
Bayesian robustness for multiparameter 
problems

Mohan Delampady
Economic Analysis Unit, Indian Statistical Institute, Mysore Road, R. V.C.E. Post, Bangalore 560 009, India

Dipak K. Dey
Department o f  Statistics, Box U-120, University o f  Connecticut, Storrs, C T  06209, USA 

Received 1 June 1992; revised manuscript received 10 April 1993

Abstract

Bayesian robustness is studied for e-contamination classes of prior distributions. Nonparametric classes of 
contaminations such as the class of all unimodal spherically symmetric densities are considered here. 
Posterior ^-divergence and its curvature are used to measure the sensitivity o f priors on the resulting 
posterior densities. Examples are provided to illustrate our results.
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1. Introduction

Sensitivity of inferences when uncertainties exist regarding the prior being used is of 
substantial interest. In this paper we study the robustness of posterior densities when 
the prior varies in a reasonably large class of distributions that are in a neighborhood 
of a subjectively elicited prior n0. Specifically, we consider the e-contamination class

r =  {n: n(6) =  {\ - e )n 0{9) +  sq(8), qeQ},  (1.1)

where Q is a large class of plausible contaminations.
A large literature exists on robust Bayesian studies for e-contamination classes of 

priors. Berger (1985), Berger and Berliner (1986) and Sivaganesan and Berger (1989) 
are some of the papers related to the discussion that follows. The major focus of these 
articles has been the study of the range of some of the posterior quantities.
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We, however, take a different approach and study the sensitivity of the posterior 
density using the distance between the posterior arising from n0 and that arising from 
any n in T. This approach with Kullback-Leibler divergence has recently been used 
by Gelfand and Dey (1990). Dey and Birmiwal (1990) (referred to as D&B in the 
following discussion) extend those results to other divergence measures and apply 
them to parametric classes of contaminations. Our main focus is the study of 
robustness when the class Q of contaminations is nonparametric. We consider the 
class of all spherically symmetric unimodal densities.

Let us first develop some definitions and notations. Suppose X  is the random 
variable with density (or mass function) / (x 19), where 9 is the parameter vector 
of interest. The marginal distribution of X  with respect to any prior n is given 
by m(x\n) =  $f(x\6)7i(9)d6, and hence for a prior density nsT  given in (1.1), 
m(x\n) =  ( l  —e)m{x\K0) +  em(x\q). Also, the posterior density of 9 given x with respect 
to is 7r(0|x) =  A(x)7io(0|x) +  (l — X(x))q(9\x), where 7to(0|x) and q(9 |x) are, respec
tively, the posterior densities with respect to n0 and q, and /.(x)e[0,1] is given by 
A(x) =  (l — e)m(x|7r0)/m(x|7c).

Following D&B, define ^-divergence between posterior densities n0(9\x) and 
n(9\x) to be

where 4> is any continuously differentiable convex function. Several well-known 
divergence measures, e.g. Kullback-Leibler, Hellinger distance, power divergence, 
etc., can be obtained by the appropriate choice of the (^-function.

One possible approach to study the robustness of posterior densities is by obtaining 
the range of (^-divergence as q varies in Q for different choices of 4>. It will be seen later 
that this is not always easy. However, a measure of this range is given by the range o f 
the local curvature of the ^-divergence. As in D&B we define the local curvature of the 
^-divergence to be

In Section 2, we study the variation of this local curvature for an appealing 
nonparametric class of contaminations. The results will be illustrated using examples. 
Proofs of the main results are given in the appendix.

2. Variation of curvature for nonparametric classes of contaminations

It can be shown (Theorem 4.1, D&B) that

D =  D(n(9\x),n0(9\x))= n0(9\x)(j)(n(9\x)/n0(9\x))d9, (1.2)

(1.3)

C(q) =  (f>"( 1) Yar (2.1)



where cf>" denotes the second derivative and VarTO(„:x) 
respect to n0{9\x).

Note that

denotes the variance with

Var
Jio(0 |x)

r  9 (0 )i
- I fn0{9)_ i .

7(x\d)
n0{6)

q2(0)d9 —
1

m(x\n0)
f(x]9)q(9)d9 'm(x]n0)

= A(q)/m(x\n0) (say). (2.2)

Variations of local curvature for various classes of contaminations Q are of interest. 
Consequently, it is necessary to compute sup?eQ C(q). It can be seen that if all densities 
are allowed as contaminations, the supremum above is unbounded. Also, robustness 
with respect to a huge class such as this is neither expected nor interesting. Reasonable 
constraints need to be imposed on this class to obtain interesting classes of contami
nations. Unimodality and spherical symmetry are some reasonable shape constraints 
on the contaminations. Even with these constraints, the resulting classes of contami
nations include infinitely spiky densities which are clearly unreasonable. With this in 
mind, we impose a further constraint that maxe q(6) <  h, for any allowable contamina
tion where h is a prespecified height for q. A reasonable choice for h is 7r0(0) (see 
Sivaganesan (1991) for other choices and their justifications). Define <2us> the class of 
all unimodal spherically symmetric densities q, which satisfies the above constraint on 
the maximum height of q. Before we can derive results on the supremum of curvature 
for these classes, we need to make assumptions on /  and n0.

Suppose

B(r) = d0—
1’  me)

S(r) n 0 (0) ~~ m(x|7Co)
f ix  10) dB

S(r)

where S(r) denotes the sphere of radius r around 0. Let V(r) denote the volume of 
a sphere of radius r and U(S(r)) denote the uniform density on S(r). Clearly, 
B(r)/F2(r) =  /l(t/(S(r))).

Assumption 1. (i) B(r) is increasing in r in the range where \jV{r).
(ii) I f w\&y>y(r)> 1/k A(U(S(r))) = A (U{S(t))), then the function I defined in the range 

0^F (rK l// i, by

|2[B (t )-B (r ) ]  +  B(r),l(r) =
\jh — V(r)
V(t)-V(r)_ 

has its global maximum at r=0.

Remark. These assumptions are stronger than what we require. However, these are 
much easier to check. Also, note that B(r) is always increasing near 0. It can be very 
easily seen in one dimension that

dr
B(r) =  2 » > 0 .  

, «o(0)



Further, if n0 is symmetric,

d_ J(x\r)+f (x\  — r) 
dr n0(r)m(x\n0)

f  (x\9)n0(9)d9 — 2n0(r) f(x\0)d9

For Uq which are reasonably sharp,

2n0{r) f(x\9)d6< n0(9)f(x\9)d9< n0(9)f(x\9)d9,

so that (d£(r)/dr>0 for all r.
Assumption (ii) is harder to check. We have noticed in many examples that /(r) is 

quite often a monotone decreasing function of r. However, we have found cases where 
l(r) attains a minimum near V(r) =  1 /h, and increases gradually in the rest of the range.

Theorem 2.1. Under Assumption 1,

sup
q eQ u s  J

f ( X \9)  _2q2(8)d9 —
1

7to(0) m(x\n0)

=  sup A(U(S(r))).

f(x l9 )q (9 )d9

(2.3)
V (r)2  1/h

Proof. The details are given in the appendix; the main features of the proof are the 
following. Note, first of all, that any qeQvs is a mixture of uniform densities on spheres 
centered at the origin, i.e.

q(9) = o°°-^ / (0 € S (r ))d M(r),

where n is any probability measure on [0, oo) satisfying

9(0) = (2.4)

The proof is done in two steps. In the first step, consider rh i =  1,2, such that l/(S(r,)) 
satisfy (2.3). Then both r, satisfy V(rt) ^  l/h. We show that if  ̂ ( (7 (S (r1)))>v4 ([/ (S (r2))), 

then A ([/ (S (r !)))^ A (a t/ (S (r1)) + (1  — a)[/(S(r2))), for O ^ a ^ l ,  where a ([/ (S ^ J )+  
(1 — a)l/(S(r2)) is the mixture of densities (C/(S(r t)) and (U (S (r2)). In step 2, let t be 

such that maxV(r)&1/ĥ (t/(S(r)))=y4(l/(S(t))). Then consider <xU(S{r ) )+( l—x)U(S(t ) ) ,  
where V(r )< l/h.  We show that y4 (l/ (S (f)))>X (aU (S (r)) +  ( l - a ) l/ (S (t ) ) ) ,  for 

1, under Assumption 1 that we made above. □

The result above is now illustrated using two interesting examples.

Example 1. Suppose X\9~ N (0 ,1), and under n0, 0~N (O ,t2), t 2>  1. Thenm(- |tc0) is 

the density of N (0 ,t2 +  1), and /(x\9)/k0(9) is [^ 2  7lt 2/>/ t  — 1] exp (x2/2{t2 - 1))



times the N ( t 2x/(t2 — 1), t 2/(t2 — 1)) density for 6. Assumption 1 can be verified for 
x values which are sufficiently large enough in magnitude for the given value of t 2. 
For example, we have verified that when t 2 =  1.1, Assumption 1 is valid for |x|^2, 
and when t 2 =  2, it is valid for |x|>3, and so on. Let ^ (x ,t2) =  t 2x/(t2 —1), 
<t2(x, t 2) =  t 2/(t2 — 1) and i/f and <P denote the standard normal density and c.d.f., 
respectively, then we obtain

sup C{q)= y  ^  sup j ~2 D(r ,x,x2),
qeQus W(X| 7C0) 1 /(2 A) 4r

where

D(r, x, z2) = <p

-<t>

(x/y/t2 1 

( - r - f i { x , T 2))l<j{x,T2)

(r -^ (x ,T 2))/(T(x,T2)

'T + 1

\j/(x/^x2+ l )
{<P(r —x) —<£( —r —x ) }2.

For selected values of x and x, the corresponding upper bounds A { U [  — t, t ] )  
and C* =  A[U\_ — t,t\~]lm{x\n0) are listed in Table 1. The upper bounds on C(q) 
corresponding to these values can be obtained by finding

From the extremely large values for C* corresponding to t =  1.1 and x =  3,4, 
we note that the data are not compatible with n0(6). However, the same data are 
quite compatible with 7to(0) if t =  1.5 or 2. Of course, these observations are 
not anything new to Bayesians. Our point here is simply that we have deve
loped the new tool consisting of upper bounds on C(q) to make these observ
ations, and that the same technique can be used in other more complicated 
situations.

Table 1
Upper bounds on curvature in the normal case

T X t A (U [  — t, t ] ) C*

1.1 2 13.514 98.7180 909.3

3 20.015 7293530 2.08225 x 108

4 26.226 7.648 x 10‘ 3 1.06395 x 1016

1.5 2 4.760 0.1306 1.0918

3 6.489 0.7605 13.7237

4 8.461 8.5764 454.3244

2.0 3 5.448 0.0811 1.1186

4 6.700 0.2556 7.0946



Table 2
Upper bounds on curvature in the binomial case

T P t X ([/ [0 .5-t,0 .5  +  t ] ) C*

0.224 0.80 0.357 660.69 - 6998.37
0.224 0.833 0.436 1346.86 18570.33
0.288 0.9 0.436 1224.42 13468.66

Example 2. Suppose X|0~binomial(n,9) and under n0, 0~beta(ao,ao). Then 
Theorem 2.1 gives

sup C(q) =
qeQus

sup
1

where

D{r, x, t 2) =

m{x\n0) i,2 2 r~/ii{2h) 4r2

r 2( « 0)~  ~

D(r, x,x2),

r (  2a0) 

r 2( a0;

q* -  ao + l
U - 0 )

!« — x  — a o +  1 d0

r(n  +  2a0) rr n

[" ]  r ( x  +  a0) f (n  -  x -1- a0) —  r X
9X{ 1 -0 )"“ * d0

For selected values of t2=0.25/(2a +1) and p = x/n, we have verified the validity of 
Assumption 1. The corresponding upper bounds /l(l/[0.5- t, 0.5 +  f]  and C* =  .4(1/[0.5-r, 
0.5 +  f ) ] /m(x 17io) are listed in Table 2. The upper bounds on C{q) corresponding to 
these values can be obtained as in the normal example by finding <j)"(l)C*.

The behavior o f these upper bounds is also very similar to that in the normal case. For 
example, if t is fixed at 0.224, as p increases from 0.8 to 0.833, C* increases from 6998.37 to 
18570.33. However, if t is now increased from 0.224 to 0.288, C* will actually decrease to 
13468.66 even when p is increased to a more extreme value such as 0.9.

Appendix

Proof of Theorem 2.1. As mentioned earlier this will be done in two steps.
Step 1: We shall show here that, whenever rh i =  1,2, satisfy V i r ^ l / h  and 

i4(l/(S(ri)))>i4(l/(S(r2))), then A{U{S(r1) ) ) ^A (a U (S (r1)) +  { l - a ) U { S ( r 2) )) for any 
O ^a ^ l .

Assume < r 2. The other case is exactly similar. Let

b 1 =

f ( x  |0)
d 9,

!«Kn Jto(0)

f(x\9)dd,

/ (*  10) d0,
Sr2 "0 (0)

/(X|0)d0.



Note that

and

A(U (S ( r i ) ) )  =
V(r i)

1
a i -

m(x\n0) b\

a 1—a 2 1—a 2

I V i n )  ' V(r2)J
Cly +

l V ( r 2)\
a2

m{x\n0)
a 1 —a

W 7 ) + vfoj_
1 —a

bx +
l V ( r 2)\

b2

The desired inequality is now proved by simple algebra.
Step 2: As in Assumption 1, let t be such that

A (l/ (S (t)))=  sup /l(l/(S(r))).
V(r)}sl/h

Consider the mixture at/(S(r)) +  ( l  — oc)U(S{t)) of densities U(S(r) )  and U(S(l ) )  for 
0<  V(r)^l/h. We claim that, under Assumption 1,

maxA(aI/(S(r)) +  (l-a )t/ (S (t ) ) )  =  4(l/(S(t))),

where the maximum is over all r, 0 ^  V(r)^  l/h, and over all a, 0 < a <  1, such that

a 1—a ,

-----------------1-------------------

V(r) V(r) ^

We obtain

a 1—a

W ) + ~ m .
B(r) +

1—a

W )

Let u =  a/V(r) +  {\—a)/V(t). Then ue[l/V(t),h]. Also for given u and r, 
a— V(r) (V(t )u— 1)/(F(£)— V{r)) so that ( l —a)/V(t) =  ( l —uV(r))/(V(t)— V(r)). Define

H(u,r) =  u2B(r) +
l —uV(r)

V( t ) -V (r ) _
[.B ( t ) - B ( r ) l (A l )

We shall show that

max H(u,r )^A (U(S( t ) ) ) ,  (A2)

where the maximum is over all u and r in the admissible range. It follows that 
(d2H(u,r)/du2) > 0, for all u, if B(t)>B{r) .  From Assumption 1, we have 
maxos;K(r)«i//iB(r) =  B(r*), where r * = (h V ( l ) )~ 1/pis such that V(r* )=  l/h, p being the 
dimension of 6. Since

SUP -§ ^ 2 =  SUP A{U(S(r ) ) )  =  A(U(S( t) ) )  =  ̂ ,
V ( r ) * l l h V ( r y  V( r ) Zl / h



we further have that h2B(r*)^B(t )/V(t )2. Consequently, B ( r * )^ B ( t )  since V(t )>  l/h. 
Therefore, maxoiy(r)il/hB(r)^B(t) , and hence H(u,r) is a convex function of u for 
each r. It follows, then, for each r,

max H(u, r) =  max
1

W Y

Finally, it follows that

max H(h,r) =  h2 max \B(r) +
0=SV(r)^l//i 0 «K (r )« l/ / i

l/h — V(r) 

V ( t ) - V ( r )

Since B(0) =  0, from Assumption l(ii), we have

l / h - V ( r ) T  
V ( t ) - V ( r ) _

B(t) =  A(U(S( t) ) ) .

l B ( t ) - B ( r n

=  h2
1

hV(t)
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