: (i)
v{by, (i) v|b,, where m|n means n=0mod m. Otherwise, the setting is called
non-regular.

A design de @ (v, by, b,) is called a GYD if the following conditions hold for
s=1,2:

bx
: ) _ P .
i) jgl ngi=r fori=12 ...,
bx
(ii) _Zl nGhnl =29 for im, im=1,2,...,v; (1.2)
i<
(iii) InG; 9~ by/v| <1.

If in a GYD, the row (column) classification is ignored, the {columns} ({rows})
considered as blocks, form a Balanced Block Design (BBD) of Kiefer (1958). A
GYD is regular if at least one of the following holds: (i) v | b,, (ii) v | b,; otherwise,
the GYD is called non-regular.

Kiefer (1975) proved that a GYD (regular or non-regular) is A- and E-optimal,
and is D-optimal if v#4, in @ (v, b, b,). Further, it was shown by Kiefer (1975)
that in the regular setting, a GYD is universally optimal. A design d*e€ @, the class

*of competing designs, is called universally optimal in @ if d* minimizes ¢(C,) over
@ for all ¢: B, q— (—oo, ] satisfying

¢ is convex, (1.3a)
@(bC) is nonincreasing in the scalar =0, (1.3b)

¢ is invariant under each permutation of rows and .
(the same on) columns, (1.3¢)

where 2, is the class of all v X v symmetric, non-negative definite matrices with
ZE€ro row sums.

It is well known that if a design is universally optimal, then it is A-, D- and E-
optimal} as well. The universal optimality of regular GYD’s can be established with
the help of the following sufficient condition of Kiefer (1975).

Theorem 1.1 (Kiefer (1975)). Suppose a class C={C,;,de D} of matrices in R,
contains a Cy+ such that

C,+ is completely symmetric, i.e. Cy. is of the form al,+ bl,,
where 1, is the v-th order identity matrix and
J,,a vXv matrix of all ones, (1.4a)

tr(Cpr) =max tr(Cy), (1.4b)
€g

then d* is universally optimal in 9. Here tr(-) stands for the trace of a square
matrix.
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Notice that since —tr C satisfies (1.3), condition (1.4b) is necessary for universal
optimality. In subsequent sections, we utilize this fact to prove the non-universal op-
timality of certain designs.

The purpose of this presentation is to establish certain results regarding the
universal optimality (or non-optimality) of designs within the class @ (v, by, b,).
Specifically, we show that

() in non-regular settings, a GYD is never universally optimal.

Note that while in the regular setting, a GYD is universally optimal, the universal
optimality of GYD’s in all non-regular settings cannot be claimed. In fact, this
prompted Kiefer (1975, p. 337) to make the following remark: ‘“We do not know
in which non-regular settings the GYD is still universally optimal.”’ Result (i) above
settles this question.

We also show that

(ii) in regular settings with v>2, a GYD (if it exists) is the only universally op-
timal design, and

(iii) a BBD with v>2 is the only universally optimal design in @,(v, b, k), where
Do(v, b, k), is the class of all connected block designs with v treatments, b blocks
and block size k.

The notion of GYD’s has been extended to Pseudo Youden Designs (PYD) by
Cheng (1981a). A design de @ (v, b, b) is said to be PYD if

Ny=[Ng | Npl

is the incidence matrix of a BBD. Note that for a PYD, b, = b, =b. Clearly a GYD
with b, = b, is a PYD, but the converse is not true unless the PYD is regular. It has
been shown by Cheng (1981a) that a PYD is A- and E-optimal and is D-optimal if
v#4, We show that

(iv) in non-regular settings, a PYD is never universally. optimal.

For the sake of completeness, we reproduce some results from Das and Dey
(1989a,b).

Lemma 1.1 (Das and Dey, 1989a). Let d be a block design with v treatments, b
blocks and block size k such that its incidence matrix Ny has only two entries, x;
and y;=x,+1, x3=0. Then x;=[k/v], where [-] is the greatest integer function.

Theorem 1.2 (Das and Dey, 1989b). Let d be a block design with v treatments, b
blocks and block size k such that the i-th treatment is replicated r; times for
i=1,2,...,v, ¥ r;=bk. Let us write the blocks of d as columns. Then the treatment
symbols within columns can be so rearranged, that the i-th treatment symbol ap-
Pears m; times in each row, if and only if r;=km; for i=1,2,...,0v.

Suppose de€ @ (v, by, b,) is a row-column design. Associated with d is a block
design dN, obtained by treating the {columns} of d as blocks. Then from (1.1), it
follows that
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C,=CY=by Ny, — b7 T, )Ny, (1.5)
where N 1
Cd =Ra’—b; NdZNa,'Z (16)

is the usual C-matrix of d™.
We also need the following definition from Das and Dey (1989b).

Definition 1.1. A b, X b, array containing entries from a finite set 2={1,2,...,v}
of v treatment symbols will be called a Youden Type (YT) row-column design if the
i-th treatment symbol occurs in each row m; times for i=1,2, ..., v, where m;=r;/k

and r; is the replication of the i-th treatment symbol, i=1,2,...,v.

The class of YT designs contains all Youden square and regular GYD’s.
The following result is due to Das and Dey (1989b).

Theorem 1.3 (Das and Dey, 1989b). For de @ (v, b, b,), Cy= C? if and only if d
is a YT design.

2. The results
We first prove the following:

Lemma 2.1. Given positive integers v,b,, b, and r;,i=1,2,...,v, such that

® Y, ri=bib,
i=1
and
(i) by[b, /vl <1 <by(lby /0] +1), i=1,2,...,0, @.1)

there exists a block design d, with v treatments, b, blocks and block size b, such
that the i-th treatment is replicated r; times for i=1,2,...,v and the incidence
matrix of dy contains only two entries, x={b,/v] and y=x+1.

Proof. Consider an array B of size v X b,, such that
(i) B contains only two integral entries, x and y=x+1, x=0, and
(i) the i-th row sum of Bis r; for i=1,2,...,0.
Clearly, such an array can always be formed for given positive integers
v, by, by, ry, ... r, such that ¥ r;=b,b, and byx<r,<b, y for i=1,2,...,v. In fact, if
f; denotes the frequency of x in the i-th row of B, then
fi=byy—r,, i=12,..,0. 2.2)

Thus, if r, denotes the number of times x appears in B, then

rx=';ff=bzvy—b1bz=bz(vy—bl)- 2.3)



A. Das, A. Dey / Optimality of some row-column designs 267

It follows then that r,, the frequency of y in B is
ry=by(b; — vx). 2.9

Since r, and r, are both divisible by b,, using Theorem 1.2, we can rearrange the
symbols x and y in the rows of B, to obtain an array A such that each column of
A contains m, x’s and m, y’s, where m, =vy — b, and m, = b, — vx. Clearly, the col-
umn sums of A are all equal to b,. Finally, using Lemma 1.1, we get x=1[b,/v].
The array A4 is the incidence matrix of the required block design dj,.

Corollary 2.1. If C,, is the usual C-matrix of dy of Lemma 2.1, then tr(Cg) is
maximum over @Dy(v, by, by), where Dy(v, by, by) is the class of all connected block
designs having v treatments, b, blocks and block size b;.

The following result can be proved on the lines of Theorem 3.2 of Agrawal (1966),
using the results of Das and Dey (1989b).

Lemma 2.2. Consider a block design having v treatments, b blocks and block size
k, wherein the i-th treatment is replicated r; times, i=1,2,...,v, ¥ r,=bk. Lef the
blocks of the design be written as columns. The treatment symbols within columns
can be so rearranged that the i-th treatment appears m; times in k—1; rows and
m;+1 times in t; rows, if and only if r;=m;k +1;, where m;=0 and 0<1,<k -1, for
i=1,2,...,v.

We are now in a position to prove the main results of the paper.

Theorem 2.1. In non-regular settings, a GYD is never universally optimal in
D, by, by).

Proof. Let d* denote a b; x b, GYD. Since the setting is non-regular, b;>v for
i=1,2. Without loss of generality, let b,=b,. Now, there exists a design d; #d* in
P(v, b,,b,) such that

rge+l=mb +t+1 fori=12,..,[1v],
rdliz{ d ! ’ (2'5)

rge—l=mb +1—1 for i=[3v]+1,...,2[3v],
and, if v is odd,
rd'vzrd*:mb1+t,

where ;.= b, b,/v is the replication of d*, m=[b,/v], t is an integer, I<t=b -2
and 14, 1s the replication of the i-th treatment in d;, i=1,2,...,0.
It is not difficult to see that

bz[b]/U]Sf’dlisz([bl/U]+1) fori=l,2,...,u,
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and
v
‘Zl rq,i=b1b;.
i=

Hence the replications in (2.5) satisfy the conditions of Lemma 2.1 and there exists
a block design d, with v treatments, b, blocks and block size b, having replica-
tions given by (2.5). If we write the blocks of this design as columns, the resultant
row-column design d; € @ (v, b,, b,), and the treatment-column incidence matrix of
d; has only two entires, x=[b,/v] and x+1. In view of Lemma 2.2 and (2.5), we
can rearrange the treatments in the columns of d; to get a row-column design d
such that the treatments appear in each row of d, m or (m +1) times.

Now from (1.1), it is observed that the first three terms on the right-hand side of
(1.1) contribute the same amount to tr(C,) when d=d* or d. Also,

tr(ry«r ) <tr(rary)
and hence, tr(Cz)>tr(C,+). Thus, d* cannot be universally optimal in @ (v, b,, b,),
completing the proof.
Remark 1. Note that in (2.5), ¢ cannot be equal to b, —1. Since the setting is
nonregular, b, >v and with =56, -1,

rd*=b1b2/v=b1[b2/u]+b1 -1,
giving

bz = U([bz/l)] + 1) — U/b] .
Thus, if t=5, -1, b, cannot be integral. On similar lines, one can show that ¢>1
and thus 1<r<b, -2.

We illustrate Theorem 2.1 by an example.

Example 2.1. Let d* be the GYD with parameters v=6, b, = 10, b,= 15, reported

by Ash (1981, p. 17). Corresponding to this GYD, we get another design d, given
below:

QU
il
— N A WO W B W —
D = W W = N R W
AN = N = N R W
N B = A W N =~ O W B
—_— AN N WU B W N = O\ W
W = L A BWND = N
N B = W N R W N -
WM Wb N = O AW N
PN U = WD NN B W
W Wbk ONW = NN N
W N N b B W= =N W
AN W N W R W N = N
W N L AN = AN W
AN A NN = W N
o= D WO W R W = N
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Routine computations yield 150 tr(C;+) = 18300< 18306 =150 tr(Cz), showing that
d* is not universally optimal in (6, 10, 15).

Remark 2. In (2.5), the replications can also be taken in the following manner:
Fa=Fge+1=mb +1+1,
Tgp=rg«—~1=mb; +t-1,
rgi=rg«=mb +t fori=3,4,...,v. 2.6)

With replications as in (2.6) we can construct a design d such that
tr(Cz) = tr(C3) > tr(Cyx).

We next prove:

Theorem 2.2. Under regular settings with v>2, a GYD (if it exists) is the only
universally optimal design in @ (v, by, b,).

Proof. Let d*e @(v,b,,b,) be a regular GYD. Then, Cd*=C;*, tr(Cy«) =
max,. 4 tr(C,) and C,» is completely symmetric. It then follows that for any
universally optimal design d, C; must have maximum trace and constant nonzero
eigenvalues. Then, C (1;' =Cyand C};’ has maximum trace among all connected block
designs and also has constant nonzero eigenvalues. It then follows from Das and
Dey (1989a) that dN is a BBD. Hence the result.

Remark 3. The condition v>2 in Theorem 2.2 is necessary, since for v=2, it is
possible to have a design in the regular setting that is universally optimal but is not
aGYD. For example, the following design d e @ (2, 3, 6) is universally optimal, but
is clearly not a GYD:

B B A A B B
d=B A B B A B
A B B B B A

A,B being the treatment symbols.
On lines similar to Theorem 2.2, one can prove the following:

Theorem 2.3. For v>2, a BBD, whenever existent is uniquely universally optimal
in the class of all connected block designs.

Finally, we prove the following result.

Theorem 2.4. Under nonregular settings, a PYD is never universally optimal in
D(v, b, b).



270 A. Das, A. Dey / Optimality of some row-column designs

Proof. For b>uv, the result can be proved on the lines of that of Theorem 2.1 and
is therefore, not repeated. We consider the case b <v (the case b=wv does not arise
because the setting is non-regular). It is not difficult to see that a PYD, d*, with
b < v has necessarily the following parameters:

v=p*/n, b=p(p-n)/n, p>n, 2.7

where p, n are integers such that n |p2. In fact, p>n+1 as the design with p=n+1
can be seen to be non existent.
Setting ry«=b?/v, we have

rpe=(p—n?*/n<p(p—n)y/n~1=b-1. (2.8)

Now, let d, € @ (v, b, b) be a design such that

. rge+1 fori=12,...,[3v]
W rge=1 for i=[3u]+1,...,2[40]

and, if v is odd,
rdlu=rd*.

Then, proceeding on the lines of the proof of Theorem 2.1, we can show that cor-
responding to d,, there exists a row-column d, in @(uv,b,b) such that
tr(Cy,) >1tr(Cyy). This completes the proof.

We illustrate this result by taking an example.

Example 2.2. Consider the following PYD, d*, with v =9, b= 6, reported by Cheng
(1981a) and also by Kshirsagar (1957):

4 7 8 6 9

d*

i
W ~1 O N W
c0 O\ W h =
A O N = N
—_— 2 0 O W

7
6
5
1
2

~ RN W

Corresponding to this PYD, we can get a design d, as follows:

3 6 8 2 1 4
6 4 1 7 3 9
6_11:7 9 2 6 4 1
g8 5 3 1 9 2
1 3 4 8 2 5
2 7 9 4 5 3
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It is seen that 36 tr(Cz)=1016>1008 =36 tr(C,~) and thus, d* is not universally
optimal in % (9, 6, 6).

PYD’s with b< v are obviously of great practical utility. From the definition of
aPYD, one can readily show that a necessary condition for the existence of a PYD,
with b<uv is that p=2n and

2(p—n)*{(p—-n)p—n}/{n(p*—n)}

is an integer, where p and n are as defined earlier. In view of these conditions, only
two PYD’s with v =100 can possibly exist. These have parameters v=9, b=6 and
v=49, b=28. Both these designs do exist, as they belong to the general series of
PYD’s reported by Cheng (1981b). ’
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