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Differential Topology and
Supersymmetric Quantum Mechanics

Amiya Mukherjee

Abstract This article is based on a one-hour talk of mine in a conference on Algebraic
and Geometric Topology at the Department of Mathematics of Delhi University held
in January 1 1. 2002. The lecture was meant to give a general audience some idea
of the rescarch work of Edward Witten on sypersymmetry and Morse theory in an
informal wav. The work is highly influential towards the development of a subject called
Topological Quantum Field Theory. The ideas in it have become of central immportance
in the study of differential geometry. Ativah had written that this work of Witten "is
obligatory reading for geometers interested in understanding modern quantum feld
theory.” The aim of this article is to prepare the ground for supersymmetric quantum
field theory as the Hodge-de Rham theory of infinite dimensional manifolds. Of course
there are many important aspects that are not discussed here.

1 Introduction

We begin with the supersymmetry needed in the present article. Modern theories of
particle physics deal with subatomic particles known as fermions (particles with half-
integer values of spin) and bosons (particles with integer values of spin). The spin is
the intrinsic angular momentum, that is, the total angular momentum which is not due
to the motion of the particle. All the particles have either integer spin or hall-integer
spin, in unit of the reduced Plank constant 4. Fermions are basic constituents of matter,
and their examples are quarks and leptons (which include electrons, muons, neutrinos).
Bosons are particles that convey the fundamental forces. For example, electromagnetic
forces arc carricd by bosons called photons, and strong forces, which bind nuclei of
atows together, are mediated by bosons called gluons. Two types of statistics are used
to describe these elementary particles. Fermions obey Fermi-Dirac statistics that apply
to particles restricted by the Pauli Exclusion Principle (two or more fermions are not
allowed to occupy the same quantum state). Fermions contrast with bosons which are
particles not. covered by the exclusion principle (several bosons can occupy the same
quantum state) and they obey Bose-Einstein statistics.

An entity is said to exhibit symmetry when it appears unchanged after under-
going a transformation operation. A square, for example, has a four-fold symmetry by
which it appears the same when rotated about its centre through 90. 180, 270. and
360 degrees; four 90 degree rotations bring the square back to its original position.
With supersymmetry, fermions can be transformed into bosons and conversely without
changing the structure of the underlying theory of particles and their interactions.
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However, when a fermion is transformed into a boson, and then back into a fermion,
it turns out that the particle has moved in space (this is an effect that is related to
special relativity). Thus supersymmet ry relates transformations of an interual property
of particles (spin) to transformations in space-tinte. Supersymmetric quantun theories
are theories which possess symmetric properties under the exchange of fernions and
bosons. It may be mentioned that supersynunetry is not observed in the world today;
bosons and fermions are not cqually paired in the universe we see today. As the universe
expanded from the Plank era (an incredibly small interval of time after big bang)
supersymmetry broke down.

Traditional symmetries in physics are generated by objects that traunsform under
the tensor representation. Supersymmetries, on the other hand are generated by objects
that transform under the spinor representation. According to the spin-statistics theo-
rem, bosonic fields commute while fermionic fields anti-commute. Combining two kinds
of fields into a single algebra requires the introduction of a Zs-grading under which the
bosons are even elements and the fermions are odd elements. Thus the Hilbert space
H of a quantum field theory has a decomposition into bosonic and fermionic parts

H=Hg®Hp.

Then supersymmetries are defined by Hermitian operators 2,7 = 1,2,....N, on H,

which map Hp to Hp and vice versa. These are the gencrators of the supersymmetric
algebra satisfying certain conditions, which include anti-commutation

{Qi,Q4} = Q:Q; +Q4Q; =0 for i # 7,
and commutation with the Hamiltonian operator H
H.Q)=HQ; — Q:H =0 for each i.
In this context, it is important to discuss solutions of the following equation
Q415 >=0,

and also non-existence of solutions. The problem is that whether there exists a physical
state S in H which is annihilated by the supersymmetric operators Q;. The existence
would mean spontaneous breaking of supersymmetry. This can be seen as an index
problem for operators on a differential manifold. By this approach, supersymmetry
is related to differential topology. In this article we shall discuss one such relation,

namely, the simplest supersymmetric algebra that yields a new insight into Morse
theory.

2 Morse theory

The object of the Morse theory is to study the critical points of a suitable smooth
function f : M — R, where M is a compact smooth manifold without boundary.
For a nice class of such functions f there exists a relationship between the number of

critical points of f, and certain topological invariants of the manifold M, namely, the
Betti numbers of M.

Critical points of f are the solutions of the equation

df = 0.
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Thus at a critical point. p of [ all the partial derivatives 8 f/9x; vanish. A critical point
p is called non-degencerate it the Hessian matrix of f at p

H,f = [0 J/0x:0x;(p)]

is non-singular. Clearly, the non-degenerate critical points are discrete, and, since M
is compact, there nmmber must be finite. The index of f at p, denoted by Ay, is the
number of negative cigenvalues of Hpf. It is a standard fact that in a neighbourhood
of a nou-degencerate critical point p of index \p we can represent f as

. . : 2 2 2
./(.1'):_/([))~;rf—;rga~-~:n/\ ‘N, FF g,
P Pt

where (2q.09.. ... ry) is a local coordinate system about p,n = dim M.
The fimction fis called a Morse function if all its critical points are non-degenerate.
The Morse series M (f) is defined by

Mi(fy=> 1% =3 " myt",
P k

where my is the number of critical points of f of index k. On the other hand, the
Poincar¢ series of Al relative to any field K is

P(M:K) = ZdlmH (M: K) Zb,\t
k=0

where by, = dim H*(M; K) is the k-th Betti number of M. The fundamental result of
the Morse theory is the following relation, called the strong Morse inequalities,

Me(f) > P{M), teR.
The weak Morse inequalities follow from this result, and they are
my > b for k=0,1,2,....,n

Precisely formulated, the expression for the strong Morse inequalities takes the
following form
M(f) — P(M) = (1+1) - Qu(f1 K),
where Qu(f: K) = 3, apth, a; >0,k =0,....n (it is called the K-crror of f). The
Morse fllllCthIl f is called K-perfect, if its K-error is zero. It can be shown that if
AL (f) = Py(M:K) for all K, then the cohomology ring H*(M,Z) is torsion free.
If t = —1. we have

n
k
M_y(f) = Z —1)"b = x(M).
Thus the Euler-Poincaré characteristic x(M) of M is completely independent of f.
This result reveals the power of the Morse inequalities.
The proof of the Morse inequalities comes from an investigation of the level surfaces
f~1(a) = {x € M|f(z) = a} and the associated half spaces

M, = {z € M|f(z) < a}.

The idea is that as a varies, the topology of Ma will not change, unless a passes through
a critical value of f. Explicitly
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Theorem 2.1. [f there is no critical value of f in an interval {a, b], then A, is diffeo-
morphic to My. If the interval (a,0) contains just one non-degenerate critical value of
[ of index X, then the homotopy type of Al is obtained from M, by aticching a cell
Ey of dimension X

A[b ~ Mg Uq E)\.,

where « 1 OEy — M, is an attaching map.

Using these results in the exact cohomology sequences associated to attaching
cells. one gets the Morse inequalities for any cohomology theory satisfying Filenberg-
Steenrod axioms. Thus. up to homotopy. M admits a cellular decomposition

M = UyE\.

where the number of cells is equal to the number of critical points, and the dimension
of a cell is given by the index of the critical point.

This is the theory for finite dimensional manifolds. Originally, Marston Morse used
his theory for infinite dimensional manifolds in proving that there exist infinitely many
geodesics joining a pair of points on an n-dimensional sphere S™ with any Riemannian
metric.

Let L(M) be the space of parameterized paths ¢ : [0,1] — M. This can be
considered as an infinite dimensional manifold whose tangent space at a path o € L{(M)
is the space of vector fields X along o such that X(0) = X (1) = 0. Morse used the
energy functional or free particle Lagrangian £ : L{(M) — R, given by

o= 0 [ 00

where (g;;) is the Riemannian metric on M. For a pair of points p, ¢ € M, the subspace
L(J\])(p?q) of L(M) consisting of paths which start at p and end at ¢, is an infinite
dimensional submanifold. Morse proved that the restriction of £ to L(M)p,q) is a non-
degenerate Zo-perfect Morse function, whose critical points are geodesics joining p and
g. Here non-degeneracy means that the critical points of £ occur along manifolds on
which the Hessian H,£ is non-degenerate in the normal direction. In the special case

when M = S™, Morse proved that the Poinceré series of the manifold L(S™)

) is
given by

(204

n 1
Pt(L(S )(PaIZ)) = 1— t(n——l)

for any field K. Since the critical points are geodesics joining p and g, it follows that
there are an infinite mumber of geodesics in 8™ from p to g.

The idea of Morse initiated a variety of research which are quite impressive and
widespread. A few notable examples are Bott’s proof of his celebrated periodicity theo-
rems on the homotopy of Lie groups, work of Bott and Samelson on symmetric spaces,
Milnor’s construction of the first exotic spheres, Smale’s refinement of Theorem 2.1 in

the form of his handlebody theory, Solution of the Poincaré conjecture in dimensions
> 5, and the h-cobordism theorem.
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3 Work of Smale

Stephen Smale fitted Morse theory into the framework of a dynamical system by creat-
ing a situation under which Theorem 2.1 holds. By this approach Morse theory found
a variety of applications in both classical and quantum physics. It was Raoul Bott who
potentiated our understanding of the work of Smale.

The starting point of this development is the gradient vector field V f of the function
f with respect to a Riemannian structure on M. In the non-degencrate case, Vf
vanishes at the finite number of critical points of f. Then through every non-critical
point r of f there passes a unique integral curve X, of Vf which starts at the criti-
cal point p and ends at some other critical point ¢. These integral curves arc paths
of quickest or steepest descent on M, and they are solutions o(t) of the differential
equation

9 — _Apote, o0 =1
such that lim¢_. o o(¢) = p (the initial point), and lim;—. 0(t) = ¢ (the terminal
point). Physicists call such an integral curve instanton, because it stays near the initial
point p for most of the time ¢ < t3 and near the terminal point g for most of the time
t > t; and then moves from the vicinity of p to that of ¢ in an instant. It may also be
called a descending gradient flow of f on M.

According to René Thom, the set W), of instantons of V f which start at the critical
point p of index ), is a cell of dimension Ap. This is called a descending cell. These cells
{Wp} as pruns over critical points of f describes M as a disjoint union of them. But this
is not a cellular decomposition of M in the true sense of the word, the boundary of the
cells may be very wild. To derive the Morse inequalities from this construction, Smale
proposed the use of transversality into the Thom’s cell decomposition M = UpWp. If f
is changed to —~f, a critical point p of f of index \p becomes a critical point of —f
of index n — Ap. One then gets a new descending cell W,; of dimension . — Ap, which
is called an ascending cell. The cell Wé is generated by instantons of —V f starting at
p. The corresponding decomposition M becomes M = UpW,’,. Two types of cells Wp
and W/ are said to intersect transversally if for each x € W, N W the tangent spaces
T (Wp) and Ti(W).) span the tangent space T (M), that is,

TuWyp + TaWy = T M.

The vector field Vf is called transversal if the two types of cells always intersect
transversally. Then, because the tangent space to the integral manifold Xz of Vf
through z is contained in both Tx(W,) and T (W) with opposite orientations, we
have an exact sequence

0 — Ti(Xz) — To(Wp) @ T (W,) — Te(M) — 0.

The intersection WpﬂW; is generated by instantons of V f which start at p and end
at r, or instantons of —V f which start at r and end at p. The transversality condition
tmplies that

dim(Wy NW)) = Ap — Ar + 1.
This means that if A\p — Ar = —1, then the number of instantons of V f which start at
p and end at r is finite. Bott called these proper instantons.

Now given a non-degenerate function f with transversal gradient V f, orient the

descending cells arbitrarily, and form the chain complex C;(M) whose Ap dimensional
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chain group is {reely gencrated over Z by cells Wy, of dimenston A, Then define the
boundary operator 9 : €y, — Cj_7, where k = Ay, by setting O[W,| = 3 e(a)[Ws],
where & 1s a proper instanton of V f from the critical point p of index & to the critical
point r of index k& — 1, and e(o) is +1 or —1 according to whether for some x € o
the above exact sequence is orientation preserving or not. (Here A/ is orviented, and an
orientation of 117, induces an orientation of W}, while T,(X,) is ovicuted by =V fz, so
e(er) is well-defined.) Smale proved that 07 = 0. and as a conseguence he obtained the
following theorem.

Theorem 3.1. The cohomology groups H™(Cy{A)) are isomorphic to the singular
cohomology groups H*(M,Z).

Remark 3.2.

(1) Omne can get the Morse inequalities from this set up from the purely algebraic fact
that for a finite dimensional chain complex C = &,.C), the series Cp =3, dim C ktk
(called the counting series of the complex C) satisfies the inequalities

Cy > P, teR,

where Py = 3, (dim Hk) - tF is the Poincaré series of the cohomology of the
complex C.

{2) The existence of a boundary operator 8 is equivalent to the strong Morse inequali-
ties. However, the Morse inequalities give no canonical form for 0.

(3) The dual of the chain complex Cf(M) may be identified with the cochain complex
EBkC'k, where C* is the group freely generated over Z by the set of critical points
of index k, and the coboundary & : C¥ — C*+1 is given by 6(p) = T ¢(0) - ¢, the
summation is over all proper instantons o from the critical point p of index k to
other critical points ¢ of index k + 1.

4 Work of Witten

We first recall the Hodge-de Rham theory. Consider a compact oriented manifold
M without boundary equipped with a Riemannian structure ¢. and a smooth map
fo M — R. Let 2°(M) be the de Rham complex of A7 with exterior derivative
d: 0F (M) — (Zk'(’l(ﬂ[), which maps k-forms into (k+ 1)-forms, k =0.1...., n—1,
satisfying d? = 0

Dy - YA — s (M),

The metric g defines the adjoint d* : Q¥(M) — Q¥ 1(M) of d. which satisfies
(d*)* = 0. Then the Hodge Laplacian A = dd* +d*d, which maps k-forms into k-forms,
gives a decomposition of QR(M ) into a direct sum of finite dimensional eigenspaces
of A

QR (M) = g 25 (),

where Q25 (M) = {6 € 2%(A)|Ap = Ap}. The forms in the null space ker A = Q8 (A
are called harmonic forms.
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The Hodge theory says that

(1) 025(M) = H5(M)
(2) for each A > 0 the following sequence is exact

0— 0F Lottt op g
where ) is the restriction of d on oF = ®Q§ to !Zf{'.
These two conditions imply that all finite dimensional complexes
Q0 =@r<afX, a>0

have H™(Af) as cohomology. Also, all the counting series 25, = Y, dim($28) - ¢+
satisfy Morse inequalities relative to P¢(M). Since all the complexes §2;; have the same
cohomology H*(Af), an alteration of the metric g on M will not affect these inequalities.

In his generalization of the above theory, Witten cousidered the decomposition of
the Hilbert space H of one particle state, as we have described in §1,

H:I'IB@PIf7

where the algebra of operators on H has only two sypersymmetric generators @1 and
Q2. These satisfy the anti-commutative law

{Q1,Q2} =Q1Q2 + Q20Q, =0.

This model corresponds to the two-dimensional theory where both space and time are
one-dimensional. To introduce squares of the generators, they are expressed in terms
of the momentum P and the Hamiltonian H by the equations

2
Qi=H+P, Qi=H-P
These relations together with the anti-commutation give

. ‘
[QiH) =0 and M = 5(Qf+Q3)
To distinguish bosons (B) and fermions (E7), the counting operator (—1)% is

introduced

(-1)F] $)

i

~S|)if S=F
S|)if S = B.

The operator (—I)F counts the number fermions modulo two. With respect to a basis
of Hg and Hp, (—1)¥" has a representation

I 0
0o -1/

The sypersymmetric generators Q1 and Q2 anti-commute with (—1)F. We have

0 QBF . A
Qi = <(21FB 0 . = 1.2



110 AMIYA MUKHERJEE

where the operators Q?F and Q,lFB transform one type of particle into the other
OFY Hy —Hp and QP .Hp - H,, =12
Witten constructed the above supersymmetric algebra by the following definitions
H
Q) ={d+d). Q= i(d—d").

Tr0 @A), Hp = 24500 (M), Hp = 40277 (00),

Then @1 and Q9 anti-commute with each other. because
Q1Q2 = i(d+d™)(d —d") =i(d"d — dd*) = —Q4Q1.
One can also verify that Q% = Q%, so in this model the momentum P = 0. Moreover,

_ QI+ Q3

" 2

=dd" +d'd = @k:Z()Ak”

Witten brought in a Morse function f into the model without disturbing the super-
symmetric algebra by introducing the operators ds = ¢~/ o doe®/, s € R, which is the
conjugation of d by e*f. Clearly d% = 0, and the cohomology HZ (M) = ker ds/Imds
is the same as the de Rham cohomology H*(M).

Again dj = el odoe ™/ The new generators are given by

Qils) = (ds +d3),  Qafs) =i(ds — d5),
and the associated Laplacian is

Afs) = dud? + dids = Y Ay(s),
k>0

with A(0) = A. We have the decomposition of the corresponding complex of differential
forms

2% (5) = 4 05 (s)

into eigenspaces of the Hamiltonian Hg = A(s).

Although the spectrum of Hs depends on s, the null space of Hs is independent
of s (it is not changed by conjugation by (c"f)‘ Therefore. by Hodge theory the Betti
numbers of Al are given by

b, = dim ker Ay (s) for all s.

As before, we also have for each @ > 0 the finite dimensional complex of differential
forms £25(s) spanned by eigenforms of R, with cigenvalues A < a.

The counting series of any of these complexes 127 (s) must be greater than or equal
to the Poincard series of A/, for the same reason as given in Remark 3.2 (1). These will
become the NMorse inequalities if dim !2(1)7(&;) = my., where my, is the number of critical
points of f of index k.

Witten obtained the Morse theoretic results by studying this family of cochain
complexes {27 (s)}. His argument is that if the parameter s very large, the cochain
complex €2 (s) becomes independent of s, and behaves like the dual of Smale’s chain
complex.
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We describe briefly the ideas behind Witten’s approach. The point is that A =
dd™ + d*d is a sccoud ovder operator, and so its expansion terminates at the ¢2 term,
giving an explicit formula for Hs

dodt + dids = e (dd* + d*d) *7

2
(dd* +d*d) + s - Z (a—fa—fx—> [dx,:, d“i—} +57 (df)2
i0T; Zj

%

Hs

=A+V,

where V is the sum of the last two terms.

Here the @; are the local coordinates, 8/0x; is considered as the operation of
internal multiplication « on the exterior algebra (3 v+ +(8/8z;)¥), and dx; as the
operation of exterior multiplication by dz; (in quantum field theory, the operators dz;
and J/dz; are called fermion creation and annihilation operators respectively), the
o2 f JOr;0r; arc the components of the second derivative of f in the basis (dz;), and
lastly (df)? = 5]/‘-j((‘)f/0wi)('()f/81'j) is the square of the gradient of f with respect to
the Riemaunujan metric g on Af.

The above formula for Hs suggests that Hs may be viewed as a Schrédinger type
operator with potential term V. Therefore in order to obtain Morse theoretic results,
one should investigate Hs for large s. For large s the potential is dominated by its s°
term whose coefficient is (V f)2. Also the enormous growth of the potential energy will
force the eigenfunctions of H; to be zero. Therefore for very large s the potential energy
becomes very larger, except in the vicinities of the critical points of f where Vf =0,
and the supports of the eigenfunctions of Hs are concentrated at the critical points of
f. Therefore in order to make contact with the Morse theory one should approximate
quantities by taking s large and expanding them about critical points of f.

Let us indicate roughly how Witten obtained the weak Morse inequalities my, > by,
by this principle. As stated in §2, the function f can be expressed in a neighbourhood
of a critical point of index A in the form

@)= 50 + 53 et

where €3 = =€y = —2, and €y;; + - + €n = 2. In this local coordinate system,
Witten approximated the Harniltonian Hs as

Hy = (Z 5 +szef'xf + s fi[dri‘d/dri]),
i {

by neglecting the quantities in x; of order > 2 (this is permissible, because for large s the

eigenfunctions are concentrated very near the critical point). Write He = ZZ (H; +
N -+ 2 22 . . -
s€;A5). The term H; = 76;){2 + .szfj.l'f represents the Hamiltonian of the simple

sl

harmonic oscillation. It operates on functions, and its spectrum is se;[(1 4 2N;) for
N; = 0.1.2...., cach with multiplicity one. On the other hand, the operator K; =
[dz;, /0x;] operates on forms. and it has eigenvatues +1 (note that K;(dx;) = dz;
and Ay(dry) = —dx; for i # j). The operators H; and K; commute and can be
diagonalized simultaneously. Therefore the spectrum of Hs consists of the eigenvalues

5 Z lei] (14 2N;) + ey, np = +1,

1
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and it acts on the whole of the exterior algebra. If we restrict the action of Hs on
k-forms. then we must have that the number of n;. which take the value 41, is equal
to k. To make the eigenvalue of H vanish, we must take N; = 0. and must choose n;
1o be +1 if and only if ¢ is negative. that is. choose n; = 1 for / < XA and n; = —1
for i > A. Therefore we may conclude by approximating H.s about a critical point that
Hs has precisely one zero eigenvalue corresponding to a k-form where & is the index of
the critical point. Taking into account that some of these forms may disappear in the
process of approximation, we conclude that my > by.

Witten obtained the strong Morse inequalities by investigating the rest of the spec-
trum of Hs around a critical point. This necessitates some technicalities of physics. Let
us denote the complex 27(s) when s is large by 127 (). Its coboundary operator doo
is induced by the differential operator d on Qfl‘(x) where d is the exterior derivative
of the de Rham complex 2%(M). The observation of Witten is that dim 2¥(x) is the
number of critical points of f of index k. The operator dec corresponds to the dual
of the boundary operator 8 of the Smale’s theory, and maps proper instantons from
critical points of index k to those of index k+1. The verification of the fact that dgo =0
with this combinatorial realization is difficult. To get around to this difficulty, one has
to turn to the quantum mechanical framework of instantons and tunnelling, From the
point of view of quantum mechanics doo corresponds to the ‘tunnclling effect’ between
critical points, that is, tunnelling between the minima of the potential SZ(Vf)Z- The
advantage of tunnelling is that, unlike spectral analysis, it is not linited to working in
the neighbourhood of only one critical point.

One needs to consider physics to see these facts, and once these arc established the
strong Morse inequalities can be deduced following the line of arguments of Smale.
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